3,154 research outputs found

    Scheduling aircraft landings - the static case

    Get PDF
    This is the publisher version of the article, obtained from the link below.In this paper, we consider the problem of scheduling aircraft (plane) landings at an airport. This problem is one of deciding a landing time for each plane such that each plane lands within a predetermined time window and that separation criteria between the landing of a plane and the landing of all successive planes are respected. We present a mixed-integer zero–one formulation of the problem for the single runway case and extend it to the multiple runway case. We strengthen the linear programming relaxations of these formulations by introducing additional constraints. Throughout, we discuss how our formulations can be used to model a number of issues (choice of objective function, precedence restrictions, restricting the number of landings in a given time period, runway workload balancing) commonly encountered in practice. The problem is solved optimally using linear programming-based tree search. We also present an effective heuristic algorithm for the problem. Computational results for both the heuristic and the optimal algorithm are presented for a number of test problems involving up to 50 planes and four runways.J.E.Beasley. would like to acknowledge the financial support of the Commonwealth Scientific and Industrial Research Organization, Australia

    A Hybrid Tabu/Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling

    Get PDF
    As air traffic continues to increase, air traffic flow management is becoming more challenging to effectively and efficiently utilize airport capacity without compromising safety, environmental and economic requirements. Since runways are often the primary limiting factor in airport capacity, runway operations scheduling emerge as an important problem to be solved to alleviate flight delays and air traffic congestion while reducing unnecessary fuel consumption and negative environmental impacts. However, even a moderately sized real-life runway operations scheduling problem tends to be too complex to be solved by analytical methods, where all mathematical models for this problem belong to the complexity class of NP-Hard in a strong sense due to combinatorial nature of the problem. Therefore, it is only possible to solve practical runway operations scheduling problem by making a large number of simplifications and assumptions in a deterministic context. As a result, most analytical models proposed in the literature suffer from too much abstraction, avoid uncertainties and, in turn, have little applicability in practice. On the other hand, simulation-based methods have the capability to characterize complex and stochastic real-life runway operations in detail, and to cope with several constraints and stakeholders’ preferences, which are commonly considered as important factors in practice. This dissertation proposes a simulation-based optimization (SbO) approach for multi-objective runway operations scheduling problem. The SbO approach utilizes a discrete-event simulation model for accounting for uncertain conditions, and an optimization component for finding the best known Pareto set of solutions. This approach explicitly considers uncertainty to decrease the real operational cost of the runway operations as well as fairness among aircraft as part of the optimization process. Due to the problem’s large, complex and unstructured search space, a hybrid Tabu/Scatter Search algorithm is developed to find solutions by using an elitist strategy to preserve non-dominated solutions, a dynamic update mechanism to produce high-quality solutions and a rebuilding strategy to promote solution diversity. The proposed algorithm is applied to bi-objective (i.e., maximizing runway utilization and fairness) runway operations schedule optimization as the optimization component of the SbO framework, where the developed simulation model acts as an external function evaluator. To the best of our knowledge, this is the first SbO approach that explicitly considers uncertainties in the development of schedules for runway operations as well as considers fairness as a secondary objective. In addition, computational experiments are conducted using real-life datasets for a major US airport to demonstrate that the proposed approach is effective and computationally tractable in a practical sense. In the experimental design, statistical design of experiments method is employed to analyze the impacts of parameters on the simulation as well as on the optimization component’s performance, and to identify the appropriate parameter levels. The results show that the implementation of the proposed SbO approach provides operational benefits when compared to First-Come-First-Served (FCFS) and deterministic approaches without compromising schedule fairness. It is also shown that proposed algorithm is capable of generating a set of solutions that represent the inherent trade-offs between the objectives that are considered. The proposed decision-making algorithm might be used as part of decision support tools to aid air traffic controllers in solving the real-life runway operations scheduling problem

    Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1: Algorithm Development

    Get PDF
    A description and results are presented of a study to locate and design rapid runway exits under realistic airport conditions. The study developed a PC-based computer simulation-optimization program called REDIM (runway exit design interactive model) to help future airport designers and planners to locate optimal exits under various airport conditions. The model addresses three sets of problems typically arising during runway exit design evaluations. These are the evaluations of existing runway configurations, addition of new rapid runway turnoffs, and the design of new runway facilities. The model is highly interactive and allows a quick estimation of the expected value of runway occupancy time. Aircraft populations and airport environmental conditions are among the multiple inputs to the model to execute a viable runway location and geometric design solution. The results presented suggest that possible reductions on runway occupancy time (ROT) can be achieved with the use of optimally tailored rapid runway designs for a given aircraft population. Reductions of up to 9 to 6 seconds are possible with the implementation of 30 m/sec variable geometry exits

