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Abstract

In this paper, we provide an overview of positioning systems for moving resources in forest and 

fire management and review the related literature. Emphasis is placed on the accuracy and range 

of different localization and location-sharing methods, particularly in forested environments and 

in the absence of conventional cellular or internet connectivity. We then conduct a second review 

of literature and concepts related to several emerging, broad themes in data science, including 

the terms location-based services (LBS), geofences, wearable technology, activity recognition, 

mesh networking, the Internet of Things (IoT), and big data. Our objective in this second review 

is to inform how these broader concepts, with implications for networking and analytics, may 

help to advance natural resource management and science in the future. Based on methods, 

themes, and concepts that arose in our systematic reviews, we then augmented the paper with 

additional literature from wildlife and fisheries management, as well as concepts from video object 

detection, relative positioning, and inventory-tracking that are also used as forms of localization. 

Based on our reviews of positioning technologies and emerging data science themes, we present 

a hierarchical model for collecting and sharing data in forest and fire management, and more 

broadly in the field of natural resources. The model reflects tradeoffs in range and bandwidth 

when recording, processing, and communicating large quantities of data in time and space to 

support resource management, science, and public safety in remote areas. In the hierarchical 

approach, wearable devices and other sensors typically transmit data at short distances using 

Bluetooth, Bluetooth Low Energy (BLE), or ANT wireless, and smartphones and tablets serve 

as intermediate data collection and processing hubs for information that can be subsequently 

transmitted using radio networking systems or satellite communication. Data with greater spatial 

and temporal complexity is typically processed incrementally at lower tiers, then fused and 
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summarized at higher levels of incident command or resource management. Lastly, we outline 

several priority areas for future research to advance big data analytics in natural resources.
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1. Introduction

In this paper, we describe and review literature on several technologies and estimation 

methods that can be used to determine and communicate the position, navigation, and 

timing (PNT) of moving objects, equipment, people, fish and wildlife, and even physical 

masses (e.g., air, water, fire) in forests. We initially conducted a systematic review of 

the first twenty Google Scholar search results for each positioning system term, followed 

by the words forest and wildland fire, both singly and paired with accuracy and range, 

as documented in Appendix A. Technological terms searched included GPS (Global 

Positioning System), GNSS (Global Navigation Satellite System), Bluetooth, UWB (ultra-

wideband), INS (inertial navigation system), RFID (radio frequency identification), and QR 

(quick response) code. Technologies described in this paper employ various positioning 

methods. Many make use of one or more GNSS constellations. Although GNSS has been 

used widely in natural resources for decades, accuracy continues to improve as the number 

of navigation satellites increases and more devices are designed to receive signals from 

multiple constellations [1]. Other positioning methods use trilateration of distances derived 

from the strength or timing of transmitted radio signals (e.g., RFID, UWB) or employ 

the inertial sensors in smartphones or watches to determine position as a function of the 

distance and direction traveled from a known reference point (e.g., INS) [2]. In inventory 

and asset tracking applications, the location and timing of resources at checkpoints along 

a supply chain can be scanned using RFID tags, QR codes, or other near-range mobile 

scanning methods; thus, RFID tags and QR codes are also forms of positioning [3–5]. 

Additionally, in many cases, communication technologies such as Bluetooth, very high 

frequency (VHF), UWB, and other radio frequencies or protocols may be used to (1) 

determine the location of an individual or object through trilateration; (2) transmit positions 

or other data among devices such as a fitness watch sending data to a smartphone via 

Bluetooth Low Energy (BLE) or ANT wireless; or (3) both 1 and 2 simultaneously. After 

reviewing and summarizing search results from our initial systematic review of positioning 

systems, we supplemented preliminary materials with related literature from radio and 

acoustic telemetry in wildlife and fisheries management and added the concepts of video 

object detection, optical positioning, and relative positioning in reference to drones and 

equipment automation.

Improvements in the accuracy of affordable, GNSS-based devices combined with the 

emergence of other localization techniques are enhancing our ability to map people, animals, 

equipment, and other resources at high spatial and temporal resolutions. For example, 
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integration of multiple positioning methods such as a combination of GNSS and INS, can 

increase positioning accuracy under forest canopies [6,7]. Additionally, with developments 

in off-the-grid communications for areas that lack conventional cellular data access, we 

can share real-time position information in forests and other remote environments using 

networked two-way radios and direct satellite data transfer.

After reviewing common positioning and location- or data-sharing methods, we conducted 

a second review of several broad data science concepts that may influence natural resources 

in the future. We considered the most relevant of the first twenty results in our initial 

searches, and then expanded the review to additional, related literature that helped broaden 

or clarify themes. Search terms initially included location-based services (LBS), geofences, 

wearable technology, activity recognition, mesh networking, the Internet of Things (IoT), 
and big data. Location-based services are algorithms, apps, or other networked processes 

that perform a specific function based on the current location or heading of a user. Similarly, 

geofences quantify, inform, or influence resource movements or positions based on real-time 

coordinates. Activity recognition refers to the growing use of wearable technology such 

as fitness bands, GNSS-enabled smartwatches, and other devices, to self-monitor personal 

movement and physiological status [8–10]. Common smartphones, equipped with a range 

of inertial sensors, can also be used for activity recognition [11–14]. The concept of 

the quantified self [15], in which individuals are empowered to study their lifestyles and 

behaviors with increasingly available data, is widespread in fitness, recreation, and sports, 

and activity monitoring is quickly moving into the workplace to increase employee wellness, 

reduce corporate healthcare costs, and improve productivity [16–18]. Parallel developments 

in animal telemetry are generating detailed data on animal behavior based on accelerometer 

and inertial sensor data capturing movement and activity [19].

There are several possibilities for sharing the kinds of high-resolution data that are created 

by activity recognition and other mobile device applications. For example, using either 

advanced digital radios or miniaturized antennas that pair with smartphones via Bluetooth or 

BLE, users can share location and other types of data through local mesh networks, even in 

remote, off-the-grid areas lacking cellular or Internet services [20,21]. Alternatively, devices 

that use satellite data networks for two-way communication have global connectivity. There 

are tradeoffs, however, among available bandwidth and desired effective transmission range 

spanning from adjacent (1 m), to watershed (e.g., 500 m), or global spatial scales. In natural 

resources, smartphones and tablets increasingly serve as the local processing units. For 

big data applications, data can be transmitted via radio or satellite to off-site computers 

that extract useful spatial and temporal information in higher order analytics. Smartphones 

and other devices are becoming more interconnected in remote areas as new networking 

capabilities bring the concept of an IoT to the woods.

Emerging technologies that enable enhanced localization and data transfer in off-the-grid 

applications evoke research, operational, and analytical challenges [21–23]. For example, 

characterizing the activities of multiple moving resources (e.g., 1000 or more people and 

equipment on a wildland fire) at various scales in real-time or near real-time requires 

overcoming obstacles associated with available bandwidth, power consumption, and signal 

transmission quality and interval. There is growing disparity between (a) increasingly 
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high bandwidth networking capability intended to support smart devices and IoT in more 

suburban areas, (b) transitional zones of sparser or more sporadic connectivity at the 

wildland urban interface (WUI), and (c) very poor network capability in more remote areas. 

Thus, diverse and variable communications infrastructure may be needed in the future to 

support analytics. Based on our review of available positioning methods and emerging big 

data concepts in location-based services, wearable technology, and the IoT, we propose 

a simple, general approach for multi-tiered data collection, incremental processing and 

analysis, and network communication in forest management and wildland fire. We feel 

this concept provides a general, interim solution for scalable data collection and analysis 

off-the-grid that can be deployed readily using available tools and technology. It is likely of 

equal value and applicability in most natural resource fields, including, but not limited to, 

recreation, wildlife and fisheries management, range ecology and management, and research 

and monitoring. We also identify nine priority research needs to advance basic and applied 

science in this broad subject area.

2. Types of Positioning Technologies

2.1. GNSS – Single, Dedicated Receiver

The Navigation System with Timing and Ranging (NAVSTAR) GPS was developed by the 

United States (U.S.) Department of Defense during the early 1970s for military applications 

as well as for civilian use [24]. The term GNSS refers broadly to the American GPS system 

and other satellite-based navigation constellations developed subsequently in other regions 

to enhance terrestrial and maritime PNT for various fields [2]. The other three primary 

systems currently in use and continued development are the Russian Global Navigation 

Satellite System (GLONASS), the European Union’s Galileo system, and the BeiDou-2 

system developed by the People’s Republic of China. While GPS and GLONASS have been 

in use for some time, Galileo first became operational in December 2016, and BeiDou-2 

is expected to have operational global coverage in 2020 [1,25]. This is of interest because 

improved positioning accuracy is possible with integrated multi-GNSS frameworks that 

incorporate all four GNSS systems as the total number of available satellites across all 

constellations increases from 70 to approximately 120 over a period of a few years [1].

Figure 1 depicts the GNSS receiver chip in a smartphone being used for vehicular 

navigation. The mobile device receives timing and range data from several satellites and 

subsequently uses these to determine its location on the Earth’s surface. The single device 

user can use positioning information such as latitude, longitude, elevation, and vector 

heading to monitor his or her location on topographic maps, custom maps, and aerial 

imagery. Prior to 2000, selective availability (SA), an intentional degradation of GPS signal 

quality by the U.S. government for national security reduced the accuracy of satellite 

positioning in the U.S. [26]. Adrados et al. demonstrated the significant improvement to 

accuracy with the removal of SA in May 2000, with mean error for a survey-grade receiver 

decreasing from 30 meters (m) to less than 2 m in ideal conditions [27].

Of the three general categories of GNSS receivers (survey-, mapping-, and consumer-grade), 

survey-grade receivers are the most accurate, able to achieve positioning accuracies of 1 m 

or less under forest canopies and approximately 5 centimeters (cm) in open areas (see Table 
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1) [28,29]. For survey-grade devices, accuracy increases with longer durations of continuous 

position logging [30]. Typical accuracy of consumer-grade GNSS in U.S. forests ranges 

from 1 to 5 m in open conditions [28,29,31–33] and from 3.8 to 12 m under mature canopies 

[28,29,31–34].

The effect of canopy on GNSS signal transmission has been well-documented, with 

accuracy inversely proportional to stand density in most situations [21,23,29,31,33–36]. 

GNSS accuracy does not vary by the time of year (season) or weather [34], but can be 

affected by device orientation when held [37].

The number and geometry of satellites visible to a GNSS receiver at any point in time 

also affect the accuracy of coordinate readings recorded by the device. Various dilution 

of precision (DOP) indices are used to characterize the influence of satellite geometry on 

GNSS measurements [38]. Positional DOP (PDOP) is a particularly common index of the 

uncertainty in overall position, with lower PDOP values indicating a satellite arrangement 

providing higher measurement accuracy and precision [38].

Individual GNSS receivers (Figure 2, panel A) have been commonplace in forestry 

and throughout natural resource science and management for decades. In forestry and 

wildland fire, handheld GNSS receivers have been used for a wide variety of geospatial 

mapping and navigation applications. These include navigation to forest inventory plots 

and monumentation [39], as well as delineating stand boundaries and other features on 

stand maps [40,41]. Handheld receivers have also been used to a limited extent to quantify 

the productive cycle times of logging equipment [42–45] and soil impacts of harvesting 

equipment [46,47]. Use of single-unit GNSS to assist with navigation and to record travel 

paths for heavy equipment in forestry is now fairly common [30,48–50]. Onboard computers 

and software sold by large equipment producers such as Caterpillar, John Deere, and Ponsse 

have built-in GNSS receivers with the ability to map equipment locations on harvest maps, 

showing machinery proximity to unit boundaries or streamside management zones [20].

Single-user devices have also been used for personal location, safety, and field navigation 

in the woods by foresters and other natural resource managers for decades. Handheld 

Garmin, Trimble, or other consumer-grade GNSS units have traditionally been a standard 

tool attached to the field vest of most foresters when they head to the woods. GNSS 

accuracy provided improved estimation of land area over traditional compass and pace 

field methods [51]. Individual GNSS receivers have become increasingly small in stature 

over time; what were originally backpack-worn units are now small chips that fit inside 

smartphones and smartwatches [29,52]. As in forestry, use of handheld GNSS receivers 

has been commonplace in wildland and prescribed fire for maintaining reference position, 

marking waypoints of snags or other hazards, relaying coordinates of spot fires and 

delineating burn perimeters to determine area burned [53]. Multi-temporal burn perimeter 

data combined with current wind speed and direction can also provide inputs for forecasting 

predicted fire spread [54].
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2.2. GNSS—Smartphone and Tablet-Based Mapping

While the dedicated GNSS devices described in the previous section were ubiquitous in 

natural resources until recent years, positioning via the GNSS chip present in most modern 

mobile devices and tablets is now increasingly common [55–57]. Mobile-based apps such 

as Avenza Maps® store georeferenced, custom maps in GeoTIFF or GeoPDF format on 

mobile devices, allowing users to view positions on a smartphone or tablet rather than on 

a conventional, dedicated GNSS unit [58,59]. The United States Department of Agriculture 

(USDA) Forest Service, United States Geological Survey (USGS), and many other federal 

and state agencies, as well as private forest industry landowners, increasingly make GeoPDF 

map files available to the public or contractors for use with mobile-based mapping apps 

[60]. These applications rely only on the satellite-derived GNSS coordinates received by 

the device and display the user’s location on a locally-saved version of a map file [61]. 

