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The paper introduces a method which improves localization accuracy of the signal strength fingerprinting approach. According
to the proposed method, entire localization area is divided into regions by clustering the fingerprint database. For each region a
prototype of the received signal strength is determined and a dedicated artificial neural network (ANN) is trained by using only
those fingerprints that belong to this region (cluster). Final estimation of the location is obtained by fusion of the coordinates
delivered by selected ANNs. Sensor nodes have to store only the signal strength prototypes and synaptic weights of the ANNs in
order to estimate their locations. This approach significantly reduces the amount of memory required to store a received signal
strength map. Various ANN topologies were considered in this study. Improvement of the localization accuracy as well as speedup
of learning process was achieved by employing fully connected neural networks. The proposed method was verified and compared
against state-of-the-art localization approaches in real world indoor environment by using both stationary and mobile sensor nodes.

1. Introduction

Localization of sensor nodes is a necessary function for
various emerging applications of wireless sensor networks
(WSNs), such as road traffic control [1] and target tracking
[2]. Accurate estimation of the sensor node location is impor-
tant for efficiency of routing and location-aware services. In
many cases sensor readings collected in WSN are not useful
without the location information. Thus, there is a growing
research interest in the localization methods due to their
potential use in a variety of WSN applications [3].
Localization methods can be categorized into two main
classes with regard to type of utilized information: range-
based methods need information about node-to-node dis-
tances or angles for estimating locations; range-free methods
do not need the distance or angle information as they estimate
the location based on proximity of several reference nodes.
Since range-free methods are usually more efficient in
terms of hardware and computational requirements, they
become more popular than the range-based methods in WSN
localization [4]. A most popular example of the range-free

methods is the CL algorithm, which estimates position of
a node as the centroid of the positions of all neighboring
reference nodes [5, 6]. The positions of reference nodes are
fixed or calculated during initialization stage [7].

For range-based methods, the distance information can
be obtained by analyzing time of arrival (TOA), time
difference of arrival (TDOA), angle of arrival (AOA), or
received signal strength indicators (RSSI) [8]. TOA algorithm
calculates the distance on the basis of known transmis-
sion time and signal propagation speed. It requires high-
resolution clocks to be installed at sensor nodes. In case of
AOA algorithm, the sensor node needs several narrow beam
receivers or an antenna array to determine the direction of
the received signal. TDOA uses two transmission signals
of different propagation speeds. Therefore, it requires two
different transmitters and receivers on each node. The above
range-based localization techniques have little practical use
in WSNs due to the necessity of additional hardware, which
increases cost, size, and energy consumption of sensor nodes.
RSSI algorithms estimate the node-to-node distances by
using a signal propagation model. However, for real world
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dynamic environments the propagation models are not capa-
ble of accurately predicting the impact of all environmental
factors on received signal strength. The use of RSSI approach
is especially difficult for indoor applications that experience
multipath signal propagation.

The multipath signal propagation issues can be addressed
by using methods that are based on fingerprinting [9].
According to the general fingerprinting approach, RSSI val-
ues from reference nodes have to be collected and stored
in a database along with the information about positions of
the reference nodes. In order to estimate location of a node,
its fingerprint is compared with the fingerprint database. In
this scheme, an infrastructure of existing wireless networks
(e.g., Wi-Fiaccess points) can be utilized instead of dedicated
reference nodes.

Currently, there is a considerable research interest in
developing fingerprint localization methods based on artifi-
cial neural networks (ANNs) [10]. An important advantage
of this approach is that the ANN enables accurate recogni-
tion of node location in case of noisy RSSI measurements.
When using ANNG, the detailed information about indoor
environment and locations of the reference nodes is not
necessary. ANN interpolates the data collected in the fin-
gerprint database to approximate a mapping between the
multidimensional fingerprints space and the coordinates of
nodes. In training phase, the collected RSSI vectors are used
to tune weights of connections between neurons in the ANN.
Although training can be time-consuming, the localization
process is much faster than analytical estimation of the node
location.