    Architectures for embedded multimodal sensor data fusion systems in the robotics : and airport traffic suveillance ; domain

    Get PDF
    Smaller autonomous robots and embedded sensor data fusion systems often suffer from limited computational and hardware resources. Many ‘Real Time’ algorithms for multi modal sensor data fusion cannot be executed on such systems, at least not in real time and sometimes not at all, because of the computational and energy resources needed, resulting from the architecture of the computational hardware used in these systems. Alternative hardware architectures for generic tracking algorithms could provide a solution to overcome some of these limitations. For tracking and self localization sequential Bayesian filters, in particular particle filters, have been shown to be able to handle a range of tracking problems that could not be solved with other algorithms. But particle filters have some serious disadvantages when executed on serial computational architectures used in most systems. The potential increase in performance for particle filters is huge as many of the computational steps can be done concurrently. A generic hardware solution for particle filters can relieve the central processing unit from the computational load associated with the tracking task. The general topic of this research are hardware-software architectures for multi modal sensor data fusion in embedded systems in particular tracking, with the goal to develop a high performance computational architecture for embedded applications in robotics and airport traffic surveillance domain. The primary concern of the research is therefore: The integration of domain specific concept support into hardware architectures for low level multi modal sensor data fusion, in particular embedded systems for tracking with Bayesian filters; and a distributed hardware-software tracking systems for airport traffic surveillance and control systems. Runway Incursions are occurrences at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface designated for the landing and take-off of aircraft. The growing traffic volume kept runway incursions on the NTSB’s ‘Most Wanted’ list for safety improvements for over a decade. Recent incidents show that problem is still existent. Technological responses that have been deployed in significant numbers are ASDE-X and A-SMGCS. Although these technical responses are a significant improvement and reduce the frequency of runway incursions, some runway incursion scenarios are not optimally covered by these systems, detection of runway incursion events is not as fast as desired, and they are too expensive for all but the biggest airports. Local, short range sensors could be a solution to provide the necessary affordable surveillance accuracy for runway incursion prevention. In this context the following objectives shall be reached. 1) Show the feasibility of runway incursion prevention systems based on localized surveillance. 2) Develop a design for a local runway incursion alerting system. 3) Realize a prototype of the system design using the developed tracking hardware.Kleinere autonome Roboter und eingebettete Sensordatenfusionssysteme haben oft mit stark begrenzter RechenkapazitĂ€t und eingeschrĂ€nkten Hardwareressourcen zu kĂ€mpfen. Viele Echtzeitalgorithmen fĂŒr die Fusion von multimodalen Sensordaten können, bedingt durch den hohen Bedarf an RechenkapazitĂ€t und Energie, auf solchen Systemen ĂŒberhaupt nicht ausgefĂŒhrt werden, oder zu mindesten nicht in Echtzeit. Der hohe Bedarf an Energie und RechenkapazitĂ€t hat seine Ursache darin, dass die Architektur der ausfĂŒhrenden Hardware und der ausgefĂŒhrte Algorithmus nicht aufeinander abgestimmt sind. Dies betrifft auch Algorithmen zu Spurverfolgung. Mit Hilfe von alternativen Hardwarearchitekturen fĂŒr die generische AusfĂŒhrung solcher Algorithmen könnten sich einige der typischerweise vorliegenden EinschrĂ€nkungen ĂŒberwinden lassen. Eine Reihe von Aufgaben, die sich mit anderen Spurverfolgungsalgorithmen nicht lösen lassen, lassen sich mit dem Teilchenfilter, einem Algorithmus aus der Familie der Bayesschen Filter lösen. Bei der AusfĂŒhrung auf traditionellen Architekturen haben Teilchenfilter gegenĂŒber anderen Algorithmen einen signifikanten Nachteil, allerdings ist hier ein großer Leistungszuwachs durch die nebenlĂ€ufige AusfĂŒhrung vieler Rechenschritte möglich. Eine generische Hardwarearchitektur fĂŒr Teilchenfilter könnte deshalb die oben genannten Systeme stark entlasten. Das allgemeine Thema dieses Forschungsvorhabens sind Hardware-Software-Architekturen fĂŒr die multimodale Sensordatenfusion auf eingebetteten Systemen - speziell fĂŒr Aufgaben der Spurverfolgung, mit dem Ziel eine leistungsfĂ€hige Architektur fĂŒr die Berechnung entsprechender Algorithmen auf eingebetteten Systemen zu entwickeln, die fĂŒr Anwendungen in der Robotik und VerkehrsĂŒberwachung auf FlughĂ€fen geeignet ist. Das Augenmerk des Forschungsvorhabens liegt dabei auf der Integration von vom Einsatzgebiet abhĂ€ngigen Konzepten in die Architektur von Systemen zur Spurverfolgung mit Bayeschen Filtern, sowie auf verteilten Hardware-Software Spurverfolgungssystemen zur Überwachung und FĂŒhrung des Rollverkehrs auf FlughĂ€fen. Eine „Runway Incursion“ (RI) ist ein Vorfall auf einem Flugplatz, bei dem ein Fahrzeug oder eine Person sich unerlaubt in einem Abschnitt der Start- bzw. Landebahn befindet, der einem Verkehrsteilnehmer zur Benutzung zugewiesen wurde. Der wachsende Flugverkehr hat dafĂŒr gesorgt, das RIs seit ĂŒber einem Jahrzehnt auf der „Most Wanted“-Liste des NTSB fĂŒr Verbesserungen der Sicherheit stehen. JĂŒngere VorfĂ€lle zeigen, dass das Problem noch nicht behoben ist. Technologische Maßnahmen die in nennenswerter Zahl eingesetzt wurden sind das ASDE-X und das A-SMGCS. Obwohl diese Maßnahmen eine deutliche Verbesserung darstellen und die Zahl der RIs deutlich reduzieren, gibt es einige RISituationen die von diesen Systemen nicht optimal abgedeckt werden. Außerdem detektieren sie RIs ist nicht so schnell wie erwĂŒnscht und sind - außer fĂŒr die grĂ¶ĂŸten FlughĂ€fen - zu teuer. Lokale Sensoren mit kurzer Reichweite könnten eine Lösung sein um die fĂŒr die zuverlĂ€ssige Erkennung von RIs notwendige PrĂ€zision bei der Überwachung des Rollverkehrs zu erreichen. Vor diesem Hintergrund sollen die folgenden Ziele erreicht werden. 1) Die Machbarkeit eines Runway Incursion Vermeidungssystems, das auf lokalen Sensoren basiert, zeigen. 2) Einen umsetzbaren Entwurf fĂŒr ein solches System entwickeln. 3) Einen Prototypen des Systems realisieren, das die oben gennannte Hardware zur Spurverfolgung einsetzt