They therefore require neither cellular service connectivity nor WiFi for mapping and are 

thus fully functional in remote areas given map files are downloaded to the device in 

advance. This approach of alternating between online and offline data collection paired 

with GNSS-based location information on smartphones and tablets has been used widely 

in operational forestry and more recently in research applications such as mapping beetle 

outbreaks [62] and landslide hazard mapping [57].

GNSS accuracy of modern smartphones is approximately 2 m in open conditions and ranges 

from about 4.5 to 6.7 m (leaf-off) and 6.7 to 11.5 m (leaf-on) in mixed deciduous-coniferous 

forests [29]. Accuracy varies by brand and model, but devices supporting both GPS and 

GLONASS are generally able to achieve higher accuracies under forest canopies [29].

2.3. Augmented GNSS and GNSS with RTK Correction

With either dedicated, single unit GNSS receivers or mobile device-based GNSS solutions, 

several methods exist to improve upon the accuracy of GNSS positioning. One such method 

is a satellite-based augmentation system (SBAS), in which reference stations located at 

known points are used to create correction messages that are sent to various satellites and 

then broadcast to end users (Figure 3, left panel) [63]. The Wide Area Augmentation System 

(WAAS) in the United States, which is managed by the Federal Aviation Authority (FAA), 

is an example of an SBAS [64]. The WAAS encompasses a network of terrestrial reference 

stations that estimate errors in GPS signals and send correction messages to a geostationary 

communications satellite (GEO) which then re-transmits the corrections to any WAAS-

enabled GNSS device [65] as shown in Figure 3. WAAS differential correction is frequently 

built into GPS devices and even some smartwatches, but has demonstrated little positioning 

accuracy improvement for consumer-grade receivers [64]. Arnold and Zandbergen compared 

WAAS-enabled modes to autonomous (uncorrected) modes for Garmin, Trimble, and 

DeLorme receivers under ideal conditions; WAAS improved horizontal positioning accuracy 

only for the Delorme units [64]. Additionally, WAAS signaling is limited under forest 

canopy, typically available less than one quarter of the time for stationary, recreational-grade 

devices, and even less for mobile receivers [65].

In a ground-based augmentation system (GBAS), correction messages are transmitted to 

the end user via radio or mobile data network [63]. Real-time kinematic (RTK) positioning 

Keefe et al. Page 6

Forests. Author manuscript; available in PMC 2023 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is a GBAS differential correction method in which one or more base (reference) stations 

at fixed, precisely-surveyed locations are used to improve the accuracy of mobile rover 

units [63,66,67]. Specifically, both the reference and rover units receive pseudorange and 

carrier phase measurements from similar satellites, which allows common errors between 

the units to be estimated and used to correct the rover’s accuracy in real time [66,67]. 

Real-time kinematic is typically built into survey-grade devices, enabling them to achieve 

centimeter-level accuracy in unobstructed conditions (see Table 1) [29] and is integrated into 

heavy equipment for road construction (Figure 3, right panel) [68,69]. Real-time kinematic 

methods improve accuracy under the canopy as well, but are not immune to multipath error 

inherent in forests; therefore, positioning accuracies are lower (about 1 m) in these highly 

reflective environments [29,63,66].

Precise point positioning (PPP) is an absolute positioning technique that uses a single 

GNSS receiver and corrections for satellite positions and clocks based on processing 

of reference station data available through the International GNSS Service (IGS) [70]. 

Receivers simultaneously use dual frequency pseudorange and carrier phase measurements 

in order to improve accuracy [67,70]. Data downloaded from the IGS can be used in 

real-time or for post-processing correction [63,71]. With PPP, GNSS devices can correctly 

position within 5 cm in open areas and less than 0.5 m under forest canopies (Table 1) 

[67,70].

2.4. GNSS with Two-Way Satellite Communication

Where forestry and wildland fire activities occur in proximity to the built environment, 

it is possible to relay location coordinates to others via mobile data transfer using 

conventional cellular communication and Internet connectivity. Google location services 

on Android-based mobile devices, for example, make it possible to share the location of 

one’s smartphone with other individuals over the Internet [72]. Positioning of devices in the 

built environment where cellular coverage is available can be done with high accuracy due 

to cellular tower trilateration, map-matching, and other methods integrated into phones or 

apps that improve on or substitute for GNSS-based positioning [73–77]. However, forestry 

and wildland fire management activities often occur in areas where cellular coverage is 

poor; thus, methods that rely on cellular connectivity are primarily useful in portions of the 

Wildland Urban Interface (WUI). Even in these areas, it is common for cellular connectivity 

to be lost or overloaded during large fires and other natural disasters [78].

Satellite communications technology allows for messaging and voice communications 

independent of cellular infrastructure [79,80]. Over the last decade, multiple devices have 

been marketed for forestry and recreation that provide emergency location services to 

individuals working or recreating in remote environments [20,80,81]. These include, for 

example, SPOT™ receivers and Garmin inReach™ two-way messaging devices (Figure 2, 

panel B). GNSS coordinates are transmitted along with automated or custom text messages 

to the urban environment via dedicated data communication satellites [80,81]. Both SPOT 

and inReach devices can send a user’s GNSS location, messages indicating safety status, 

and alerts to contact emergency services [81,82]. Depending on the model, certain SPOT 

receivers only allow for pre-loaded messages and one-way communication while other 
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SPOT receivers and all inReach devices allow for both preset and custom messages as 

well as two-way messaging [82,83]. SPOT receivers operate on the Globalstar satellite 

network while inReach devices operate on the Iridium satellite network [82,83]. Iridium is 

being replaced with the Iridium NEXT constellation that will provide broader coverage and 

support more bandwidth and higher speeds [84]. Insofar as multiple individuals may carry 

devices (e.g., wildland fire crew, recreation crews, wildlife technicians), emergency location 

and messaging devices can form a simple multi-unit network. However, location information 

is primarily intended for outside supervisors or support resources in an urban environment 

elsewhere [80,81]. As of 2018, the frequency with which locations can be transmitted using 

paid-monthly services using Garmin inReach is one location every two minutes [82]. The 

fastest tracking interval for SPOT receivers at the time of preparing this manuscript is every 

2.5 min [83]. Many consumer-grade GNSS transponder devices are available for less than 

US $100 to facilitate position observation independently from voice or text communication. 

However, for operational forestry and wildland fire applications, devices like inReach or 

SPOT receivers can be thought of as providing an open circuit rather than one-way location 

transmission.

2.5. GNSS-RF

Individuals can share positioning information with one another locally through GNSS-RF 

networks (Figure 2, panel C), in which dedicated transponders or mobile devices determine 

coordinates using GNSS and then transmit those coordinates in short data bursts to other 

nearby devices via a radio frequency (RF) signal (Figure 4). GNSS-RF may be contained in 

a single unit, or GNSS-enabled devices like smartphones may be paired with miniaturized 

radios like goTenna™ or Beartooth™ to relay location information in areas lacking cellular 

coverage (Figure 2, panel F). This method has been evaluated widely for off-the-grid 

location sharing in operational forestry [20–22,85–88].

While quantifying the accuracy of single-user GNSS device applications described in 

previous sections is relatively simple, GNSS-RF and other systems that incorporate location 

sharing between multiple devices in remote areas pose different challenges for quantifying 

accuracy of position, navigation, timing, and other varieties of data among resources. 

This is due to the added impact of a temporal error component that sometimes interacts 

with spatial error and may be affected by other factors [21–23]. The temporal component 

becomes important in remote locations and data sharing because user positions and the 

associated data are (1) received or calculated on the target user’s device initially, and then 

(2) transmitted to other, neighboring devices. Most PNT research in natural resources has 

focused on error associated with the former component (target user location), and generally 

focused on static position accuracy. However, the latter process (regular transmission and 

sharing of locations from the primary device user to one or many neighbor devices) 

introduces time lag that is a function of both (a) the interval at which data packets are 

relayed between the devices and (b) transmission quality [21–23,85,86]. For example, the 

locations of the forestry equipment shown in Figure 4 may be received and determined at 

intervals of 100 hertz (Hz) on smartphones or GNSS receivers. However, those locations are 

transmitted to other devices at intervals that are typically 1 Hz, but possibly as infrequently 

as 2 Hz (one set of coordinates every 30 s) or less. Thus, even when radio transmission is 
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clear, there is up to a 30 s gap that occurs when the location and vector heading of any 

worker or piece of equipment is unknown, from the perspective of those viewing activities 

on the mobile screen of a secondary device on the network. If a single transmission of 

coordinates (latitude, longitude), direction, and speed is missed due to topography or other 

interferences, that period of mapping uncertainty about the target user’s location and path 

increases to one minute, and so forth. This compounded error that includes spatial and 

temporal components is important for mission critical safety and health applications [21–

23,87], particularly when we consider GNSS-RF as the basis for first responder life safety 

applications and heavy equipment automation.

2.6. Ultra Wideband and UHF/VHF Radio Telemetry

UWB is a radio frequency channel operating at bandwidths greater than 500 megahertz 

(MHz) that is primarily used for communications, wireless sensor networks, positioning, 

and tracking [89–91]. Wide bandwidths allow UWB signals to transmit large amounts of 

data quickly at low power consumption. Due to their low frequency, UWB signals can more 

easily pass through obstacles, making UWB well-suited for forested environments [90–92]. 

Additionally, using a bi-cone antenna system, UWB can provide communications in remote 

areas with a relatively low loss of data [90].

Similar to GNSS, UWB positioning typically employs trilateration to estimate the location 

of a mobile tag (transmitter) based on the tag location relative to stationary anchor nodes 

(receivers) at known coordinates [91–93]. However, any of five general methods may be 

used for UWB positioning: angle of arrival (AOA), time of arrival (TOA), time difference of 

arrival (TDOA), received signal strength indication (RSSI), and hybrid algorithms [91,93]. 

In AOA, anchor nodes triangulate a tag’s position based on the direction of the received 

RF signal. For the time-stamp method of TOA, the anchor nodes use the propagation delay 

(signal travel time) and a known signal velocity to calculate their distances from the tag 

and then employ trilateration to estimate tag position (Figure 5). In another time-stamp 

method known as TDOA, anchors report signal receipt time to a location engine that 

compares the differences in arrival times and then estimates the location of the tag as the 

intersection of three hyperbolas (for two-dimensional positioning) [91,93]. To employ the 

RSSI method, a path loss regression model is first developed to establish distance as a 

function of signal strength [92]. Then, anchor nodes use received signal strength to predict 

distance and in turn estimate tag location with trilateration. This method has relatively low 

accuracy and is used less frequently than time and angle-based methods [91,92]. Lastly, 

hybrid algorithms combine methods to mitigate limitations of a single approach [91–93]. 

For example, AOA generally requires many more anchor nodes, while TDOA and TOA 

require precise synchronization among all anchor nodes. AOA and TDOA are frequently 

combined for improved positioning accuracy. UWB localization can typically achieve sub-

meter accuracies (3–50 cm) even with consumer-grade units, though accuracy decreases in 

non-line-of-sight (NLOS) situations (see Table 1) [77,94]. Signals are capable of traveling 

long distances (approximately 100 m) with line-of-sight (LOS) conditions [95].

In wildlife ecology and management, animal tracking via technology attached to animals has 

improved dramatically in the past several decades and can now give researchers excellent 
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spatiotemporal data on an ever-widening array of terrestrial and aquatic species (for two 

recent reviews, see Hussey et al. [96] and Kays et al. [97]). Traditional tracking approaches 

included (1) radio telemetry with VHF transmitters affixed to animals, which require manual 

or automated triangulation to record a location, or (2) pit tags and other passive location 

devices (e.g., geolocators for migratory birds [98]), in which locations are either recorded 

when animals approach powered antenna arrays or are stored on tags to be eventually 

recovered by researchers and downloaded. VHF and ultra high frequency (UHF) telemetry 

methods function essentially the same as UWB, and these frequencies have been used most 

commonly for research and management applications.