In this paper a method is proposed that improves local-
ization accuracy of the ANN-based fingerprinting. According
to the introduced method, the entire localization area is
divided into regions by clustering the fingerprint database.
A separate ANN is trained for each region by using only
those fingerprints that belong to this region (cluster). During
clustering, a prototype RSSI vector is determined for each
region. When localization process starts, those prototypes are
selected that are most similar to the vector of current RSSI
measurements. The ANNs that correspond to the selected
prototypes are used to estimate the node coordinates. Final
estimation of the location is obtained by fusion of the
coordinates delivered by ANNs. Further improvement of the
localization accuracy as well as speedup of learning process
was achieved by employing fully connected neural networks
[11].

The paper is organized as follows. Section 2 describes
previous works related to ANN applications for localization
in WSN. The proposed clustered fingerprinting localization
method based on fully connected neural networks (FCNNs)
is presented in Section 3. Section 4 includes experimental
results and comparison of the introduced method with state-
of-the-art approaches. Conclusions and discussion are given
in Section 5.

2. Related Works and Contribution

Several localization methods have been recently proposed
for WSNs in the related literature. These methods are based
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on various theoretical frameworks, including ANNs [12],
Voronoi diagrams [13], cooperative localization [14], Gaus-
sian mixed models [15], particle filters [16], average distance
per hop estimation [17, 18], and particle swarm optimization
[19]. As it was discussed in Sectionl, the application of
ANNGs is especially advantageous when dealing with node
localization in dynamic indoor environments. This section
provides a survey of the previous ANN-based localization
methods and discusses main contributions of this study.

Multilayer perceptron (MLP) is the most popular type
of ANN in recent applications for range-free wireless sensor
node localization. In [20] the MLP ANN was used for
fingerprint-based localization in WSN. Accuracy of this
method was evaluated with thirteen backpropagation train-
ing algorithms. Similar approach was proposed in [21]. To
tackle changes in wireless channel, the ANN training has
been updated in regular time intervals. An ensemble, which
consists of four MLP ANNs with different number of inputs,
was presented in [22]. According to that method, when the
localization process has to be performed, a selected ANN is
used that has as many inputs as currently connected reference
nodes. This approach is not well-scalable; thus the maximum
number of reference node connections was set to four.
Localization accuracy obtained for the ANNs ensemble was
better than for approaches based on fuzzy learning system
and genetic algorithm.

Implementation of multiple MLP ANN improved the
Bluetooth based localization accuracy in [23]. This method
assumes that different neural network is trained for each route
of a user equipped with Bluetooth device.

Recently, S. Y. M. Vaghefi and R. M. Vaghefi [24] have
comparatively investigated the number of hidden layers of
MLP on accuracy of a WSN localization approach designed
to moderate the negative effect of miscellaneous noise sources
and harsh factory conditions. So-In et al. [25] have examined
the application of different soft computing techniques in
the RSSI fingerprint-based localization. In that study, the
performance of MLP was compared against fuzzy logic
system, genetic algorithm, and support vector machine.

Guo et al. [26] have proposed a localization method,
which applies radial basis function (RBF) ANN for the RSSI
fingerprinting. The authors have suggested that utilization
of redundant RSSI information can improve the positioning
performance. The reliability and precision of localization
were improved by taking difference of the received signal
strength as additional input of the ANN. To improve the
positioning accuracy in dynamic environments, an online
training mechanism was introduced for RBF ANNs. The RBF
ANNS s handle nonlinear problems well and are easy to train,
but they need a hidden neuron for every training pattern.
Thus, the number of neurons used in RBF networks may
become very large.

There are also several range-based methods available that
use ANNS. In [27] the MLP ANN was applied to reduce the
localization error of TOA and AOA algorithms in non-line-
of-sight environments. Shareef et al. [28] have compared the
performance of different ANN types in filtering the noise of
distance measurements obtained from the TDOA algorithm.
The ANN types that were applied in that study include
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FIGURE 1: Overview of the proposed localization method.