    Optimisation du trafic aérien à l'arrivée dans la zone terminale et dans l'espace aérien étendu

    Get PDF
    Selon les prĂ©visions Ă  long terme du trafic aĂ©rien de l'Organisation de l'Aviation Civile Internationale (OACI) en 2018, le trafic mondial de passagers devrait augmenter de 4,2% par an de 2018 Ă  2038. Bien que l'Ă©pidĂ©mie de COVID-19 ait eu un impact Ă©norme sur le transport aĂ©rien, il se rĂ©tablit progressivement. DĂšs lors, l'efficacitĂ© et la sĂ©curitĂ© resteront les principales problĂ©matiques du trafic aĂ©rien, notamment au niveau de la piste qui est le principal goulot d'Ă©tranglement du systĂšme. Dans le domaine de la gestion du trafic aĂ©rien, la zone de manƓuvre terminale (TMA) est l'une des zones les plus complexes Ă  gĂ©rer. En consĂ©quence, le dĂ©veloppement d'outils d'aide Ă  la dĂ©cision pour gĂ©rer l'arrivĂ©e des avions est primordial. Dans cette thĂšse, nous proposons deux approaches d'optimisation qui visent Ă  fournir des solutions de contrĂŽle pour la gestion des arrivĂ©es dans la TMA et dans un horizon Ă©tendu intĂ©grant la phase en route. PremiĂšrement, nous abordons le problĂšme d'ordonnancement des avions sous incertitude dans la TMA. La quantification et la propagation de l'incertitude le long des routes sont rĂ©alisĂ©es grĂące Ă  un modĂšle de trajectoire qui reprĂ©sente les informations temporelles sous forme de variables alĂ©atoires. La dĂ©tection et la rĂ©solution des conflits sont effectuĂ©es Ă  des points de cheminement d'un rĂ©seau prĂ©dĂ©fini sur la base des informations temporelles prĂ©dites Ă  partir de ce modĂšle. En minimisant l'espĂ©rance du nombre de conflits, les vols peuvent ĂȘtre bien sĂ©parĂ©s. Outre le modĂšle proposĂ©, deux autres modĂšles de la litĂ©rrature - un modĂšle dĂ©terministe et un modĂšle intĂ©grant des marges de sĂ©paration - sont prĂ©sentĂ©s comme rĂ©fĂ©rences. Un recuit simulĂ© (SA) combinĂ© Ă  une fenĂȘtre glissante temporelle est proposĂ© pour rĂ©soudre une Ă©tude de cas de l'aĂ©roport de Paris Charles de Gaulle (CDG). De plus, un cadre de simulation basĂ© sur l'approche Monte-Carlo est implĂ©mentĂ© pour perturber alĂ©atoirement les horaires optimisĂ©s des trois modĂšles afin d'Ă©valuer leurs performances. Les rĂ©sultats statistiques montrent que le modĂšle proposĂ© prĂ©sente des avantages absolus dans l'absorption des conflits en cas d'incertitude. Dans une deuxiĂšme partie, nous abordons un problĂšme dynamique basĂ© sur le concept de Gestion des ArrivĂ©es Étendue (E-AMAN). L'horizon E-AMAN est Ă©tendu jusqu'Ă  500 NM de l'aĂ©roport de destination permettant ainsi une planification anticipĂ©e. Le caractĂšre dynamique est traitĂ©e par la mise Ă  jour pĂ©riodique des informations de trajectoires rĂ©elles sur la base de l'approche par horizon glissant. Pour chaque horizon temporel, un sous-problĂšme est Ă©tabli avec pour objectif une somme pondĂ©rĂ©e de mĂ©triques de sĂ©curitĂ© du segment en route et de la TMA. Une approche d'attribution dynamique des poids est proposĂ©e pour souligner le fait qu'Ă  mesure qu'un aĂ©ronef se rapproche de la TMA, le poids de ses mĂ©triques associĂ©es Ă  la TMA devrait augmenter. Une Ă©tude de cas est rĂ©alisĂ©e Ă  partir des donnĂ©es rĂ©elles de l'aĂ©roport de Paris CDG. Les rĂ©sultats finaux montrent que grĂące Ă  cet ajustement anticipĂ©, les heures d'arrivĂ©e des avions sont proches des heures prĂ©vues tout en assurant la sĂ©curitĂ© et en rĂ©duisant les attentes. Dans la troisiĂšme partie de cette thĂšse, on propose un algorithme qui accĂ©lĂšre le processus d'optimisation. Au lieu d'Ă©valuer les performances de tous les aĂ©ronefs, les performances d'un seul aĂ©ronef sont concentrĂ©es dans la fonction objectif. GrĂące Ă  ce changement, le processus d'optimisation bĂ©nĂ©ficie d'une Ă©valuation d'objectif rapide et d'une vitesse de convergence Ă©levĂ©e. Afin de vĂ©rifier l'algorithme proposĂ©, les rĂ©sultats sont