96 research outputs found

    An integrated approach for monitoring soil settlements at the VIrgo site

    Get PDF
    The Virgo detector, currently in its 2nd generation configuration Advanced Virgo (AdV), is a Michelson interferometer aimed at the gravitational waves research and at opening a new window on the study of the Universe. It is made of two orthogonal arms being each 3 kilometers long and is located at the site of the European Gravitational Observatory (EGO), in the countryside near Pisa, Italy. After the construction of the Virgo facilities completed in 2002, over the years a steady subsidence process has been observed as a consequence of the building and embankment overloads. In consideration of the subsoil characteristics, whose surface portion is mainly formed by a 25Ă·60 m thickness layer of clay with limited thin layers of sands, the evolution of settlements was expected and properly considered for the design of the civil engineering infrastructures, so that the vacuum tubes can be readjusted to keep the original alignment. However, along 15 years of time life, the initial estimates of the expected displacements were continuously compared with the observed effects. The measured settlements have been regularly monitored and adopted for implementing the necessary realignment activities. This paper reports the monitoring activities conducted over the years, mainly consisting of regular high accuracy levelling surveys, periodically integrated by GPS and classical theodolite measurements. These sets of measurement were adopted to perform the Virgo realignment procedure needed to keep the interferometer rigidly tied in a 3x3km plane. In order to improve the knowledge on the trend of the settlements affecting the Virgo infrastructures, an analysis based on differential interferometry using satellite Synthetic Aperture Radar (SAR) data has been performed and compared with the outcome from in-situ data

    MONITORING THE CAMPI FLEGREI CALDERA BY EXPLOITING SAR AND GEODETICAL DATA: RECENT RESULTS AND FUTURE APPLICATIONS

    Get PDF
    Geodetical monitoring of the Campi Flegrei caldera (Naples, Italy), has been historically carried out by ground networks giving an information related only to a certain number of measuring points; this limitation can be greatly relieved by exploiting the space-borne DInSAR which allows to extract the geodetic information on wide areas, with a good time coverage in comparison with the mean repetition time of the campaign measurements. In this work we will show recent results on Campi Flegrei, obtained by using all the ENVISAT ASAR available data from both ascending and descending orbits. The processed data revealed that the uplift phase of Campi Flegrei, which became very clear in summer 2005 with an average velocity of about 2.8 mm/year, has definitely reduced the uplift velocity since spring 2007. This conclusion is consistent with independent deformation measurements carried out by the Vesuvius Observatory (INGV-OV). Differences, in terms of limits and potentialities of DInSAR with respect to classical geodetic techniques and vice-versa and the way they can be compared/integrated, is still a very interesting matter of debate suggesting, as an optimal solution for monitoring purposes in active volcanic areas, the integration of all the available techniques.UnpublishedFrascati1.10. TTC - Telerilevamentoope

    Volcanic Risk System (SRV): ASI Pilot Project to Support The Monitoring of Volcanic Risk In Italy by Means of EO Data

    Get PDF
    The ASI-SRV(Sistema Rischio Vulcanico) project started at the beginning of the 2007 is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. Coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), which is responsible at national level for the volcanic monitoring, the project has as main objective to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department. The project philosophy is to implement specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in “near real time”. The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei

    Volcanic Risk System (SRV): ASI Pilot Project to Support The Monitoring of Volcanic Risk In Italy by Means of EO Data

    Get PDF
    The ASI-SRV(Sistema Rischio Vulcanico) project started at the beginning of the 2007 is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. Coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), which is responsible at national level for the volcanic monitoring, the project has as main objective to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department. The project philosophy is to implement specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in “near real time”. The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei

    Volcanic Risk System (SRV): ASI Pilot Project to Support The Monitoring of Volcanic Risk In Italy by Means of EO Data

    Get PDF
    The ASI-SRV(Sistema Rischio Vulcanico) project started at the beginning of the 2007 is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. Coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), which is responsible at national level for the volcanic monitoring, the project has as main objective to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department. The project philosophy is to implement specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in “near real time”. The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei.I.N.G.V. - O.V. SEZIONE DI NAPOLI I.R.E.A. - C.N.R. E.S.A. A.S.I.PublishedNapoli1.10. TTC - Telerilevamentoope

    Deformation monitoring using Persistent Scatterer Interferometry and Sentinel-1 SAR data

    Get PDF
    During the last decades, Persistent Scatterer Interferometry (PSI) has demonstrated to be a powerful tool able to measure and monitor deformations. This technique makes use of large stacks of interferometric SAR images to derive the deformation maps and deformation time series. In this paper, Sentinel-1 images are used to derive the deformation monitoring over the Catalonia region (Spain). These images brings new improvements due to its wide coverage and high revisiting time, which allows us to make a wide area processing. The first part of the paper describes the data processing implemented by the authors to analyze Sentinel-1 data and the PSI approach used in this ongoing research. The second part of the paper illustrates the results derived over an area of 6750 km2 using Sentinel-1 images