MLP, RBF ANN, and recurrent ANN. The RBF ANN has
performed better than the other networks but it has higher
memory and computation costs. On the other hand, the MLP
network has the lowest memory and computation costs.

Abdelhadi et al. [29] have combined fuzzy inference
system and MLP for three-dimensional localization of sensor
nodes. The coordinates of sensor node are inferred by MLP
on the basis of distances to reference nodes.

Rahman et al. [30] have proposed a location estimation
algorithm for WSN, which combines generalized regression
neural networks (GRNNs) and weighted centroid localization
(WCL). In that algorithm, two GRNNSs are trained separately
for “x” and “y” coordinates. The GRNNS are used to provide
a rough estimate of sensor node location. Subsequently the
nearest reference nodes are selected and final estimation of
the location is obtained by WCL.

A multilayer ANN, called artificial synaptic network, was
introduced in [24] for sensor node localization based on the
TOA algorithm. The artificial synaptic network model was
defined as a collection of many artificial synaptic networks
that works on data clusters. Only one selected synaptic
network is used for each localization task. The training
data were clustered by using k-means algorithm. During
simulation experiment this approach has shown a better
performance and efficiency in TOA localization than RBF
ANN and MLP.

The main contributions in this paper include (1) defini-
tion of fully connected neural networks (FCNNs) ensemble
for range-free fingerprinting-based indoor localization of
wireless sensor nodes, (2) a new approach for clustering the
fingerprint database, and (3) fusion procedure based on k
nearest neighbors algorithm, which enables estimation of
node location by using multiple FCNNG.

In traditionally connected ANNs, such as the MLP or
RBE, neurons are organized in layers and connections are
introduced from one layer to the next layer. The FCNNs
have additional connections across layers [11]. In [31] it was
demonstrated that when comparing FCNNs with tradition-
ally connected ANNs the latter ones require about twice as
many neurons to perform a similar task. With connections

across layers in FCNN, there are fewer neurons on the signal
paths, and, as a result, training algorithms converge faster.
Reduced number of neurons and increased training speed are
very important benefits for WSN localization applications as
they enable lower consumption of the limited sensor node
resources (memory, computational time, and energy) and
faster adaptation in dynamic environments.

To improve the localization accuracy, a clustering-based
approach is introduced in this study, which allows multiple
ANN:Ss to be used for location estimation in different regions
of the considered area. According to this approach, current
location of sensor node can be estimated by several ANN.
The location coordinates determined by different ANN are
merged together by using a fusion algorithm. The fusion of
ANN' s outputs improves the localization, especially for those
sensor nodes that are close to borders of the regions.

3. Proposed Localization Method

In this section details of the proposed approach are presented.
Main elements of this approach are related to training and
localization processes. Localization process of a senor node
consists of three steps: selection of ANNS, estimation of the
node location by selected ANNS, and fusion of the estimated
locations. During training process the available RSSI data
are clustered and an ANN is trained for each cluster. These
operations are repeated for different parameter settings until
arequired precision of localization is achieved. The precision
is estimated by using a validation dataset. Parameters that
determine the number of clusters and the number of ANNs
used for localization are modified at each training iteration. In
this way the parameter settings can be appropriately adjusted.
An overview of the method is presented in Figure 1.

3.1 Training Process. The set of training data includes vectors
t; = (RSSI,?, ..., RSSI,, ) of RSSI values collected in known
locations (x®, y®) for signals from m reference nodes. This
training dataset is clustered into # clusters that correspond
to different regions of the area where RSSI values were
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F1GURE 2: Neural network ensemble for sensor node localization.

collected. Various clustering algorithms can be used for this
task. In this study the two most popular algorithms are
considered: k-means [32] and fuzzy c-means [33]. Results of
the clustering operations determine prototype RSSI vectors
p; = (RSSIl(j),...,RSSIm(j)), for clusters j = 1,...,n, where
n is the predetermined number of clusters. Additionally, in
case of fuzzy clustering, membership matrix U is obtained:
U = [u;;], where u; ; denotes membership degree of training
vector t; in cluster j.

