173 research outputs found

    Long-range monitoring system with PDMS material

    Get PDF
    This paper describes the development of a long range monitoring system that integrates Cottonwood: UHF Long Distance RFID reader module with Raspberry Pi 3. When a UHF RFID tag is within the UHF RFID reader antenna’s range, the unique ID of the tag will be transferred to the Raspberry Pi 3 to be processed. Then, the data will be sent over to the database wirelessly to be managed, stored, and displayed. The paper also describes the measurement done to determine the most suitable thickness of PDMS material so that it could be incorporated as a wearable transponder. After the result is calculated and tabulated, it can be concluded that the most suitable thickness of PDMS material for the transponder is 8 mm

    Implementación de tecnologías RFID e IoT inalámbricas en el Modelado de información de construcción (BIM)

    Get PDF
    ABSTRACT: The integration and installation of innovative Radio Frequency Identification (RFID) technologies in combination with wireless Internet of Things (IoT) technologies in Building Information Modelling (BIM), assigned building elements, can create connectivity between the physical- and the virtual world. Beyond the identification of physical objects, further information can be connected, which can be made available to different user groups during the entire life cycle of the building structure. This provides a high level of transparency, in that by scanning the tagged building elements, complete associated information can be accessed and presented to users via applications, in visual and audio form. One use of an RFID and BIM-supported electronic guidance system, namely for the visually impaired, has already been investigated in my bachelor thesis at the University of Applied Sciences (Technische Hochschule Mittelhessen, THM). This Master’s Thesis focuses on the implementation of passive RFID technology into BIM models in combining them with open-source software applications. BIM represents the digital twin of building models in the digital world and can be linked to physical structures (buildings, roads, sewer systems and such others) and building materials (e.g. textiles, mineral and plastic floor coverings, concrete components) by integrating RFID tags. Connecting the parametric BIM models with the physical building elements by using RFID and wireless IoT technologies in a multi-platform application enables the BIM building models to be actively used throughout the life cycle of a building, not only by the facility management, but also by the public for various use cases. During the literature review, suitable software and hardware components were selected, and a prototype multi-platform application for a navigation and positioning system was developed as proof of concept for the Industry Foundation Classes (IFC) file. (See Demo Version at https://opennavibim.herokuapp.com/ ). The challenge was to read the RFID tags in different installation scenarios. Depending on the installation situations (under, over or in the material), various requirements were specified for RFID tags and readers (RFID, handhold personal digital assistant “PDA”). In this field, further hardware developments are necessary.RESUMEN: Mediante la integración e instalación de la innovadora tecnología de identificación por radiofrecuencia (RFID, Radio Frequency Identification) en el modelado digital de información de construcción (BIM, Building Information Modelling), con la interconexión inalámbrica del internet de las cosas (IoT, Internet of Things), es posible crear una conectividad entre el mundo físico y el virtual. Más allá de la mera identificación de objetos existentes, esta conectividad permite incorporar información adicional, que puede ponerse en disposición de los diferentes grupos de usuarios que intervienen durante el ciclo completo de vida de la estructura de la edificación. Se consigue un alto de nivel de transparencia en ese traspaso de información, accesible por medio del escaneado de los elementos etiquetados en la edificación, al tener una completa información asociada que es presentada a los usuarios vía aplicaciones en formato visual o de audio. Una investigación en la aplicación de tecnología RFID basada en BIM para un sistema de navegación electrónica, destinada a personas con discapacidad visual, ha sido desarrollada en mi trabajo fin de grado en la Universidad de Ciencias Aplicadas de Mittelhessen (THM). El presente Trabajo Fin de Master se centra en la implementación de tecnología RFID pasiva en modelos BIM combinados con aplicaciones de software libre. El modelo BIM representa el gemelo digital de los elementos de construcción en el mundo virtual, permitiendo establecer una relación del modelo con estructuras físicas (edificios, carreteras o sistemas de alcantarillado, entre otros) y materiales de construcción (por ejemplo, textiles, cubiertas de suelo minerales o plásticas, componentes de hormigón, …) por medio de la integración de etiquetas RFID. La conexión de los modelos paramétricos BIM con los elementos físicos del edificio, mediante el uso de tecnologías RFID e IoT inalámbricas en una aplicación multiplataforma, permite que los modelos de construcción BIM se utilicen activamente a lo largo del ciclo de vida de un edificio, no solo por la gestión de las instalaciones, sino también por el público para diversos casos de uso. Durante la revisión bibliográfica, se seleccionaron los componentes de software y hardware adecuados, y se desarrolló un prototipo de aplicación multiplataforma para un sistema de navegación y posicionamiento como prueba de viabilidad del concepto del modelo Industry Foundation Classes (IFC). (Véase la versión de demostración en https://opennavibim.herokuapp.com/ ). La lectura de las etiquetas RFID en diferentes en diferentes situaciones de instalación presenta un desafío, dependiendo de la instalación (debajo, encima o en el material) los requisitos impuestos a las etiquetas y lectores RFID son diferentes. Por lo tanto, es necesario seguir desarrollando el hardware en este ámbito.Máster en Ingeniería de Caminos, Canales y Puertos (Plan 2020