analysĂ©s en termes de temps d'exĂ©cution et de qualitĂ© des rĂ©sultats par rapport Ă  l'algorithme utilisĂ© Ă  l'origine.According to the long term air traffic forecasts done by International Civil Aviation Organization (ICAO) in 2018, global passenger traffic is expected to grow by 4.2% annually from 2018 to 2038 using the traffic data of 2018 as a baseline. Even though the outbreak of COVID-19 has caused a huge impact on the air transportation, it is gradually restoring. Considering the potential demand in future, air traffic efficiency and safety will remain critical issues to be considered. In the airspace system, the runway is the main bottleneck in the aviation chain. Moreover, in the domain of air traffic management, the Terminal Maneuvering Area (TMA) is one of the most complex areas with all arrivals converging to land. This motivates the development of suitable decision support tools for providing proper advisories for arrival management. In this thesis, we propose two optimization approaches that aim to provide suitable control solutions for arrival management in the TMA and in the extended horizon that includes the TMA and the enroute phase. In the first part of this thesis, we address the aircraft scheduling problem under uncertainty in the TMA. Uncertainty quantification and propagation along the routes are realized in a trajectory model that formulates the time information as random variables. Conflict detection and resolution are performed at waypoints of a predefined network based on the predicted time information from the trajectory model. By minimizing the expected number of conflicts, consecutively operated flights can be well separated. Apart from the proposed model, two other models - the deterministic model and the model that incorporates separation buffers - are presented as benchmarks. Simulated annealing (SA) combined with the time decomposition sliding window approach is used for solving a case study of the Paris Charles de Gaulle (CDG) airport. Further, a simulation framework based on the Monte-Carlo approach is implemented to randomly perturb the optimized schedules of the three models so as to evaluate their performances. Statistical results show that the proposed model has absolute advantages in conflict absorption when uncertainty arises. In the second part of this thesis, we address a dynamic/on-line problem based on the concept of Extended Arrival MANagement (E-AMAN). The E-AMAN horizon is extended up to 500NM from the destination airport so as to enhance the cooperation and situational awareness of the upstream sector control and the TMA control. The dynamic feature is addressed by periodically updating the real aircraft trajectory information based on the rolling horizon approach. For each time horizon, a sub-problem is established taking the weighted sum of safety metrics in the enroute segment and in the TMA as objective. A dynamic weights assignment approach is proposed to emphasize the fact that as an aircraft gets closer to the TMA, the weight for its metrics associated with the TMA should increase. A case study is carried out using the real arrival traffic data of the Paris CDG airport. Final results show that through early adjustment, the arrival time of the aircraft can meet the required schedule for entering the TMA, thus ensuring overall safety and reducing holding time. In the third part of this thesis, an algorithm that expedites the optimization process is proposed. Instead of evaluating the performance of all aircraft, single aircraft performance is focused and a corresponding objective function is created. Through this change, the optimization process benefits from fast evaluation of objective and high convergence speed. In order to verify the proposed algorithm, results are analyzed in terms of execution time and quality of result compared to the originally used algorithm