New wildlife monitoring technologies based on GNSS location are rapidly replacing older 

telemetry techniques for medium-sized animals and larger terrestrial animals (e.g., birds 

greater than 250 g and ground-dwelling fauna greater than 15 g [97]) due to rapid, 

ongoing advances in miniaturization. Designs include collars, ear-tags, backpacks, glue-ons 

that adhere to shells, scales, or fur, and internally-implanted models [97]. Positioning 

approaches for terrestrial wildlife usually involve GNSS devices that transmit information 

to researchers using commercially-available or private satellite networks, or cellular tower 

networks, and are thus functionally similar to safety devices such as Spot™ and Garmin 

inReach™ that also use two-way satellite data communication. For aquatic wildlife, GNSS 

loggers have also greatly improved researchers’ monitoring abilities, as has the advent of 

acoustic arrays that can monitor animals that never come to the surface [96]. Coupling 

these new location technologies with bio-loggers, which can measure animal physiological 

states (e.g., heart rate, caloric expenditure, and environmental conditions including sunlight, 

salinity, temperature, and depth), and even with drones equipped with onboard cameras and 

acoustic recorders, is leveraging these new technologies even further [98–100]. The resulting 

fine-grained and real-time data on animal locations and behaviors can be combined with 

monitoring systems to improve human and wildlife safety and to enhance conservation of 

rare species (e.g., proximity, immobility or death, geofencing, and movement or behavior 

classification [101]). One consideration that is important for active (i.e., UHF) radio tags 

and miniaturized GNSS transponders for wildlife, which may be less critical for operational 

forestry, is the need to conserve battery power. Receipt and transmission of coordinates 

from wildlife location devices must generally be limited to lower coordinate transmission 

intervals because of the potential for rapid loss of battery power, which is a lower concern 

for forest workers who can charge devices each evening, or onboard equipment applications 

with continuous power.

2.7. Inertial Navigation Systems

INS are based on translational and rotational velocity, and how these two variables can be 

used in combination with GNSS to track and locate objects in the field [2]. GNSS signaling 

varies with topography, forest conditions, and other factors, but INS can fill in positioning 

information between known GNSS coordinates [2]. Using a combination of gyroscopes, 

accelerometers, and magnetic sensors, INS continually calculates mobile device location by 

dead reckoning. Dead reckoning is a navigation technique that estimates current position 

by summing sequential vector headings and estimated speed or distance from a known 

starting point, such as coordinates obtained initially from GNSS [102]. This approach is 
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particularly useful in areas where individuals or equipment may move from areas with 

suitable GNSS accuracy to areas with degraded GNSS quality, such as traveling from a large 

meadow or clearcut into a dense forest stand (Figure 6). GNSS-INS accuracy varies with 

GNSS receiver quality, but these systems are generally capable of sub-meter positioning, 

with 4–5 cm possible using PPP (Table 1) [103–106]. Micro-electric mechanical systems 

(MEMS), which use miniaturized sensors, can reduce the size and cost of INS navigation, 

but MEMS accelerometers and gyroscopes generally exhibit higher errors than traditional 

INS. Calibration of these sensors is recommended for increased positioning accuracy [107].

2.8. Simultaneous Localization and Mapping (SLAM)

SLAM involves creating a map for an unknown environment while simultaneously 

determining an agent’s location within it [108]. First, in landmark extraction, features of the 

surrounding environment are identified and mapped in relation to one another. For example, 

a laser scanner mounted on a mobile agent such as a robot or piece of equipment obtains a 

range of measurements about the surroundings to determine distances between landmarks; 

these landmarks are used simultaneously to localize the agent within that environment. 

In data association, different scans from landmark extraction are matched to increase 

knowledge of the mobile agent’s position. The agent’s state in the space is estimated 

through combined landmark observations and recorded odometry data and then continuously 

updated, forming a real-time map [108]. While this type of localization works best indoors, 

it has been deployed in forestry experimentally. For example, Hyyppä et al. used SLAM 

with Google Tango to extract tree diameter measurements and stem curve information for 

forest inventory [109], and SLAM techniques have also been paired with analysis of Light 

Detection and Ranging (LiDAR) data for high accuracy stem mapping (Figure 7) [7]. It is 

important to note that SLAM is defined as a concept rather than a single algorithm [108].

SLAM techniques are capable of sub-meter accuracy in forest environments. For example, 

using Google Tango, which employs color and depth cameras (RGB-D), inertial sensors, 

and SLAM, Tomaštík et al. demonstrated root mean square errors (RMSE) of 0.2 to 1 m 

under the canopy [110]. Tang et al. reported similar accuracies for SLAM combined with 

an inertial measurement unit (IMU) in a small-footprint LiDAR, with RMSE values as low 

as 0.16 m in dense forest conditions [6]. The Tang et al. study observed slightly higher 

errors (1.73 m) in open forests, however, which have fewer features for landmark extraction. 

SLAM may be integrated with GNSS/INS for even greater accuracy. Qian et al. reported 

horizontal positioning accuracy of 6 cm when incorporating bearing and velocity data from 

GNSS/INS systems, representing an 86% improvement from using GNSS/INS alone [7].

While SLAM is used widely with robots and is of interest in development of autonomous 

forest machines equipped with environmental sensory recognition such as LiDAR, machine 

vision, or acoustic sensors, the concept of map-matching is a related concept that may not 

necessarily require direct sensory recognition of the local, surrounding environment to aid 

navigation. Rather, in map matching, an existing map, such as navigational applications 

(e.g., Google Maps) are used as the basis for estimating the location or trajectory of 

individuals or pieces of equipment locally based on (1) known, approximate location (from 

a GNSS receiver, for example), and (2) the location and heading of that position relative to 
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known map features such as roads or trails [111,112]. In that sense, previously derived forest 

map information such as stem maps derived from earlier airborne LiDAR acquisition, could 

also potentially be used for localization if that prior spatial information is present on the 

vehicle or machine’s onboard computer.

2.9. Bluetooth, BLE, and ANT

Various technologies used for wireless data exchange, such as Bluetooth, BLE, and ANT, 

can also serve as positioning techniques. Bluetooth, a local wireless communications 

standard operating at UHF wavelengths (2.4 gigahertz (GHz)), is commonly used to 

exchange data and connect devices (e.g., wireless headsets, keyboards, controllers, etc.) 

[5,26,113], but can also provide localization and proximity awareness to users. For example, 

Bluetooth has been successfully incorporated into hazard proximity detection and real-time 

alert systems to improve safety on construction sites [113]. As described in the UWB 

section above, positioning is based on distances from known locations of anchor devices 

and access points, calculated from RSSI measurements and radio propagation models [114–

116]. Bluetooth is relatively inexpensive and easy to use, but high energy requirements can 

quickly drain the associated device’s battery [5,113]. Alternatively, BLE increases battery 

life by exchanging small volumes of data interspersed with periods of little to no energy 

consumption [26]. BLE can accurately position within approximately 2–5 m indoors [117], 

but operates at shorter ranges (up to 50 m) [26] compared to Bluetooth (up to 100 m 

for version 4.x, and up to 200 m for version 5.0) (Table 1) [118]. ANT, another local 

communication standard, uses deep-sleep modes to reduce power consumption but is also 

limited to shorter ranges (up to 30 m) [119–121].

In natural resources, Bluetooth is currently used primarily for transmitting raw data to 

mobile devices, such as from fitness monitors on forestry workers [122] (Figure 2, panel E), 

or from environmental sensors like the Kestrel™ weather meter [123].

2.10. RFID and Acoustic Positioning

RFID entails communication between an antenna and electronic tags via radio waves. 

Passive RFID, primarily used for tracking objects, can operate only at very close ranges 

of 1–3 m [5], whereas active RFID used for positioning has a much greater range of 15 

m to 1 km (Table 1) [124–127]. RFID tagging is of increasing interest in precision forest 

management for tracking forest products through the supply chain [124]. By monitoring 

individual logs, companies gain a greater understanding of the quality and quantity of wood 

being processed from diverse sources [128]. RFID systems also help document product 

chain of custody to support sustainable forestry certification [129].

RFID technology is an important component of biotelemetry, which has been used to study 

and monitor fish at multiple spatial and temporal scales for decades [96,130–133]. Trends in 

miniaturization and reduced prices have led to rapid increases in application, spatial extent, 

and number of telemetered fishes, which has resulted in big data needs for data transmission, 

management, and analytics. Three technologies are widely used in fish telemetry: (1) passive 

radio telemetry with passive integrated transponder (PIT) tags (Figure 8) [134], (2) active 

radio telemetry (i.e., radio tags), and (3) active acoustic telemetry with tags producing 
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ultrasonic signals that propagate through water and are received by hydrophones [132]. 

PIT tags are “passive” because they do not require a battery [134–136]. Two separate PIT 

technologies have been applied in fish monitoring. Full-duplex (FDX) antennas produce 

an electromagnetic field with an antenna coil, which powers the tag directly to transmit a 

coded radio signal back to the PIT antenna, with simultaneous charging and listening by 

the antenna. Half-duplex (HDX) PIT antennas create a field that charges a capacitor in 

the tag, which then transmits a stronger signal back to the PIT antenna, which alternates 

between charge and listen modes. HDX PIT tags thus have longer read ranges but are larger. 

FDX systems simultaneously transmit and receive signals at up to 1800 Hz whereas HDX 

alternate between transmit and receive modes at up to about 840 Hz.

Biotelemetry studies have addressed questions of fish behavior, movement and migration, 

energetics and stress response, estimation of mortality and survival rate, habitat use, 

response to angling, and monitoring of invasive species (see recent reviews in Adams et 

al. [132], Cooke et al. [135], Hussey et al. [96], and Crossin et al. [133]). Aquatic studies 

are not limited to economically important fishes (e.g., Breen et al. [137]) and have also 

included larger aquatic invertebrates (e.g., crayfish [138] and freshwater mussels [139,140]). 

Integration of depth sensors, temperature sensors, and accelerometers to telemetry tags 

promises a new wave of detailed studies [96]. For instance, Fuchs et al. used a prototype 

commercial radio tag with accelerometers to develop protocols to quantify spawning 

behavior in steelhead trout in turbid rivers during snow-melt runoff [141].

Radio-telemetry tags use an onboard battery to actively transmit identity, and in some tags, 

data on depth, temperature, acceleration, or other parameters. Range is typically greater 

than 1000 m when tags are near the surface of freshwaters, but effectively zero below 10 

m [135]. Commercially available acoustic tags also use battery power to actively transmit 

identity and may also transmit other parameters such as depth. These can be used effectively 

in deep habitats such as lakes and slow rivers but are limited in rapidly flowing waters 

(i.e., those with entrained air). Monitoring is primarily accomplished by either fixed sites or 

mobile tracking for PIT tags and both types of active tags [132,135]. Fixed sites for radio 

receivers may be on alternating current (AC) hard power, solar, or battery. Received data 

can be manually downloaded or transmitted via cellular or satellite networks. Hydrophones 

can be deployed in a similar manner, or using autonomous nodes deployed on the bottom 

of waterbodies with up-looking hydrophones. Nodes are recovered using a remote-controlled 

release and are manually downloaded weekly to monthly. PIT antennas are relatively power 

intensive because the antenna both transmits and receives; larger antennas are frequently 

on hard AC power and have access to internet uplinks for data transmission. Remote PIT 

sites are usually powered by solar or propane generators, with manual downloading or data 

transmission via cellular or satellite uplink (e.g., Achord et al. [142]). Mobile tracking for all 

three tag technologies can be via hand-held or vehicle-mounted unit, some with integrated 

GPS.

Biotelemetry studies generate large data sets, with hundreds to thousands of fish tagged, 

100s to 1,000,000s of records per individual fish, and data from 10 to over 100 individual 

fixed receiver sites. Substantial data processing prior to the interpretation of movement 

records is required, such as critical quality assurance/quality control (QA/QC) steps 
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including the estimation of detection efficiency for each receiver [132] and protocols 

for eliminating “noise” records. Monitoring can include project-specific receiver arrays 

or, increasingly, multi-investigator, multi-agency monitoring networks [96] such as the 

Columbia Basin PIT Tag Information System (PTAGIS; ptagis.org). PTAGIS operates large 

scale PIT-detection sites, develops software to collect metadata on fishes tagged by regional 

organizations, and provides a publicly accessible database of PIT tag detections on PTAGIS 

and other PIT detection sites across a watershed approximately the size of France via a 

website, which reports detections in real-time. In 2017 alone, 36 organizations contributed 

records to PTAGIS for over 2 million PIT tagged fish (and a cumulative total of over 45 

million tagged since 1987) and recorded 12.2 million detections at 309 antenna sites for 

822,000 individual fish [143]. On the data management side, over 422,000 data files were 

processed in 2017, and nearly 500 researchers/users executed 342,000 database queries 

returning over 7 billion rows of data [143].