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    TRAIL LOCATER FOR FIREMEN

    Get PDF
    Firemen are well trained to rescue fire victims. As firemen rescue the victims, the danger does not only face by the victims but firemen as well. Examples of danger faced by firemen are oxygen tank run out or unconscious due to impact of an object on the head. So a system must be implemented to observe current conditions of firemen during fire rescues. Saving that firemen require their position inside the building which is unidentified. Even if the position of the fireman is traceable, the way to get there is still unknown. Getting the way to the position is hard due to visual limitation as fire and smoke is all around. Therefore trail identification system is needed to track exactly the path traveled. A trail marking system includes signal tracking and the devices used must be able to withstand heat. Typical electronic devices includes RFID transmitters are not able to withstand high temperature. Therefore, applying heat and fire insulation to the devices is needed. The challenge is to find the right materials for insulation which allow signal transmission

    An automated lifeboat, manifesting embarkation system (ALMES): the utilization of RFID/NFC in passenger manifestation during ship evacuation

    Get PDF

    Third Generation Active RFID from the Locating Applications Perspective

    Get PDF

    Forests

    Get PDF
    In this paper, we provide an overview of positioning systems for moving resources in forest and fire management and review the related literature. Emphasis is placed on the accuracy and range of different localization and location-sharing methods, particularly in forested environments and in the absence of conventional cellular or internet connectivity. We then conduct a second review of literature and concepts related to several emerging, broad themes in data science, including the terms |, |, |, |, |, |, and |. Our objective in this second review is to inform how these broader concepts, with implications for networking and analytics, may help to advance natural resource management and science in the future. Based on methods, themes, and concepts that arose in our systematic reviews, we then augmented the paper with additional literature from wildlife and fisheries management, as well as concepts from video object detection, relative positioning, and inventory-tracking that are also used as forms of localization. Based on our reviews of positioning technologies and emerging data science themes, we present a hierarchical model for collecting and sharing data in forest and fire management, and more broadly in the field of natural resources. The model reflects tradeoffs in range and bandwidth when recording, processing, and communicating large quantities of data in time and space to support resource management, science, and public safety in remote areas. In the hierarchical approach, wearable devices and other sensors typically transmit data at short distances using Bluetooth, Bluetooth Low Energy (BLE), or ANT wireless, and smartphones and tablets serve as intermediate data collection and processing hubs for information that can be subsequently transmitted using radio networking systems or satellite communication. Data with greater spatial and temporal complexity is typically processed incrementally at lower tiers, then fused and summarized at higher levels of incident command or resource management. Lastly, we outline several priority areas for future research to advance big data analytics in natural resources.U01 OH010841/OH/NIOSH CDC HHSUnited States/U54 OH007544/OH/NIOSH CDC HHSUnited States
    corecore