    MONITORING THE CAMPI FLEGREI CALDERA BY EXPLOITING SAR AND GEODETICAL DATA: RECENT RESULTS AND FUTURE APPLICATIONS

    Get PDF
    Geodetical monitoring of the Campi Flegrei caldera (Naples, Italy), has been historically carried out by ground networks giving an information related only to a certain number of measuring points; this limitation can be greatly relieved by exploiting the space-borne DInSAR which allows to extract the geodetic information on wide areas, with a good time coverage in comparison with the mean repetition time of the campaign measurements. In this work we will show recent results on Campi Flegrei, obtained by using all the ENVISAT ASAR available data from both ascending and descending orbits. The processed data revealed that the uplift phase of Campi Flegrei, which became very clear in summer 2005 with an average velocity of about 2.8 mm/year, has definitely reduced the uplift velocity since spring 2007. This conclusion is consistent with independent deformation measurements carried out by the Vesuvius Observatory (INGV-OV). Differences, in terms of limits and potentialities of DInSAR with respect to classical geodetic techniques and vice-versa and the way they can be compared/integrated, is still a very interesting matter of debate suggesting, as an optimal solution for monitoring purposes in active volcanic areas, the integration of all the available techniques

    Intermittent SBAS (ISBAS) InSAR with COSMO-SkyMed X-band high resolution SAR data for landslide inventory mapping in Piana degli Albanesi (Italy)

    Get PDF
    In the context of recent advances in InSAR processing techniques to retrieve higher persistent scatterer and coherent target densities over unfavourable land cover classes, this study tests the Intermittent Small Baseline Subset (ISBAS) approach to update the landslide inventory around the town of Piana degli Albanesi (Italy), an area where only 2% of the land appears suitable to generate radar scatterers based on a pre-survey feasibility assessment. ISBAS processing of 38 ascending mode and 36 descending mode COSMO-SkyMed StripMap HIMAGE SAR scenes at 3m resolution allows identification of ~726,000 and ~893,000 coherent and intermittently coherent pixels for the ascending and descending data stacks respectively. Observed improvements in the number of ISBAS solutions for the ascending mode are greater than 40 times compared to the conventional SBAS approach, not only for urban and rocky terrains, but also rural and vegetated land covers. Line of sight ground motion rates range between -6.4 and +5.5 mm/yr in 2008-2011, although the majority of the processed area shows general stability, with average rates of -0.6 mm/yr in the ascending and -0.1 mm/yr in the descending mode results. Interpretation of the ISBAS deformation rates, integrated with targeted field surveys and aerial photo-interpretation, provides a new and more complete picture of landslide distribution, state of activity and intensity in the test area, and allows depiction of very slow and extremely slow landslide processes even in areas difficult to access, with unprecedented coverage of results. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Sentinel-1 Support in the GAMMA Software

    Get PDF
    AbstractFirst results using the new Sentinel-1 SAR look very promising but the special interferometric wide-swath data acquired in the TOPS mode makes InSAR processing more challenging than for normal stripmap mode data. The steep azimuth spectra ramp in each burst results in very stringent co-registration requirements. Combining the data of the individual bursts and sub-swaths into consistent mosaics requires careful “book-keeping” in the handling of the data and meta data and the large file sizes and high data throughputs require also a good performance. Considering these challenges good support from software is getting increasingly important. In this contribution we describe the Sentinel-1 support in the GAMMA Software, a high-level software package used by researchers, service providers and operational users in their SAR, InSAR, PSI and offset tracking work

    Integrazione di tecniche di monitoraggio da terra e da satellite per lo studio di due frane a cinematica lenta

    Get PDF
    In questo lavoro è stata applicata una tecnica interferometrica sviluppata dal Departamento de Teoria del Senyal della UPC di Barcellona, basata sul principio dei Coherent Scatterers (Schneider et al., 2006), per la valutazione degli spostamenti superficiali nell’ambito del monitoraggio della frana di Costa della Gaveta (PZ). Tale algoritmo di tipo SBAS (Berardino et al., 2002, Lanari et al., 2004) denominato CPT (Coherent Pixels Technique – Mora et al., 2003) consente di calcolare le velocità medie di spostamento nell’intero periodo di osservazione. Il set di immagini utilizzato è quello relativo alla Track 086 Frame 798 in orbita ascending consistente in 24 immagini che coprono il periodo 2007- 2010. Tali risultati sono stati poi confrontati con le misure GPS effettuate in situ nello stesso periodo di monitoraggio
    • …
    corecore