2.11. Barcodes and QR Codes

Asset and inventory tracking tools such as one-dimensional barcodes, two-dimensional 

barcodes (QR codes), and Near Field Communication (NFC) tags, that are used ubiquitously 

for local and global commerce also provide a method of positioning and navigation in 

forests. QR codes are similar to barcodes but store information in two dimensions in order 

to expand data storage capacity [4]. NFC tags are based on RFID technology and offer 

two-directional short-range wireless communication [144]. Users can interact with these 

technologies via the sensors or camera in mobile devices, both to record and retrieve 

information [144–146], such as local maps or nearby landmarks [147–149]. Activated codes 

or tags can also be used to establish a known time and location of access (e.g., Google 

Analytics) and thereby inform map-matching of resources across multiple waypoints.

Barcode tracking technologies such as QR codes are used in forestry to monitor log load 

information from stump to mill (Figure 9) [3,4]. QR codes are applied to log ends printed 

on paper [3] or marked directly on the wood with lasers or paint [4,150]. With higher 

storage capacities than simple, one-dimensional barcodes [4], QR codes can store load 

details such as harvest unit location, species and product sorts, bill of sale documents, 

or environmental certification status [3,150]. Information can be accessed with a mobile 

device like a smartphone [150]. QR codes are cost-effective, accurate, weather-resistant, and 

will not hinder downstream processing [3,150]. In addition to storing data, they can trace 

where products have been throughout each phase of the supply chain [4]. When used in 

conjunction with cloud-based data management systems, QR codes can be used to track 

logs in real-time [3,150]. Thus, QR codes can help monitor the movement of resources 

to improve efficiency and logistical planning, as well as to document chain of custody 

[3,4,150].

QR codes have also been used for wildland fire applications to disperse information in 

communities faced with fire. For example, QR codes printed on business cards or flyers can 

connect the public to online resources with fire status updates, such as social media websites 

and webcams [151].
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2.12. Video Object Detection and Relative Positioning Methods

Similar to the map-matching methods described earlier in the context of SLAM, object 

detection using video imagery can also be thought of as a positioning method for moving 

objects or other resources. The sequential video frames for a known landscape field of 

view provide a reference map, and manual (visual) observation or automated detection of 

people, wildlife, or other phenomena within that scene can be used to estimate location. A 

variety of algorithms and techniques exist for identifying and delineating the background 

scene from one or more foreground objects based on shapes, color, contrast, and other image 

features [152–155]. In forest management, video object detection methods have received the 

majority of attention in the context of detecting wildland fire [156–158] and smoke [159–

161]. As unmanned aerial vehicles (UAVs) are used more widely in fire management, fire 

and smoke detection from UAV-mounted video is becoming more prevalent (e.g., Yuan et al. 

[162]). Positioning of logging workers based on field safety vest characteristics detected by 

cameras mounted on the skyline carriage was proposed by Keefe et al. to increase situational 

awareness for equipment operators [163].

In addition to the various first-order positioning methods described thus far, it is important 

to note the existence and growing importance of technologies that use either sensors, 

video imagery, or other methods to position themselves relative to other objects, whether 

stationary or in motion. This concept is important in automation and also in recreation 

applications. Co-location relative to other mobile devices is distinct from independently 

positioning multiple phones or other mobile devices [164]. A simple example of relative 

positioning is the ability of follower drones to maintain a moving position at a constant 

distance and orientation relative to a person, animal, or piece of equipment being monitored 

(Figure 10) [165,166]. Visual relative localization is also used to configure swarms of 

UAVs flying in formation or in other coordinated activities [167]. Acoustic signaling is 

another form of relative localization that has also been used to collocate UAV swarms 

based on follower positions relative to a leader or peer [168]. This approach may also have 

applications in recreational use of UAVs and equipment automation in forests.

3. Accuracy and Range of Available PNT Technologies

As discussed in the previous sections, the effective ranges and accuracies of different 

devices vary widely. Table 1 summarizes the approximate communication ranges of 

technologies discussed in this paper with corresponding references. It is important to note 

that several of the technologies or protocols discussed, such as Bluetooth or UHF/VHF, 

are both communication frequencies and methods of estimating position. As described 

in previous sections, position estimation using these approaches may involve initial 

development of a regression model to predict distance to a signal transmitter as a function 

of path loss (or RSSI), or other methods such as TOA and TDOA described for UWB 

positioning. For this reason, the effective transmission range is closely related to positioning 

capabilities. In some cases, frequencies or communication protocols may be used for 

(1) communication of data; (2) position estimation based on localization; and (3) both 

of the preceding applications. Additionally, although we have discussed two- and three-

dimensional positioning extensively, one-dimensional (1D) proximity (distance from a point 
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in any direction) is also commonly deployed for Bluetooth and RFID devices (e.g., phone 

apps and small Bluetooth devices for locating keys or tagging pieces of equipment).

Accuracies reported in Table 1 are for static positions rather than objects, people, or 

equipment in motion, with the exception of GNSS-RF (as indicated). As research on 

PNT applications in forestry, wildland fire, and additional natural resource management 

concentrations emerge, it is important that researchers and practitioners develop new 

analytical methods, or adopt methods used in other fields, to better quantify device error 

and accuracy in ways that integrate both location and velocity. This is particularly important 

as software applications are increasingly built around equipment and human resources in 

motion.

4. Location-Based Services, the Internet of Things, Wearable Technology, 

and Big Data

Having reviewed a wide range of positioning approaches that may be useful for analytics 

in forest and fire management, we now consider and review broader concepts from other 

fields including, among others, data science, business marketing, and computer science. 

Our objective in doing so is to (1) provide an overview and review of these emerging 

concepts; and (2) consider potential applications of their deployment in forest science and 

management. We are particularly interested in the potential for these somewhat abstract 

concepts, when integrated with the reality of emerging, high-accuracy positioning systems 

discussed previously, to foster new advancements in analytics that support production 

efficiency, health and safety, and automation in natural resources.

4.1. Location-Based Services

Location-based services (LBS) refer to services that account for the real-time, geographic 

positions of a person or mobile object, as determined by RF, Bluetooth or BLE, GNSS, 

assisted GNSS (perpetual locating of a device), or broadband satellite networks [169]. They 

may include reactive services activated by a user, such as mapping a location or displaying 

nearby points of interest, or proactive services automatically initiated when a user enters a 

specified area [170]. LBS require a real-time exchange of data between a user and a service 

provider over a wireless network, typically through a mobile device like a smartphone 

[169–171]. Data may be used for location-tracking of others, such as finding a friend or 

location-aware services based on apps making use of the device’s position to trigger some 

action or notification. A simple example of LBS is the updating of date and time on a mobile 

device associated with the user crossing into a time zone [172,173]. With the availability 

of consumer-grade beacon transmitters such as Apple’s iBeacon™ and Google Eddystone™ 

beacons, any object can transmit location-based information to a mobile device using BLE 

[174]. This approach, though developed for retail marketing in urban areas, can also be 

integrated into forest recreation, education and outreach, and logistics applications using 

outdoor beacons with currently available software development platforms (Figure 11).

LBS have applications in navigation (e.g., Google Maps), fleet and asset management, 

personal safety, mobile marketing, mobile gaming, points of interest (e.g., finding nearby 

Keefe et al. Page 16

Forests. Author manuscript; available in PMC 2023 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stores or restaurants), and enhanced emergency services (e.g., enabling the tracing of 911 

calls from mobile phones by polling the devices’ GNSS coordinates) [169,170,173,175]. De 

Longueville et al. proposed using Twitter messages as a form of LBS to gather spatial and 

temporal information about fire movement in real-time [176].

A recurring consideration for LBS research and applications is the issue of privacy 

[169,170,172,173,175,177] due to the potential for surmising a variety of personal 

information from a user’s location. For instance, user queries may reveal sensitive 

information on health, lifestyle preferences, or political and religious affiliations [175]. 

Privacy may be protected through data encryption [169,175] or location anonymity 

techniques, which send a user’s location along with false “dummy” locations, so service 

providers do not know the user’s true position [177].

4.2. Geofences

Geofences, virtual boundaries, virtual fences, and proximity alerts are names for closely 

related concepts in which an action or alert is triggered when an object with a mobile device 

or other transponder crosses a geographic boundary associated with a pre-defined area or 

point of interest (POI) [178,179]. Geofence boundaries may be defined as a radius around 

a POI or by an irregular polygon, typically based on GNSS coordinates [178]. Geofencing 

has been suggested for a variety of spatial-awareness applications, including location-based 

services for tourism (e.g., recommending nearby sights) and advertising (e.g., offering 

coupons to passers-by) [179], fleet monitoring and management (e.g., tracking shipments) 

[178], smart cooling (e.g., activating fans only when individuals are present) [180], and 

emergency response (e.g., keeping traffic lights green when an ambulance or police vehicle 

approaches an intersection) [181].

In natural resources, geofences may help delineate hazardous areas. For example, Sheppard 

et al. used geofences and biotelemetry devices to alert wind farm operators of the proximity 

of large birds to reduce collisions [182]. Geofences have also been evaluated for forestry 

applications to mark unsafe working areas around equipment hazards or snags (dead trees) 

on active logging operations [20,21,85]. Zimbelman et al. assessed errors associated with 

mobile geofences that move with a dynamic, point hazard, such as a hand faller [22]. In 

this case, the geofence represents a hazardous area for others, but can also define safe zones 

for the hand faller, triggering an alert when he or she approaches another geofence, such as 

around a second hand faller.

Virtual fences are also used as animal containment systems and have been deployed widely 

in rangeland science to manage animal movement [183–185]. An alternative to traditional, 

static fencing, virtual boundaries can promote a variety of management goals, such as 

monitoring animal movement [186], separating individuals [185], limiting herbivory [184], 

protecting riparian habitats [185], reducing soil degradation [183], and relocating herds 

[183,185]. Although virtual fencing is not infallible [187,188] and may not be appropriate 

for non-social species [186], it has several advantages over traditional fencing, including the 

capacity to change spatially and temporally [184–186] and the ability to cover remote or 

difficult terrain [185]. Instead of trigging an alert, crossing a boundary administers a sensory 

stimulus, typically through a collar, aimed at altering the animal’s behavior (i.e., further 
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movement past the fence) [183,184] (Figure 12). The stimulus may be a sound, vibration, 

light pulse, shock, or combination of cues that cause irritation or annoyance to train an 

animal to avoid an area [183,185,187].

4.3. Wearable Technology

Wearable technology is a general term that refers to miniaturized sensors such as 

accelerometers, gyroscopes, and magnetometers built into watches, clothing, or other 

accessories that can be worn comfortably on the body to enable real-time, unobtrusive 

monitoring of physical metrics [189–191]. The first wearable technology that received 

significant media attention was the Wearable Motherboard, a smart shirt designed to monitor 

body vital signs in combat situations [189]. Wearable technology has since been deployed in 

a variety of health and fitness applications, predominately related to the continual, long-term 

observation of patient health status remotely [190]. Individuals with chronic conditions 

such as Parkinson’s disease can wear unobtrusive sensors in the home so that health care 

providers can more accurately assess physical or physiological changes and recommend 

treatment or medication [190]. Wearable technology can also facilitate disease diagnosis 

and preventative care [189,190]. Since physiological data can be collected and processed in 

real-time in networked environments, wearable technology can initiate medical response in 

the case of sudden emergencies like cardiac arrest or epileptic seizures.

Wearable technology can also refer more generally to any computerized device worn on the 

body. For instance, eye-wearable devices such as Google Glass™ deliver visual information 

to a user via a small screen. Unlike many other wearable device applications that focus on 

collecting data, eye-wearable technology is typically employed as a conduit for conveying 

data to a user, such as hands-free instruction in medical training or vehicle maintenance 

[191,192].

Bowen et al. monitored logger work activities and sleep patterns with fitness and sleep bands 

in order to evaluate worker health and identify hazardous work conditions [193]. The Bowen 

et al. study highlighted several considerations for deploying wearable sensors in forestry 

applications, including long battery life, little to no operation requirements by users, and 

low-cost due to the potential for devices being dislodged and lost during work activities 

[193]. In another study of loggers, Bowen et al. collected heart rate and step count data using 

Fitbits™ in conjunction with in-situ reaction time measurements in an attempt to predict 

worker fatigue [194]. The 2017 study illustrates the variability of physiological data among 

individuals and the importance of context for understanding and interpreting field data. 

Additionally, due to the personal nature of information collected with wearable technology, 

privacy and the ramifications of sharing such data should be carefully considered [194].