There are n ANNSs in the proposed ensemble, one for each
cluster. The selection of training vectors for particular ANN
depends on applied clustering algorithm. In case of k-means
clustering, vector t; is used for training of jth ANN only if p;
is the nearest prototype of vector t;; that is,

j =argmin|t; - p,. M

In case of fuzzy c-means clustering, the training of jth
ANN is performed based on vectors t; that have membership
degree in cluster j above a predetermined threshold u,,,; that
is, v j > Uy,

3.2. Localization Process. Figurel shows a block diagram
of the ANNs ensemble, which is used for sensor node
localization. Inputs of the ANNSs are indicated by the dashed
lines, which mean that not all RSSI values have to be used as
inputs of a given ANN. This assumption allows the topology
of ANN to be simplified in case when some regions (clusters)
are not covered by the signal range of all reference nodes.
RSSI,...,RSSI,, in Figure2 refer to the received signal
strength indicators measured for the unknown location of
sensor node. Let us denote the vector of these RSSI values by
r.

Fusion module selects the ANNs that are useful for
estimation of the unknown position. According to the pro-
posed approach the selection is based on the k nearest
neighbors approach. Euclidean distances between vector r
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and prototypes p;, j = 1,...,n, are calculated for all n
prototypes, and k prototypes with the lowest distances are
selected (k < n). For further consideration let j, s =
1,2,...,k, stand for the indexes of the selected prototypes
(nearest neighbors). It should be kept in mind that each
prototype is assigned to a single ANN. Thus, the indexes of
selected prototypes determine ANNs that will be used for
estimation of the unknown position.

Final estimate of the sensor node position (x,y) is
obtained by fusion of the coordinates (x;, ;) provided by
the selected ANNs. The type of fusion algorithm depends on
the clustering method applied for the training process.

In case of k-means algorithm, the coordinate x is calcu-

lated as follows:
_ Zf:l (xjs/ "r_Pjs )
25:1 (1/ “l‘ - Pj )

This approach is based on an insight that the selected ANNS,
for which the prototypes are relatively closer to the current
RSSI measurement, provide a better indication of the sensor
node position.

If fuzzy c-means is the applied algorithm, then coordinate
x is determined by using the formula:

2)

k
X = ijsu-s (r), (3)

s=1

where uj(r) denotes the membership degree of vector r in
cluster j, which is computed according to the following
formula, originally defined in [33] for the c-means algorithm:

1

u; (r) = —,
T (e e )

2 is a fuzziness parameter of the c-means

where m >

algorithm.
For estimation of the y coordinate, appropriate versions

of (2) and (3) can be easily obtained by substituting x with y.

4. Experiments

The experiments were performed on a RSSI dataset collected
from sensor nodes in the 6-level building of the Institute
of Computer Science at the University of Silesia, Sosnowiec,
Poland. The dimensions of the building are approximately
60 m (length) by 18 m (height). The sensor nodes were equally
distributed, 11 locations on each floor. They were used to
periodically collect the RSSI values for signals of Wi-Fi access
points (APs) and then send the collected data to a sink node.
In total, the RSSI data from 66 nodes within the building
were registered. The sensor nodes in WSN use a standard
omnidirectional antenna.

The sensor node is presented in Figure 3(a). It is con-
structed from 8-bit microcontroller, Wi-Fi module, and
7200] energy source. The mobile node (Figure 3(b)) was
built based on ARM 32-bit architecture Raspberry Pi 2. The
parameters of mobile node were sufficient for implementing
the proposed localization method.
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(a)

(b)

FIGURE 3: The sensor nodes used in experiments: (a) node collecting RSSI data, (b) localized mobile node.