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    A new multiple flights routing and scheduling algorithm in terminal manoeuvring area

    Get PDF
    We address multiple flights planning problems from its initial waypoint to its destination while satisfying the minimum separation requirement between each aircraft at all times in a Terminal Manoeuvring Area (TMA) to maintain or increase runway throughput. Due to operational constraints for safety, most of the current aircraft fly over or by waypoints, and along nominal routes in the airspace. Where the waypoints and routes in the airspace can be modelled as a weighted digraph, called airspace graph. We propose a problem that consists of determining a flight path (routing problem) and its speed profile (scheduling problem) in a given airspace graph in which a time-based weighting scheme of the airspace graph is proposed to reflect a speed-limitation-compliant schedule that satisfy the minimum separation requirement. For multiple flights cases, the flight paths and schedules are obtained by iteratively solving the problem for each flight by applying the First Come First Served (FCFS) algorithm to determine an arrival sequence. The main contributions of this paper are increasing a solution search space by solving two problems simultaneously, efficient computational time, and providing the separation-compliant flight path and speed profile within the speed limitation for each flight. We demonstrate the advantages of the proposed approach through a case study in which multiple flights arrive at a single airport, and we compare the results with Regulated Tactical Flight Model (RTFM) obtained from EUROCONTROL Demand Data Repository 2 (DDR2). Although, we consider only a single airport and make an assumption to simplify flight routes from holding stacks to a Final Approach Fix (FAF), the results show the potential usage of the proposed algorithm as a Decision Support Tool (DST) for Air Traffic Controllers (ATCOs) if the following considerations are taken into account: detailed routes-based flights after the holding stacks, multiple airports, departing aircraft, all possibe aircraft types, and uncertainties produced by external sources

    Applications of stochastic modeling in air traffic management:Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time

    Aeronautical Engineering: A special bibliography with indexes, supplement 55

    Get PDF
    This bibliography lists 260 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1975
    • 

    corecore