4.4. Activity Recognition

The concept of activity recognition refers to use of the wearable devices and sensors 

described in the previous section to quantify and monitor human activity, with applications 

ranging from fitness and health to military and security [16,17]. Activity can be surmised 

from interactions between users and sensor-enabled objects such as in smart houses, or can 

be predicted based on measurements collected by wearable sensors [16]. Wearable sensors 
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can detect user movement (e.g., walking, running, standing), location, or physiological 

traits (e.g., heart rate, respiration), as well as provide context about a user’s environment 

(e.g., temperature, humidity, audio level, light level) [16,18]. They facilitate continuous, 

real-time activity monitoring, but are easily removable when users do not want their 

activities recorded [17]. Smartphones are a popular choice for wearable, sensor-based 

activity recognition [11–13]. They are relatively unobtrusive and widely used, and they 

include several internal sensors. Keefe et al. developed activity recognition models to 

characterize the work activities of professional timber fallers based only on smartphone 

sensor data [14]. Models correctly characterized real-time activities of the loggers working 

on industrial cable logging operations such as felling trees with chainsaws, clearing brush, 

and walking between trees [14].

Smartphones typically include GNSS chips, triaxial accelerometers which record movement 

in three directions, gyroscopes to determine orientation, microphones that record sound 

or measure sound levels, cameras, light sensors, digital thermometers, and magnetometers 

to measure compass direction [16,18]. Because they also have internal microcomputers, 

smartphones can process sensor data directly using existing or custom apps. This reduces the 

need to transmit primary data through a wireless network, which can slow down real-time 

applications considerably [16]. Smartwatches and other wrist-based sensors are also now 

used extensively in recreation, sports and exercise [8–10,195]. An important consideration 

for employing smartphones and other wireless sensors to collect continuous sensor data, 

however, is device battery life, especially when multiple or energy-draining (e.g., GNSS) 

sensors are engaged [16,17]. In the future, activity recognition may be achieved using 

different methodologies without sensor-based devices, however. For instance, Wang et al. 

demonstrated how disruptions in WiFi signals could be used to model human movement 

speeds, which in turn could predict activity with 96% accuracy [196].

To predict activities, initial sensor measurements associated with a particular activity must 

be collected and then processed with feature extraction, which involves filtering out relevant 

information from the raw sensor data (Figure 13) [16,17]. Both time and frequency domain 

features, such as mean, standard deviation, variance, and Fast Fourier Transform and 

Discrete Cosine Transform coefficients, may be extracted with a moving window approach 

[13,14,197]. Using a moving window, subsets of the data are defined by the window size 

(i.e., length of time) and this window is advanced in pre-determined increments. In this 

way, features are calculated using a new subset of the data defined each time the window 

advances [14]. A machine learning model is generated based on patterns in the extracted 

features and used to infer activity based on sensor measurements.

Various machine learning algorithms can be used to develop predictive activity recognition 

models, such as Decision Trees, Support Vector Machines, K Nearest Neighbors, and 

Naïve Bayes [13,197]. Device orientation and location on the body are also important 

considerations that affect the accuracy of predictive models [13,197–199]. Ideally, activity 

models are individual-specific (subject dependent), to account for nuances in movement 

among users, but for practical reasons, may generalize an activity across a group of users 

(subject independent) [9,16]. Activity recognition models may then be implemented on 

a mobile device to provide near real-time classification. As smartphones have become 
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increasingly powerful, the concept of “online” activity recognition has become an 

important research area, referring to implementing the entire classification process (i.e., 

data collection, pre-processing, feature extraction, and classification) locally on the device 

[13,197].

4.5. Mesh Networking

Devices can form local networks that connect indirectly to Internet services through wireless 

mesh networks (WMN). In a mesh network, some devices, referred to as routers, form 

a wireless backbone to transmit data from users to wired access points [200]. Meshing 

may be full, in which all devices (nodes) are connected to every other device in the 

network, or partial, in which some devices connect to all and some only transmit to 

a single node [201]. Any device that joins the network creates additional opportunities 

for hops, or relay points for sending data through the network, thus increasing network 

coverage [200,202]. Multihopping also increases bandwidth, which is higher at shorter 

ranges [200,203]. Since the nodes create multiple pathways of communication, WMNs 

are relatively immune to single point failure, in which failure of one node disrupts 

communication through the whole system [200,202]. WMNs are intended for permanent or 

semi-permanent network connections with some wired infrastructure. In contrast, mobile ad 

hoc networks (MANETs), do not require any infrastructure and are intended for temporary 

connections of highly mobile devices with variable arrangements (topology) within the 

network (Figure 2, panels D and F) [200,202]. MANETs have primarily been used for 

military applications or specialized civilian operations, such as disaster recovery [200]; 

whereas, lower-cost WMNs have been applied more widely. WMNs have been used, for 

instance, to provide cost-effective Internet connectivity, especially for remote or scarcely 

populated communities [200,203], to create intelligent transportation systems which provide 

real-time travel information about public transit [200], to enhance communications for 

public safety and first response [201,203], and to improve utility company services, such as 

more accurate automated meter reading systems and quicker detection of gas or water leaks 

[203].

Wireless sensors can use mesh networking to transmit field measurements in remote areas to 

local data loggers, and then on to wired access points (Figure 14). In forest science, wireless 

sensor networks (WSNs) are used to accomplish a variety of management and safety goals, 

such as measuring forest health or detecting wildfires. For example, sensors collecting 

data on temperature, humidity, soil moisture, light intensity, nitrogen concentration, carbon 

dioxide levels, and canopy closure can provide remote observations of forest health [204–

206]. Real-time data from environmental sensors at known GNSS coordinates may help 

detect and locate wildland fires, either by reporting weather conditions conducive to fire 

ignition and spread (e.g., temperature, humidity, wind speed, and wind direction) or by 

alerting a central server of the presence of smoke or infrared radiation [207–212]. Wireless 

sensor networks in forested environments are prone to transmission error, as radio signals 

are disrupted by vegetation and trees [23,209], so diagnostic tools that can identify network 

faults are valuable for recognizing incomplete data sets [204].
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4.6. The Internet of Things (IoT)

The Internet of Things (IoT) encompasses a global network of interconnected physical 

objects that can interact with one another and with their environments to accomplish 

common goals [213–215]. Each object possesses a unique identifying Internet Protocol 

(IP) address that is recognizable via an internal computer board, RFID tag, barcode, or 

any other networked means of identification [213–216] Sensors associated with the object 

collect information about its physical environment, such as temperature, motion, or location 

[213,214]. Sensor data, along with objects’ identifying addresses, are then transferred 

through wireless networks to a database for storage and processing. This big data is typically 

too immense for physical hardware to accommodate and is thus usually transmitted to a 

virtual, shared cloud network, where it can be stored and processed by middleware. After 

processing, the middleware prepares visualization of the data to be easily interpreted and 

understood by end-users [213,215] for a variety of analytics.

Similar to location-based services, the IoT entails sharing potentially personal information 

through a wireless network. Maintaining user security and privacy, such as through 

data confidentiality, in which only authorized entities can access information, is a 

critical challenge for the IoT [213,214,217]. Another challenge is the need for enough 

addressing space to accommodate the billions of interconnected objects in the network, 

each with its own distinctive identifying address [213,214]. Additionally, the IoT requires 

increased processing capabilities to accommodate the immense number of service requests. 

Recent studies have highlighted the use of fog computing to complement cloud centers 

[213,218,219]. Fog devices are smaller, cheaper, and generally have fewer performance 

delays than cloud centers, making them the ideal choice for handling real-time services 

requiring immediate processing [213,219]. Fog devices can route other requests requiring 

extensive analysis or more permanent storage to a cloud computing center [219].

IoT technology has been applied across multiple industries. In transportation and logistics, it 

has been used for collision avoidance systems, augmented maps, self-driving vehicles, traffic 

incident information, route optimization, and delivery time status [213,214]. IoT enables 

industrial automation, in which computerized robots complete manufacturing tasks, from 

parts production to quality control. Also, with IoT, health care providers can receive real-

time physiological data on patients. IoT is integral to smart home and building technology, 

allowing users to control appliances, electronics, lighting, security, and temperature remotely 

or to program activity based on conditions like time of day for lighting or current use for 

electrical equipment [213,214].

4.7. Big Data

At its simplest, big data refers to the unprecedented volume of data currently being 

generated as the total quantity of devices and their ability to measure and store data 

continues to increase over time. Since size is relative, the term also embodies the 

technological limitations for storing and processing digital information efficiently [220]. 

Based on existing, available storage capacities, big data is usually measured in terabytes, 

petabytes (1,024 terabytes), or even exabytes (one million terabytes) [221,222]. One terabyte 

is equivalent to 1500 compact discs (CDs) or 16 million Facebook photographs [221]. 
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Definitions of big data typically also account for its high variety and high velocity [220–

222]. Variety refers to the heterogenous nature of the data, which can be tabular (e.g., 

spreadsheets), structured, or unstructured (e.g., text, image, audio, video). Velocity denotes 

both the rate at which data is generated and the speed at which it needs to be analyzed to 

inform actions or provide services.

Diverse fields generate big data, including health (genomics, medicine, pharmaceuticals), 

science (astrophysics, quantum mechanics, modeling, simulation), government (statistics, 

campaigning), higher education (admissions, student evaluation), and business (inventory, 

advertising, decision-making) [223,224]. Daily interactions with objects like smartphones 

and other wearable technology or interactions with other people through social media sites 

also produce big data [221,222]. In natural resources, big data from global satellite imagery 

or terrestrial monitoring systems (e.g., LiDAR) can help assess environmental changes 

and inform management decisions [224]. Emerging individual, tree-based forest inventory, 

particularly using airborne, terrestrial and mobile laser scanning, to support precision 

forestry is expected to generate considerably larger volumes of data than conventional forest 

sampling [225,226].

Multiple challenges stem from the creation of big data. Technical solutions are required 

to meet the need for advanced data management (acquisition, storage, and transfer) 

and analytics (extracting useful information from the data) [220–223]. Some data sets 

include personal, sensitive information, such as electronic health records, which necessitate 

increased privacy and security measures [220,223,224]. Additionally, issues of ownership 

and legal rights arise over big data, such as individual information collected through 

social media sites or intellectual property related to pharmaceutical research [220,223,224]. 

Ownership also entails determining who is accountable for inaccuracies, particularly when 

those inaccuracies have negatives outcomes [223].

5. A Hierarchical Model for Processing and Sharing Data

It is useful to consider a general model of how recently-available or improved positioning 

technologies and data topologies discussed in the early sections of this paper could be 

integrated to accommodate location-based services and big data themes in an IoT framework 

suitable for natural resource management in off-the-grid areas where data connectivity is 

otherwise limited. When reviewing technologies, it is evident that devices vary greatly in 

their capabilities, particularly with regard to bandwidth (data transfer capabilities), range, 

and accuracy. Although not explicitly addressed in this paper, these devices also tend to 

increase in cost as their bandwidth capacity increases. We propose a tiered model (Figure 

15) in which low-bandwidth, low-cost, and short-range devices support functions locally 

in natural resources with smartphones serving as data hubs for individuals or equipment 

and data is exchanged among phones or tablets using miniaturized radios. Higher-order 

radios or devices with two-way satellite communications serve in upper levels of data 

transfer and processing, generally corresponding with higher levels of supervision and 

operational oversight. This model addresses and resolves important considerations for 

storing, processing and communicating big data through IoT to meet spatial and temporal 

considerations [14,16,220–222] in natural resources environments in a scalable way.
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At the lowest level in positioning and communication capabilities, Bluetooth and related 

technologies (e.g., BLE, ANT) can share data in limited ranges, typically between 30 m 

and 200 m [188–199,227]. For many of these technologies, individual smartphones can 

serve as the hub for data collection, processing, and reporting; although in some cases, 

primary processing and generation of summary statistics may occur on wearable devices 

(e.g., an activity-tracking watch) or other sensors. In natural resources, these devices could 

collect and consolidate location or health data from the public, volunteers, or employees, 

such as wildland firefighters engaged on the fireline, loggers at individual timber harvesting 

operations, or a trail crew working in a remote wilderness area.

At the next higher level are miniaturized radios that pair with smartphones to form mesh 

networks, such as those from goTenna™, Beartooth™, and similar commercial providers. 

These devices are capable of data transfer over much greater distances, curbed only by 

the number of users, their spacing, and topographic impacts on line-of-sight. Although 

bandwidth is limited for these types of devices, they are particularly well suited for 

accumulating small data packet deliveries from many resources, or, in turn, delivering small 

bits of critical information broadly to large numbers of individuals. Thus, data accumulated 

by several smartphones in lower levels can be transmitted, for instance, to a single crew 

supervisor.