TABLE 1: Simulation parameters of WSN network based on 802.11
protocol.

Value
—100 dBm
2.4 GHz
APSK Scalar Radio
2 MHz
24 mW
Receiver sensitivity -85dBm
SNIR threshold 4dB

Parameter

Background noise power
Carrier frequency

Radio type

Radio bandwidth
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F1GURE 4: RSSI values obtained in simulation versus real RSSI values.

Additionally, the building structure with network infras-
tructure was modeled in OMNeT++ (with Inet/Mixim exten-
sions). The implemented WSN model takes into account
Wi-Fi radio propagation [34] and obstacles. The simulation
parameters were described in Table 1.

The model was implemented to compare the RSSI results
obtained from real world WSN with values obtained via
simulation. The comparison of obtained RSSI values for a
WSN node based on the distance from the source of signal
was presented in Figure 4.

Figure 4 shows that changes in RSSI values for simu-
lation without obstacles and interferences are regular and
localization task is quite simple. However, analysis of real

RSSI (dBm)

Floor level

-100

6 18

30 42 54
Position on floor level (m)

FIGURE 5: RSSI values measured in building.

data and models with obstacles and interferences shows that
the RSSI value can increase or decrease with distance; thus
object localization task is more difficult. The localization in
second and third dimension only makes it more demanding.
Therefore, the various ANN algorithms were researched as a
method to tackle complex dependencies.

An example of RSSI value of a single AP registered
by a grid of sensor nodes in building is illustrated in
Figure 5. The RSSI values presented in Figure 5 show that the
signal propagates easily within a floor level but its strength
decreases significantly between floor levels. The ceiling is
usually thicker than wall; thus the signal strength decreases
faster. Within a floor level, the values are enhanced by
reflection; thus for some locations it can be observed that
the signal strength increases with distance from the AP (local
distortions).

Due to the dynamic character of the experimental envi-
ronment, multiple readings of AP RSSI are needed for correct
localization. 72 unique AP MACs were registered in the
university building during 7 days of the research. However,
only 46 of them were registered both by sensor nodes used
to collect training dataset and by the mobile sensor node
used for verification (testing RSSI dataset). The sensor nodes
collect the RSSI value 10 times a day, so 660 readings a day
are collected. In practice, due to high density of traffic in
university network on average 630 readings a day were sent
without an error (6300 in total). The testing set covers 400
readings of the mobile node for one day.



The localization error is determined as the Euclidean
distance between the estimated location and the real location
of the sensor node:

error = \/(x - x0)2 +(y- yo)z, (5)

where (x,, y,) is the real location of the sensor node, while
x and y are coordinates of the estimated location. In this
research, the arithmetic mean of error values calculated using
(5) for all test vectors is considered as the measure of the
algorithm accuracy (ME).

4.1. Parameter Calibration. The initial research was con-
ducted to find a minimal ANN architecture that would be
sufficient to perform localization with the lowest error (ME)
value. To efficiently learn the ANNS, after the preliminary
research, neuron by neuron algorithm [35] was selected as
it converges after maximum 50 iterations, which is a better
result than this of the improved backpropagation algorithm
[36]. The optimal structure of ANNs was found by increasing
the number of neurons in hidden layers until ME is not
decreasing. The validation was performed on separate subset
of the training data. The elements of validation subset are
equally distributed over the localization area.

Three ANN architectures were considered in the research:
MLP, RBF ANN (called RBF later on), and FCNN. Localiza-
tion errors, obtained for the examined ANN architectures,
are presented in Figure 6. The obtained ME value for all
three ANNs was on a comparable level; however FCNN
has achieved lower error ratio by using only 10 neurons in
one hidden layer. In case of MLP the stable error values
are obtained for 16 neurons in two hidden layers. Similarly,
RBF has achieved the lowest ME value for the number of
clusters (c) equal to 24. These parameters were used in further
localization experiments.

