16 research outputs found

    M茅todo de localizaci贸n inteligente sobre redes de sensores inal谩mbricos

    Get PDF
    M茅todo de localizaci贸n inteligente sobre redes de sensores inal谩mbricos que comprende un primer proceso distribuido, ejecutado en cada nodo que realiza una estimaci贸n de la posible localizaci贸n del Tag; y un segundo proceso centralizado, que une todas esas informaciones parciales en una 煤nica soluci贸n.Espa帽

    Fully Connected Neural Networks Ensemble with Signal Strength Clustering for Indoor Localization in Wireless Sensor Networks

    Get PDF
    The paper introduces a method which improves localization accuracy of the signal strength fingerprinting approach. According to the proposed method, entire localization area is divided into regions by clustering the fingerprint database. For each region a prototype of the received signal strength is determined and a dedicated artificial neural network (ANN) is trained by using only those fingerprints that belong to this region (cluster). Final estimation of the location is obtained by fusion of the coordinates delivered by selected ANNs. Sensor nodes have to store only the signal strength prototypes and synaptic weights of the ANNs in order to estimate their locations. This approach significantly reduces the amount of memory required to store a received signal strength map. Various ANN topologies were considered in this study. Improvement of the localization accuracy as well as speed-up of learning process was achieved by employing fully connected neural networks. The proposed method was verified and compared against state-of-the-art localization approaches in realworld indoor environment by using both stationary andmobile sensor nodes

    Nature Inspired Range Based Wireless Sensor Node Localization Algorithms

    Get PDF
    Localization is one of the most important factors highly desirable for the performance of Wireless Sensor Network (WSN). Localization can be stated as the estimation of the location of the sensor nodes in sensor network. In the applications of WSN, the data gathered at sink node will be meaningless without localization information of the nodes. Due to size and complexity factors of the localization problem, it can be formulated as an optimization problem and thus can be approached with optimization algorithms. In this paper, the nature inspired algorithms are used and analyzed for an optimal estimation of the location of sensor nodes. The performance of the nature inspired algorithms viz. Flower pollination algorithm (FPA), Firefly algorithm (FA), Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for localization in WSN is analyzed in terms of localization accuracy, number of localized nodes and computing time. The comparative analysis has shown that FPA is more proficient in determining the coordinates of nodes by minimizing the localization error as compared to FA, PSO and GWO

    A New Collaborative Knowledge-Based Approach for Wireless Sensor Networks

    Get PDF
    This work presents a new approach for collaboration among sensors in Wireless Sensor Networks. These networks are composed of a large number of sensor nodes with constrained resources: limited computational capability, memory, power sources, etc. Nowadays, there is a growing interest in the integration of Soft Computing technologies into Wireless Sensor Networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks. The objective of this work is to design a collaborative knowledge-based network, in which each sensor executes an adapted Fuzzy Rule-Based System, which presents significant advantages such as: experts can define interpretable knowledge with uncertainty and imprecision, collaborative knowledge can be separated from control or modeling knowledge and the collaborative approach may support neighbor sensor failures and communication errors. As a real-world application of this approach, we demonstrate a collaborative modeling system for pests, in which an alarm about the development of olive tree fly is inferred. The results show that knowledge-based sensors are suitable for a wide range of applications and that the behavior of a knowledge-based sensor may be modified by inferences and knowledge of neighbor sensors in order to obtain a more accurate and reliable output

    Range Free Localization Schemes for Wireless Sensor Networks

    Full text link

    Distance Measurement-Based Cooperative Source Localization: A Convex Range-Free Approach

    Get PDF
    One of the most essential objectives in WSNs is to determine the spatial coordinates of a source or a sensor node having information. In this study, the problem of range measurement-based localization of a signal source or a sensor is revisited. The main challenge of the problem results from the non-convexity associated with range measurements calculated using the distances from the set of nodes with known positions to a xed sen- sor node. Such measurements corresponding to certain distances are non-convex in two and three dimensions. Attempts recently proposed in the literature to eliminate the non- convexity approach the problem as a non-convex geometric minimization problem, using techniques to handle the non-convexity. This study proposes a new fuzzy range-free sensor localization method. The method suggests using some notions of Euclidean geometry to convert the problem into a convex geometric problem. The convex equivalent problem is built using convex fuzzy sets, thus avoiding multiple stable local minima issues, then a gradient based localization algorithm is chosen to solve the problem. Next, the proposed algorithm is simulated considering various scenarios, including the number of available source nodes, fuzzi cation level, and area coverage. The results are compared with an algorithm having similar fuzzy logic settings. Also, the behaviour of both algorithms with noisy measurements are discussed. Finally, future extensions of the algorithm are suggested, along with some guidelines

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    corecore