At one higher level are dedicated mesh data radios, such as those designed for military 

applications. Similar to miniaturized radios, these units have essentially unlimited, local 

range (e.g., greater than 25 km), depending on the number of users (nodes) in the mesh 

network; however, these purpose-built radios provide much greater bandwidth capabilities 

over those same ranges. Voice communication, video streaming, and other functions with 

higher data transfer rates are also possible. With higher bandwidths, these radios support 

a larger number of users transmitting small bits of data (e.g., user locations) at faster 

transmission rates, but the cost of individual units is generally five to ten times greater than 

the miniaturized radios.

At the top of the hierarchical data topology is two-way satellite communication. While 

satellite data transfer has the advantage of global coverage, and single user devices can 

function independently of others (e.g., without the need for mesh networking), it is also 

the most expensive option for transmitting data. Monthly subscription or per-usage fees 

compound quickly for multiple users; whereas data transfer through radio frequency is 

typically free in the United States after the purchase of a radio frequency license. Also, low 

data transfer frequencies (e.g., one user location every two minutes) make satellite-based 

solutions less desirable for occupational safety and health applications where real-time, local 

data sharing with co-workers in remote areas is more critical (e.g., Wempe et al. [21], 

Zimbelman et al. [23]) or where detection of precise equipment movements or equipment-

worker interactions are required [22,86,87].

Figure 16 illustrates an example of the hierarchy in a wildland fire application. In this 

scenario, miniaturized radios share the locations of resources (firefighters, engines, etc.) 

during initial attack operations on a large wildland fire at moderate transmission intervals 

among many users. These devices also deliver summaries of fire weather data detected by a 
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Kestrel or similar device, transmitted to a single user’s smartphone via Bluetooth, and then 

broadcasted to other firefighters in the mesh network.

In the Figure 16 example, summary data quantifying movements or activities of groups 

of individuals, equipment, or localized weather conditions locally are then transmitted to 

a higher supervisory level or between multiple teams separated spatially on the landscape 

using a single, higher bandwidth digital radio. For example, if four 20-person hand crews 

and two 3-person engine crews are working on a fire, 86 paired smartphones might be 

accumulating and processing data from wearable sensors worn by all individuals. Individual-

level summaries of worker health and work progress based on activity recognition modeling 

on wearable devices could be transmitted via 86 miniaturized radios to the six supervisors 

(four crew bosses and two engine bosses), each of whom have dedicated digital data radios 

with higher bandwidth capability. Crew-level summaries of these health, work progress, and 

local fire weather metrics could then be transmitted via the high-bandwidth data radios to 

other mid-level supervisors such as task force leaders, division supervisors, or others at 

higher levels. Satellite data transfer may be the preferred method for Incident Command (IC) 

exchanges, or possibly for lower level workers to communicate reliably with a regional or 

national command center in situations where a local radio network is not supported. It is also 

the primary option for communicating single locations to a distant (e.g., urban) public safety 

center in the event of medical emergencies or search and rescue (SAR).

Thus, raw sensor data from smartwatches and smartphones can be processed locally by those 

devices using coded models that summarize work activities in meaningful ways and reduce 

data storage and transfer size accordingly. The most critical data can then be transferred 

via data radios or other networks to devices that consolidate and summarize more complex 

spatial or temporal interactions among multiple users. In this way, the distributed system 

provides not only data transfer off-the-grid, but also calculations and computing power 

that are hierarchical, with the most critical summaries available for higher level managers. 

Additionally, depending on the type and urgency of transmitted data, there may be different 

processing and bandwidth needs for upstream vs. downstream data exchange. For example, 

infrequent (e.g., daily) downstream flow of critical alerts or updated imagery or maps from 

IC to lower-levels may take high priority at fixed times during the day, while upstream 

aggregation and distillation of field condition data from line workers upward.

This hierarchical model also applies to operational forestry and the wood supply chain, 

wildlife and fisheries management, ecology and ecosystem sciences, and other fields. In 

operational forestry, for example, data may be collected on logging equipment efficiency 

(e.g., wood production rate for each piece of equipment and associated stand conditions), 

current logging costs per hour, worker health and safety metrics, and the quantity and quality 

of products being processed in remote areas. This data may be summarized on smartphones 

and shared locally at the jobsite using miniaturized radios. As in the wildland fire example, 

data would then be transferred among operations foresters, wood procurement staff, or land 

managers using higher throughput radios. Critical summary information would ultimately be 

transmitted to large timberland owners, state or federal government agencies or sawmills in 

the top tier using high-bandwidth radios or satellite data communications. Feedback from 

the landowner or mill, such as product specifications, timing of operations, current product 
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needs, or other information can be transmitted back to multiple jobsites with higher-level 

devices as well.

6. Emerging Research Needs

Technology for the use of real-time PNT in natural resources is evolving rapidly. As we 

develop new, mobile applications and data communications topologies to take advantage 

of improved real-time location and data sharing in forest operations, wildland fire, and 

more broadly in natural resources, several research needs emerge. Addressing these topics is 

necessary for moving from concept to practice and actualizing the potential benefits of PNT 

technologies, LBS, activity recognition, and IoT devices for analytics and decision support 

in natural resource management.

6.1. Development of Activity Recognition Models for Individual Worker and Equipment 
Tasks in Forestry, Wildland Firefighting, and Natural Resources

To further integrate activity recognition into natural resources, activity recognition models 

must be developed to characterize movements and conditions associated with various 

human, animal, and equipment work tasks. Activity profiles are being rapidly created for 

fitness and recreational activity monitoring, but applications quantifying work productivity 

in natural resources are limited. Becker et al. developed methodology and code to model 

swing movements of forestry machines [86], and Keefe et al. developed an activity 

recognition model for timber fallers [14]. However, further equipment and worker activity 

recognition detailing a wide range of forestry and wildland fire tasks are needed to 

characterize work activities in integrated, real-time analyses to improve productivity 

and efficiency and to reduce costs. Similarly, in fisheries and wildlife, development 

of individual-level activity data based on inertial sensors may enhance future research 

characterizing behavioral patterns in a variety of ways.

6.2. Development of New Sampling, Analytical, and Statistical Methods to Quantify Real-
Time Resource Movements in Time and Space for Many Agents

Through our literature review process, it has been evident that GNSS-related research in 

natural resources has predominantly focused on accuracy of stationary GNSS devices or 

relatively simple movements and work processes of individual pieces of equipment or 

personnel [42,63]. An exception is Wempe and Keefe, in which the location and movements 

of equipment, ground workers, and multiple mobile jobsite hazards were quantified and 

summarized simultaneously at one second intervals using a GNSS-RF network [21]. By 

quantifying all components of logging, firefighting, or other systems simultaneously, there 

is tremendous potential to advance these fields and improve efficiency and safety through 

more sophisticated types of analytics. Informatics associated with real-time positioning 

and equipment- and personnel-based work activity recognition is both an exciting and 

intimidating field due to the sheer volume of data being generated and needing to be 

quantified. As an example, Keefe et al. showed that recording smartphone sensor data for 

just one work day for hand fallers generates approximately 118,000 rows of data when 

recorded at 10 Hz [14]. Consequently, quantifying both the movements and work activities 

of, for example, 500–1000 wildland firefighters and other support resources in real-time 
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presents formidable challenges, particularly when data processing occurs on mobile devices 

without access to cloud computing.

In light of the diffusion of big data into IoT applications for natural resources, an important 

subject area for future research is the development and testing of methods to (a) transfer data 

efficiently in the hierarchical model, and (b) quantify forestry and firefighting operations in 

ways that reduce the dimensionality in time and space of data as it is collected and processed 

vertically (upstream) in the hierarchy. In addition to applied evaluation of functional data 

processing and communication systems in the field, there is also a need to address more 

basic analytical problems to support big data and IoT growth in natural resources. These 

include identification and evaluation of new, basic statistical methods to quantify complex 

point-process data moving in new patterns and at high resolution in time and space. Such 

methods must account for kinematic, positioning and timing data, including the time for 

software to process locations or other data, transmit that information to other devices, and 

then for receiving devices to process and interpret incoming data, often in a time-critical 

decision-support capacity. Further, since multiple sources of error interact on the landscape 

in complex ways, development of analytical approaches that either quantify the components 

of error in integrated systems or quantify net, cumulative error directly (e.g., Zimbelman et 

al. [22], Grayson et al. [85]), are needed.

Analysis techniques for spatiotemporal data structures with many resources moving 

simultaneously may be applied to a variety of fields, both within natural resources and 

beyond (e.g., human behavior research, safety, and defense). For example, one might 

consider automated recognition of troop movement patterns in military environments, or the 

simultaneous movements of soccer players on a field. In each example, careful consideration 

of research and management goals early on can help to optimize efficient sampling 

frequency and network design for upstream collection, processing and consolidation of 

information in time and space.

6.3. Evaluation of Data Network Quality in Mission-Critical Operations with many 
Resources

Much of the applied research we have referenced on data sharing in forestry, including 

Wempe and Keefe [21], Zimbelman and Keefe [23], and Becker et al. [86], has resulted 

from small, controlled experiments, or sampling with a small number of networked location-

sharing devices (typically less than ten). However, to effectively deploy data networks in 

mission-critical wildland fire, disaster response, and other public safety applications in 

remote areas, testing technologies on a larger scale with more resources is imperative. 

The behavior of ad hoc networks when hundreds or even thousands of resources are 

being monitored is likely to generate a variety of bandwidth and connectivity issues. 

Further research is needed to evaluate the potential use of unique frequencies for different 

component systems sharing data simultaneously at low-level nodes in the hierarchical 

network as well as the slowing and failure of data transfer as the number of users 

increases. There are many, potentially useful applications for sharing activity recognition 

model predictions among phones and wearable sensors, particularly in the context of work 

productivity and worker health monitoring to improve safety. However, ad hoc networks 
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may become clogged with this data when they are most needed, namely, on large incidents 

where conditions are changing quickly, and the rapid transfer of information among many 

agents is most critical. For this reason, it may be useful for mesh networks to establish 

enhanced emergency override controls that throttle non-critical communications, prioritizing 

top-level uses as the system becomes impaired.

6.4. Development of Integrated Formats and Protocols for Sharing Augmented PNT and 
Other Big Data

When GNSS-derived positions are modified in some way, such as through augmentation 

or integration with GNSS-INS localization, some retention and transfer of those changes is 

needed for quality assurance and quality control in downstream applications, or subsequent 

meta-analyses. Thus, development of integrated methods, protocols, and standards for 

transferring this modified location data among networked devices is needed. As points are 

shared on an ad hoc network, the timestamp of the original GNSS fix may be carried 

through the network to other devices, but temporal referencing critical for subsequent 

applications may become lost or unclear depending on the programming logic determining 

how different devices and mobile apps transfer and consolidate data. This could occur 

for example, when the position and vector heading of a forest machine is not sent to 

another machine due to a missed or delayed radio signal, which could result in navigational 

errors. Correcting potential errors of this sort may be as simple as adding additional fields 

or data columns that carry subsequent timestamps associated with when information is 

sent or received each time data is transferred between devices. Thus, the development of 

best management practices or standardized protocols for sharing location data among IoT 

devices that may be lagged in time is important for future research. Similarly, development 

of consistent formats by which supplementary data may be transferred among devices 

along with position information will facilitate rapid and consistent growth of enterprise 

applications. This is particularly important for public safety, in which the well-being and 

lives of first responders depend on accurate PNT data. Given the variety of technologies 

and correction methods that may ultimately be applied to improve positioning accuracy 

in forested environments, it may also be most useful to develop methods or protocols for 

providing observed end-user accuracy estimates when possible. In wildlife and fisheries 

research, the sharing and of big data, and thus availability for higher tier meta-analysis and 

comparative studies, may be affected by whether researchers tend toward collaborative and 

altruistic behavior, participate in telemetry networks, and other factors [228].

6.5. Landscape-Scale Mapping of Vegetation and Canopy Impacts on Position Accuracy

Forest vegetation has repeatedly been shown to markedly diminish GNSS positioning 

accuracy due to multipath errors [48,229–234]. Vegetation and topography also degrade 

local transmissions sent by Bluetooth or other radio-based technologies [235]. To advance 

the integration of real-time positioning systems for critical operations in natural resources, 

new approaches to quantify the impacts of vegetation and topography systematically over 

large landscapes are necessary. For instance, baseline, multipath errors for GNSS-based 

positioning and RSSI loss for conventional frequencies (VHF, UHF, 900 MHz) could be 

mapped across expansive areas using remote sensing satellite or airborne LiDAR data. These 
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predicted errors could then be integrated into end-user PNT applications to aid mission 

planning for operational and tactical support.