The FCNN was applied as a part of the proposed method
as it requires the smallest number of neurons and provides
the lowest ME value. The calibration of both considered
clustering methods was performed by using the training set.
In case of k-means algorithm only two parameters are tuned:
number of clusters (1) and number of prototypes selected
for localization (k). The calibration results are illustrated in
Figure 7.

The calibration results show that lowest error can be
achieved by using 4 clusters and 2 prototypes. The optimal
number of clusters as well as the number of selected proto-
types increases with reduction of the dataset. The low value
of k and n provides information that the dataset contains
redundant data.

The calibration of the proposed localization method
with fuzzy c-means clustering requires determination of
four parameters. Optimal values of these parameters can be
selected by using brute-force search; however such approach
would require long computational time. Thus, for better
performance, the parameter values were selected by using
improved particle swarm optimization (iPSO) method [37].
The fitness function in this case corresponds to the ME
evaluated for validation dataset. The optimal parameters
calculated via iPSO are n = 8, k = 2, m = 3, and
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Uy, = 0.2. The parameters in case of both k-means method
and fuzzy c-means method are sent together with the neural
network structure and weights to a sensor node that performs
localization.

4.2. Localization Error Analysis. The localization error was
examined for methods based on FCNN with k-means and
fuzzy c-means clustering. Hereinafter, these methods are
referred to as k-FCNN and ¢-FCNN, respectively. The pro-
posed localization methods were compared with two versions
of the RBF-based localization algorithm proposed in [26]
named RBF + vl and RBF + v2. Additionally, the solution was
verified against the three tuned ANN architectures, applied
directly for localization purposes, that is, FCNN, MLP, and
RBE. In previous research [9], the authors noticed the relation
between time of acquisition of training data and localization
accuracy. Therefore, this aspect was further investigated in
this work. The error of ANN-based localization algorithms
is presented in Figure 8.

The experiments were conducted for 400 localization
attempts. The ANN weights and RSSI vector prototypes
were determined based on data collected by sensor nodes at
present (same day) as well as using previous measurements
(1, 3, and 7 days old). Additionally, location was estimated by
using data from not only current day but also the last 2, 3 up
to 7 days. Intuitively, the localization accuracy decreases with
the aging of training data. When using the dataset which is 7
days old, the localization error increases by 100%. However,
if current data are combined with readings from previous
days, the localization error decreases. The decrease of error is
noticeable up to 3 days. For longer periods of data collection,
the error of localization increases again. Therefore, 3-day
period was considered in further experiments. The proposed
method with k-means clustering gives slightly better results
than RBF + vl and results comparable to RBF + v2 [26]. The
method based on fuzzy c-means provides the lowest error in
terms of ME. The results for the testing dataset of 3 days are
presented in Table 2.

Examples of localization results are presented in Figure 9.
The highest localization error is usually obtained near edge of
the building, while lowest localization error can be found in
the middle of the building, where the largest number of APs
is available. The distribution of errors suggests that additional
APs on edges of a building can improve the localization
significantly.

4.3. Computational Complexity Analysis. The proposed
method, which is based on FCNN, decreases the number of
neurons in hidden layer. The computational complexity for
ANN can be calculated as (i - h - 0), where i is the number
of reference nodes (the number of APs in building), & is the
number of hidden layer neurons, and o is the number of
ANN outputs (outputs correspond to x and y coordinates;
thus o = 2). The number of neurons in hidden layer (k) is
lower for FCNN in comparison to both RFB and MLP; thus
the computational complexity is also reduced. The additional
overhead of the proposed method is related to calculation of
the distance to prototype vectors r. The complexity of this
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FIGURE 6: Searching for optimal ANN architecture: (a) ANN scheme, (b) localization error for different numbers of clusters.

TABLE 2: Localization errors obtained for dataset of the last 3 days.