6.6. Developing Applications to Improve Worker and Recreational Health and Safety in 
Natural Resources

Concurrent with the development of activity recognition models to quantify work described 

in Section 6.1, new, smart methods for quantifying worker health are needed to help monitor 

and improve health and safety of individuals employed in natural resources. For example, 

wearable or mobile devices could quantify heat stress, over-exertion, and related factors 

during wildland firefighting activities. Smart, person-down alerts for logging contractors 

could improve incident detection and response [88], and similar methods could be developed 

to create overboard alerts for fisheries workers. Also, methods to detect drowsiness and 

reduced awareness during equipment operation or other high-risk tasks may help to reduce 

incident-related injuries. Numerous smartphone-based health apps for achieving health and 

fitness goals and monitoring long-term conditions already exist [236–238]; tailoring these 

kinds of applications to natural resources work and recreational activities can help to 

improve wellness for forest workers.

6.7. Evaluating Potential Adverse Health Impacts of Wearable Technology Use

As smartphones, smartwatches, and the numerous technologies discussed throughout this 

paper become omnipresent in natural resources because of the many beneficial applications, 

a consideration for managers and researchers is whether there may be potential adverse 

health impacts of regularly using wearable and carried electronic devices, with increasing 

human exposure over time. While most prior research indicates minimal health impacts 

associated with RF exposure, blue light associated with smartphone, tablet and laptop 

screens has received prior attention related to possible health effects on sleep [239]. 

Millimeter wave wireless impacts on the body have been identified as an area for future 

research [240]. Smartphone addiction is a problem receiving attention in recent research 

as well [241] and has been associated with anxiety and depression [242]. Additionally, 

repetitive use of smartphones may be associated with increased upper extremity pain [243]. 

While documented impacts of device use appear to be relatively minor, perception of 

possible adverse health impacts of increasing device use is a common concern raised when 

discussing related research and applications.

6.8. Addressing and Establishing Policies to Resolve Social and Ethical Concerns 
Associated with Sharing Worker Health Data

Regardless of any possible direct health impacts discussed in the previous section, the 

sharing of personal activity monitoring data and associated personal health metrics collected 

by wearable sensors introduces a range of important questions about ethical propriety and 

social acceptance [244–247]. Before these data are widely integrated into analytics for 

natural resources, research must first apprehend worker perspectives on the sharing of 

personal data, potentially with supervisors. Despite having a variety of well-intentioned 

wellness and safety benefits for employees and recreationists, the use of personal, 

identifiable information will require various protocols, such as those for ensuring users’ 

voluntary consent. As research and development in LBS, IoT, activity recognition, and 
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other sensor-based applications push the limits of privacy with emerging big data analysis, 

new challenges and questions emerge for natural resource management. For example, 

what methods are there for providing anonymity to individual workers while monitoring 

work crews’ overall wellness in aggregate? What are the responsibilities of employers 

who have access to health data, as is becoming increasingly common, to report apparent 

health anomalies or concerns? These are complex issues for natural resources managers 

and researchers alike to grapple with, and policy research evaluating options and solutions 

will be needed. As mobile devices continue to become the hub for a variety of local 

data connectivity linking internal and external sensors, another important consideration 

is evaluating whether employees are willing to use their smartphones for work-related 

applications.

6.9. Normative Research Evaluating New Use Cases of LBS and IoT Concepts to Improve 
Natural Resource Science and Management

In urban environments, the use of LBS in marketing and sales is growing rapidly. 

Retailers can tailor shopping experiences to the consumer, identifying individuals through 

their smartphones using Bluetooth or WiFi [26,227,248]. Bluetooth beacons placed under 

displays or within objects in the store are used to adapt shopping and sales experiences to 

individuals and their preferences based on available information such as purchase history 

or internet searches, much as the advertisements displayed on websites are personalized 

based on browsing history. In what ways can we take advantage of a similar level of 

human physical interaction with objects, equipment and the environment in forestry and 

wildland fire? For example, can similar Bluetooth-enabled beacons, RFID or NFC tags 

guide equipment operators to move optimally between sorted log decks on active timber 

sales with information that carries through to sawmill operations? Can low-cost beacons 

be used along with conventional ribbon flagging to identify hazard trees or other safety 

concerns and then alert firefighters and loggers to their presence based on smartphone 

LBS? IoT sensors that monitor tree growth are now becoming available; in the future, can 

log product types within the area of interest (AOI) be reported to equipment operators, 

so they can preferentially harvest or bunch logs of a particular product in sequences that 

simplify downstream log processing and loading activities? How can we use technology 

in ways that increase efficiency across forest inventory, precision silviculture, harvesting 

equipment automation, and wildland fire detection and response? At broader scales across 

natural resource disciplines, how can we integrate IoT concepts across forest, fire, wildlife 

and fisheries management to improve efficiencies in monitoring of multiple resources 

and generate synergistic data to better manage resources cost effectively and with newly 

integrated data structures?

7. Conclusions

We have provided a review of available PNT technologies in forested environments, and 

for several emerging technologies and concepts that are likely to impact natural resource 

management. Specifically, we reviewed PNT technologies including GNSS, Bluetooth, 

UWB, RFID, and QR codes. We also reviewed concepts that may influence natural 

resources in the future, including LBS, geofences, wearable technology, activity recognition, 
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mesh networking, the IoT, and big data. It is clear from our review that new possibilities 

for monitoring, analyzing, and reporting the movements of people, equipment, wildlife and 

objects in remote areas are emerging quickly and will advance safety, work productivity, and 

research methods in ways that have not previously been feasible.

Currently, there are relatively few examples of applying IoT, LBS, and big data to 

operational forestry and wildland fire, outside of the common use of remote sensing and 

fire behavior modeling. In the future, however, we will likely see a much wider range 

of big data and sensor-based topologies and concepts diffusing from computer science, 

marketing, and other fields. Solutions for sharing data in remote areas will generally include 

a mix of short-range (Bluetooth, BLE, ANT), radio, cellular, and satellite technologies, 

but will require some modification of currently available applications designed to function 

seamlessly in urban areas. For this reason, the off-the-grid approaches being developed 

for day-to-day data sharing in natural resources are also of interest and importance for 

supporting public safety in urban areas during environmental disasters (hurricanes, floods, 

and fires), military conflicts, and other situations when cellular and internet communication 

may be denied or degraded. Emerging, map-based positioning approaches such as SLAM 

and map matching, perhaps when combined with elements of inertial navigation or LBS, are 

likely to increase in importance.

To best take advantage of the new, big data paradigm in natural resources, we have proposed 

a simple hierarchical model for location and data sharing in IoT applications off-the-grid. 

At lower tiers with many resources (e.g., hundreds of people and equipment), sensor 

data is processed and transmitted locally with low-cost, low-bandwidth devices. At higher 

tiers, aggregated data is transferred over longer distances via higher-cost, higher-bandwidth 

communications equipment, with the most critical data sent through global networks (e.g., 

satellites). This tiered structure corresponds closely with Incident Command on wildland 

fires, the general organization of the forest products supply chain in operational forestry, 

wildlife population monitoring, and many other federal, state, and industrial organizational 

structures in natural resources.

To best support the continuing emergence of IoT and LBS concepts into big data analysis for 

natural resources, future research should focus on (1) developing activity recognition models 

for common forestry and firefighting work activities, so wearable watches and phones can 

quantify worker safety, health, and productivity in real time; (2) developing and evaluating 

new basic and applied statistical and analytical methods accounting for the movement of 

many resources and their interactions with one another and their surrounding environment; 

(3) assessing the applied functionality of processing and sharing data in networks with many 

resources working in forested and perhaps smoky environments; (4) developing integrated 

methods, protocols, and standards for transferring modified location data; (5) quantifying 

the impacts of vegetation and topography on position accuracy over large landscapes; (6) 

developing applications to improve worker and recreational health and safety in natural 

resources; (7) evaluating potential adverse health or safety impacts of smartphone and 

wearable technology use; (8) addressing social and ethical concerns associated with sharing 

worker personal data; and (9) developing normative approaches to evaluate new uses of LBS 

Keefe et al. Page 30

Forests. Author manuscript; available in PMC 2023 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and IoT concepts based on interactions of smartphones and physical objects in forested and 

other remote environments to improve natural resource science and management.

Funding:

While this paper was not funded by a specific grant, important concepts and studies that led to its continued 
development over a three-year period resulted from NIH/CDC NIOSH grant number 5 U01 OH010841, USDA 
McIntire-Stennis project IDAZ-MS-0103, the Idaho Forest Utilization Research program, and USDA Agricultural 
Food and Research Initiative Competitive Grant No. 2013-68005-21298 under the Bioenergy Alliance Network of 
the Rockies.

Conflicts of Interest:

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the 
collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the 
results.

Appendix A

Documentation of the search methodology, inclusion criteria, and related details following 

PRISMA guidelines are required for publication of literature reviews in Forests. In this 

Appendix, we describe characteristics of our search methodology that did not seem to flow 

well within the storyline in the manuscript and seemed better incorporated here.

Appendix A.1 Search Methodology

We used Google Scholar as our principle database for reviewing literature. Google Scholar 

includes more non-peer-reviewed gray literature than other databases such as Web of 

Science, but is also faster at indexing and returning citations for recently published literature. 

For example, the lead author of this manuscript has approximately 200% of the citations 

from published peer-reviewed manuscripts at the time of writing this article for papers 

published between 2013 and 2017. Thus, given that we were reviewing the state of the art 

in a rapidly changing subject area, effort and time were allocated to the Google Scholar 

database as the preferred source. In addition to results returned from the database, papers 

that the co-authors were already familiar with but may not necessarily have shown up in 

database results were also included.

Table A1 shows search terms related to positioning technologies for forestry and wildland 

fire applications, associated with Section 2 of the manuscript.

Table A1.

Search terms used in Google Scholar for manuscript Section 2.

Manuscript Subject Search Term 1 Search Term 2 Search Term 3

GPS (forestry) GPS forestry GPS forest accuracy GPS forest range

GPS (wildland fire) GPS wildland fire GPS wildland fire accuracy GPS wildland fire range

GNSS (forestry) GNSS forestry GNSS forest accuracy GNSS forest range

GNSS (wildland fire) GNSS wildland fire GNSS wildland fire accuracy GNSS wildland fire range

GNSS-RF (forestry) GNSS-RF forestry GNSS-RF forest accuracy GNSS-RF forest range
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Manuscript Subject Search Term 1 Search Term 2 Search Term 3

GNSS-RF (wildland fire) GNSS-RF wildland fire GNSS-RF wildland fire 
accuracy

GNSS-RF wildland fire 
range

Bluetooth (forestry) Bluetooth forestry Bluetooth forest accuracy Bluetooth forest range

Bluetooth (wildland fire) Bluetooth wildland fire Bluetooth wildland fire 
accuracy Bluetooth wildland fire range

Ultra wideband (forestry) Ultra wideband forestry Ultra wideband forest 
accuracy Ultra wideband forest range

Ultra wideband (wildland 
fire)

Ultra wideband wildland 
fire

Ultra wideband wildland fire 
accuracy

Ultra wideband wildland fire 
range

INS (forestry) Inertial navigation 
system forestry

Inertial navigation system 
forest accuracy

Inertial navigation system 
forest range

INS (wildland fire) Inertial navigation 
system wildland fire

Inertial navigation system 
wildland fire accuracy

Inertial navigation system 
wildland fire range

RFID (forestry) RFID forestry RFID forest accuracy RFID forest range

RFID (wildland fire) RFID wildland fire RFID wildland fire accuracy RFID wildland fire range

QR code (forestry) QR code forestry QR code forest accuracy QR code forest range

QR code (wildland fire) QR code wildland fire QR code wildland fire 
accuracy QR code wildland fire range

The terms in Table A2 were searched to define and illustrate broader, emerging data science 

concepts, technologies, and trends related to positioning and other sensor-based data topics 

both generally and in the purview of forestry.

Table A2.

Search terms used in Google Scholar for manuscript Section 4.

Manuscript Sub-
section Search Term 1 Search Term 2 Search Term 3

4.1. Location-based services Location-based services forest Location-based services forestry
1

4.2. Geofences Geofence forest Geofence forestry

4.3. Wearable technology Wearable technology forest
1

Wearable technology forestry

4.4. Activity recognition Activity recognition forest
1

Activity recognition forestry
1

4.5. Mesh networking Mesh network forest Mesh network forestry

Wireless sensor network forest Wireless sensor network forestry

4.6. Internet of Things Internet of Things forest
1

Internet of Things forestry

4.7. Big data Big data forest
1

Big data forestry

1
No relevant results in first two pages of search (ten results per page).

Appendix A.2 Screening, Inclusion, and Bias

For all results returned from Table A1 search terms, abstracts were screened to determine 

their relevance to the core theme of the manuscript using the following criteria: (1) 

does the article generally include information relevant to emerging frontiers in real-time 

positioning for operational forestry and wildland fire? and (2) does the article include 

information relevant to the particular technology being studied (e.g., GNSS-RF)? In addition 

to results from the literature searches, additional information was included on technology 
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and systems available. For example, there were relatively few literature sources on integrated 

wearable and positioning systems, yet there were a number of new technologies being 

actively marketed for use in forestry and wildland fire as of 2018. Additionally, because 

our manuscript was intended to serve in part as a reference document on positioning 

technologies, illustrative figures were created to highlight key characteristics of important 

positioning technologies or IoT concepts, as they may relate to forestry. For example, 

Figure 9, Figure 10, and Figure 11 do not explicitly represent published papers, but show 

technology concepts as they might be applied to natural resource management.