ME [m]

k-FCNN

¢c-FCNN

FCNN

MLP RBF RBF + vl

RBF + v2

Minimum
Maximum
Average
Standard dev.

0.10
2.74
1.18
0.63

0.12
1.94
1.08
0.50

0.21
3.09
1.32
0.73

0.18 0.23 0.13
2.79 2.86 3.07
1.33 1.29 1.21
0.81 0.88 0.92

0.08
2.88
1.19
0.62
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FIGURE 7: Localization error for different parameter settings of k-
FCNN algorithm.
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FIGURE 8: Error of ANN-based localization for different time period
of training RSSI data acquisition.

operation is O(n), where n is the number of prototypes. In
our case, the number of prototypes is relatively low (equal
to 8); therefore the overhead is not significant. The k-means
and fuzzy c-means clustering algorithms are performed only
during the training process at the sink node; nevertheless by
using the implementation described in [38] the complexity
of this algorithm can be decreased and the method can be
applied for real-time applications.

The localization was performed by using Raspberry Pi
2 Arm 32-bit microcontroller. The location was estimated
10 times for 40 different localization processes. The average
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FIGURE 9: Localization examples for compared methods.

localization time of the proposed methods (k-FCNN and
c-FCNN) is 0.05s and 0.07s, respectively. In comparison,
the time for direct application of FCNN is 0.03s, while
for RBF + v2 the time is 0.06s. The experimental result
confirms the theoretical analysis and the possibility of real-
time applications.

5. Conclusions

In recent years, a growing interest in location-based services
has stimulated active research on localization techniques for
WSN. In case of indoor localization, the methods that utilize
ANN s have received special attention as they are robust to
noise and fluctuations of RSSI values.

The experimental results presented in this paper confirm
that, for indoor environment, the RSSI values obtained from
propagation models and measurements differ significantly.
Therefore, the range-free localization methods that use ANN-
based fingerprinting were considered in this study. Tests
were performed for the ANN architectures typically used
in WSN localization: MLP and RBE Effectiveness of these
architectures was compared against the proposed application
of FCNN. The results show that when, using the recent ANN
training algorithms, the obtained localization error is on a
similar level for all of the examined architectures. However,
FCNN allows the same localization task to be performed by
using a smaller number of neurons, which leads to decreased
complexity of the computations.

The localization method proposed in this paper combines
the RSSI fingerprinting approach with application of FCNN
and clustering algorithms (k-means and fuzzy c-means). The
clustering algorithm determines regions with similar RSSI
values. A FCNN is trained for each region to estimate coor-
dinates of the localized sensor node. Experiments performed
in the dynamic real world indoor environment have shown
that the proposed method can improve the reliability and
precision of the RSSI fingerprinting localization.
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The application of clustering algorithm improves local-
ization accuracy of the ANN-based fingerprinting approach.
This improvement was observed for all considered ANN
architectures: MLP, RFB, and FCNN. The proposed method
provides superior localization accuracy when compared
with state-of-the-art ANN-based fingerprinting methods.
The lowest localization error was obtained when using
the introduced method with fuzzy c-means clustering. The
disadvantage of fuzzy c-means algorithm is related to the
calibration process, which requires tuning of four parameters.
This drawback was overcome by applying PSO algorithm for
parameter calibration.

Moreover, the impact of the temporal coverage of RSSI
database on localization error was analyzed in this study. The
obtained results show that the RSSI data collected during
three last days have enabled the most accurate localization.
The localization error increases when recent RSSI measure-
ment is not taken into account and when the RSSI dataset
is too vast (covers more than three days). It was also found
that the optimal number of clusters for k-means and fuzzy c-
means algorithms changes with the temporal coverage of the
RSSI dataset.

Further research will be conducted to develop an intelli-
gent sensor node, which will select and report such RSSI data
that are necessary for the ANN training. Additionally, the
usefulness of FCNNss for localization purposes will be further
investigated.
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