Abstracts displayed for Table A2 Search Term 1 were screened based on the following 

criteria: (1) does the article define or contribute to the basic understanding of the concept 

(e.g., location-based services)? or (2) does the article describe applications of the concept? 

For Search Terms 2 and 3, abstracts were reviewed for reference to the core concept and 

relevance to forestry or wildland fire.

It is required for PRIMSA documentation to note bias that may be present in systematic 

reviews. As noted in the Abstract and Introduction, this manuscript includes two distinct 

systematic reviews, but then also includes supplemental literature from fisheries and 

wildlife, on video object identification and relative positioning, and selected other terms 

and concepts. Thus, the inclusion of additional terms and concepts beyond the original 

systematic searches is a form of bias. We felt it best served the spirit of the review to cover 

as much related literature as possible and that these contributed to the body of knowledge for 

interested readers. Additionally, bias in subject areas was introduced by the authors insofar 

as we supplemented literature identified in systematic reviews with known references in 

some cases.
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Figure 1. 
The Global Positioning System (GPS) and, more broadly, the Global Navigation Satellite 

System (GNSS), rely on three or more navigation satellites to determine ground position of 

receivers. Position is determined based on the time-delay associated with signal reception 

relative to synchronized clocks on each satellite. GNSS devices with the capacity to integrate 

signals from two or more international constellations are increasingly available. The rapidly 

growing number of satellites generally corresponds with increasing accuracy in a wider 

range of devices over a 5–10 year transition period.
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Figure 2. 
Common types of available technologies for real-time location sharing in remote areas. A. 

Conventional handheld GNSS receiver displays the user’s location. B. Two-way satellite 

communication using Iridium or other commercial satellite communication networks 

make it possible to send emergency SOS signals or text messages relayed through 

the communications satellite. C. GNSS transponders paired with radio frequency (RF) 

transmission (GNSS-RF) send locations between devices, so that location coordinates can 

be mapped on phones or tablets connected to receiving devices that are within radio line-of-

sight. D. Advanced data radios with mesh networking function the same as (C), but in 

this case each radio (node) serves as a repeater, improving network connectivity around 

topographic or other obstacles in remote areas. E. GNSS-enabled watches transmit user 

location, inertial sensor and other sensor data (e.g., heart rate) to the user’s phone using 

Bluetooth, Bluetooth Low Energy (BLE) or ANT wireless. F. Miniaturized radios that pair 

with smartphones using Bluetooth or BLE provide the same capabilities as (D) but utilize 

the existing GNSS chip in phones providing location sharing functionality at lower costs 

than dedicated radios.
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Figure 3. 
In a Satellite-Based Augmentation System (SBAS) (left panel), reference stations located 

at precisely-surveyed points receive and forward their GNSS signals to the master station, 

which then calculates corrections. These corrections are sent to SBAS satellites, which 

in turn broadcast correction messages to the end user. In a Ground-Based Augmentation 

System (GBAS), such as real-time kinematic (RTK) positioning (right panel), a base 

(reference) station at a known location and a mobile rover both receive pseudorange and 

carrier phase measurements from similar satellites. Common errors between the units are 

estimated and correction data from the base station is transmitted to the rover for use in 

real-time or is utilized in post processing.
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Figure 4. 
Example configuration for a real-time GNSS-RF network used in operational forestry 

to increase the safety and efficiency of logging operations. Each radio determines its 

coordinates using GNSS. Current positions of each piece of equipment, and possibly 

other data, are then transferred to other units via radio frequency at rates of typically one 

transmission per five seconds or less. One or more devices are attached (tethered) to tablets 

or other mobile devices to map the locations of all equipment in real time.
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Figure 5. 
UWB positioning using TOA (time of arrival) trilateration. A tag (worn by the deer) emits 

UWB pulses which are received at each of the three anchor nodes. Based on a known 

signal speed and the propagation delay (signal travel time, t), each receiver can calculate its 

distance, d, from the tag. The area where the three distances intersect (shown with a yellow 

outline) is the estimated position of the tag [91,93].
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Figure 6. 
Inertial Navigation Systems (INS) in the forest. The forester’s coordinates are determined by 

GNSS at the first position (P1). The INS in his device tracks the direction and speed of his 

movement and can calculate his second position (P2) in the dense canopy based on where 

the forester has traveled from his last known GNSS coordinate.
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Figure 7. 
Simultaneous Location and Mapping (SLAM) techniques in the forest (based on Qian et 

al.) [7]. First, reference trees with known diameters must be mapped with their GNSS 

coordinates (not shown). Then, mobile laser scanning equipment (e.g., LiDAR) scans an 

area of interest in the woods (left). From the LiDAR point cloud data (bottom right), a 

stem distribution map is generated (middle right), which is compared to the reference tree 

map (top right) and in turn used to determine position. In practice, certainty in the map and 

location estimates improves with repeated passes and multiple perspectives.
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Figure 8. 
Example of passive integrated telemetry in fisheries management. The antenna array 

generates an electromagnetic field (white lines). A subcutaneous passive integrated 

transponder (PIT) tag inside the trout re-emits the array’s signal (black lines) as it 

passes through the field, providing information on PIT tag number, time, and direction of 

movement. Arrays may be staged at various locations along the stream reach to characterize, 

for example, the extent of fish passage.
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Figure 9. 
Quick response (QR) codes printed at the jobsite with log load information are scanned 

again at multiple waypoints, such as truck weight scales on a state highway and the sawmill. 

Chain of custody information, like the weight of the load, can be monitored, and, insofar as 

the time and place of the truck is recorded on a map multiple times, this method serves as a 

form of positioning.
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Figure 10. 
Relative positioning for a quadcopter unmanned aerial vehicle (UAV) with following 

capabilities. The device’s onboard computer navigation can be programmed by the user 

to maintain a fixed distance and orientation relative to a moving object, person, or animal. 

Infrared sensors, machine vision with pattern recognition, acoustic positioning or other 

methods may be used to infer the UAV position relative to the subject. In this example, the 

drone positions itself relative to the smartphone’s GNSS coordinates.
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Figure 11. 
In location-based service applications for mobile devices, proximity to Bluetooth beacon 

signals trigger the sharing of information provided in smartphone applications. Mobile 

applications may also then develop metrics based on how many users have passed a beacon 

location, or modify information provided based on a sequence of actions taken by users 

as they interact with multiple beacons. LBS can also base information on geographic 

coordinates (GNSS) or proximity to map-based features.
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Figure 12. 
Example use of a geofence to separate grazing from newly planted conifer seedlings. The 

virtual fence is defined by a series of GNSS coordinates. When a GNSS collar worn by 

livestock approaches the boundary, an alerting sound or sensation is triggered.
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Figure 13. 
Activity recognition modeling and application, using tree planting as an example. Initial 

sensor data is collected during completion of specified activities: swinging a hoedad planting 

tool, bending to place a seedling, or walking to the next site. Patterns in the raw sensor data 

are used to compute activity recognition, which can then be incorporated into apps for use 

on mobile devices in the field to quantify work activities, such as number of trees planted. 

This figure is adapted from Keefe et al. [14].
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Figure 14. 
Wireless sensors in a mesh network in which individual units (the temperature sensors) 

transmit data to local nodes (the data loggers), which in turn transfer data to a station that 

is connected to outside resources via the Internet. Whereas positioning devices discussed 

in the early sections of this paper primarily detect the movements of people, equipment, or 

other resources, wireless sensor networks (WSNs) are used broadly in forest research and in 

environmental fields to monitor air masses, soil moisture, and other environmental factors 

spatially.
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Figure 15. 
Conceptual model for hierarchical data collection, processing and communication in natural 

resources. In the lowest tier (Tier (4), data is collected from many resources and transmitted 

to the next tier (Tier (3) at very short ranges. At higher tiers (Tier 2 and (1), the number of 

resources decreases, but requisite bandwidth and range increases, as large amounts of data 

must be summarized and communicated across longer distances.
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Figure 16. 
Hierarchical approach to location and data sharing in wildland firefighting. Smartphones 

serve as hubs for Bluetooth, BLE, or ANT devices such as an environmental sensor (bottom 

left) and wearable activity-monitoring devices on individuals. These data are processed 

locally on phones and summary data are transmitted via miniaturized radios such as 

goTenna, first by Bluetooth, BLE or ANT to the radio device, and then by radio frequency to 

other crew members. Crew bosses at a higher level of supervision receive data on advanced 

digital radios with higher bandwidth (and cost). For emergency alerts that require complete 

connectivity independent of a local network, and for the highest level of Incident Command, 

devices with two-way satellite data transfer are used.
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Table 1.

PNT technology spatial range and accuracy.

Method Range Static Position Accuracy
1 Technology Reference

Single User

GNSS Global 1–2 m (5–10 m canopy) Recreational & mapping grade [29]

RTK-GNSS Global 5 cm (1 m canopy) Survey grade [29]

PPP-GNSS Global < 5 cm (> 0.5 m canopy) Survey grade [67,70]

GNSS-INS Global GNSS/INS: 0.5–1 m
PPP/INS: 5–10 cm Tightly-coupled systems

2 [103,104,105,106]

Multi-node 3 

GNSS-RF Line-of-sight 2–4 m (< 10 m canopy) Recreational grade – U.S. GPS only [21]

UWB 100 m (15 m NLOS) 3 cm-0.5 m (1 m NLOS) Commercial grade [77,95,96]

Bluetooth
up to 50 m

up to 100 m (20 m indoors)
up to 200 m (40 m indoors)

2–5 m (BLE, indoor)
BLE

Bluetooth 4.x
Bluetooth 5.0

[117,118]

RFID Up to 1 km < 20 cm-5 m Active UHF RFID (RSS) [77,126,127,128,129]

QR code Global Same as GNSS GNSS [29]

1
Root mean square error (RMSE) for all values except Bluetooth and RFID, which are reported as mean error;

2
Raw GNSS measurements are used to aid INS;

3
Refers to whether positions are readily transferred to other devices (single user solutions can easily become ‘multi-node’ if integrated with 

GNSS-RF, Bluetooth, etc.).

Forests. Author manuscript; available in PMC 2023 May 11.


	Abstract
	Introduction
	Types of Positioning Technologies
	GNSS – Single, Dedicated Receiver
	GNSS—Smartphone and Tablet-Based Mapping
	Augmented GNSS and GNSS with RTK Correction
	GNSS with Two-Way Satellite Communication
	GNSS-RF
	Ultra Wideband and UHF/VHF Radio Telemetry
	Inertial Navigation Systems
	Simultaneous Localization and Mapping SLAM
	Bluetooth, BLE, and ANT
	RFID and Acoustic Positioning
	Barcodes and QR Codes
	Video Object Detection and Relative Positioning Methods

	Accuracy and Range of Available PNT Technologies
	Location-Based Services, the Internet of Things, Wearable Technology, and Big Data
	Location-Based Services
	Geofences
	Wearable Technology
	Activity Recognition
	Mesh Networking
	The Internet of Things IoT
	Big Data

	A Hierarchical Model for Processing and Sharing Data
	Emerging Research Needs
	Development of Activity Recognition Models for Individual Worker and Equipment Tasks in Forestry, Wildland Firefighting, and Natural Resources
	Development of New Sampling, Analytical, and Statistical Methods to Quantify Real-Time Resource Movements in Time and Space for Many Agents
	Evaluation of Data Network Quality in Mission-Critical Operations with many Resources
	Development of Integrated Formats and Protocols for Sharing Augmented PNT and Other Big Data
	Landscape-Scale Mapping of Vegetation and Canopy Impacts on Position Accuracy
	Developing Applications to Improve Worker and Recreational Health and Safety in Natural Resources
	Evaluating Potential Adverse Health Impacts of Wearable Technology Use
	Addressing and Establishing Policies to Resolve Social and Ethical Concerns Associated with Sharing Worker Health Data
	Normative Research Evaluating New Use Cases of LBS and IoT Concepts to Improve Natural Resource Science and Management

	Conclusions
	Appendix A
	Table A1.
	Table A2.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.
	Figure 16.
	Table 1.

