8 research outputs found

    High Voltage Boost Converters: A Review on Different Methodologies and Topologies

    Get PDF
    Power converters are a fundamental element in the industries, micro-grids and households appliances providing all the necessary power regulation increasing the flexibility of the voltage, current, power, and phase. In this review a number of boost converters are studied, responsible for converting a low direct current voltage to a higher magnitude using a number of different methods including coupled inductors, series combination of a capacitor and two parallel inductors and an inductor discharging to two series connected capacitors in a transfer of power. The converters encounter two major practical issues sudden rise in di/dt and dv/dt that drastically reduces the efficiency and increases power loss in passive elements and stress in active switches

    A High Voltage Gain Boost Converter: Concept of DC Power Transfer Using Mutual Inductors

    Get PDF
    A high voltage boost converter is being prototyped in an artificial software-based environment of MATLAB/ SIMULINK and identifies the practical conditions of the converter. A direct current (DC) input voltage is being boosted to a higher magnitude by multiplying a gain factor in a dynamic process of DC power transfer by cascading three mutual inductors in a single core. Input voltage is being switched by primary IGBT switches creating simultaneous charging and discharging of primary inductor, hence induces identical voltage in two secondary inductors. Inductors are charged and power is transferred to a parallel capacitor and finally to the resistive load in accurate control of duty cycles

    Closed Loop Control of High Voltage Gain IBC with Voltage Multiplier Module

    Get PDF
    This paper presents the closed loop control of a high voltage gain IBC. A high voltage gain Interleaved Boost Converter (IBC) with Voltage Multiplier module is suitable for renewable energy system, which requires high step up conversion ratio. In order to obtain high gain, a built-in transformer and a voltage multiplier module inserted into each phase of conventional interleaved boost converter. The voltage multiplier cell is composed of built-in transformer windings, diodes and small capacitors. The Voltage multiplier module is efficient, low cost and simple topology composed of switched capacitors and diodes to obtain high DC output voltage. In order to obtain the controlled output voltage from a DC – DC converter under varying input conditions, it is necessary to regulate the output voltage which is achieved through closed loop control. A PI controller is implemented to improve its performance of the proposed IBC during the disturbances due to renewable energy sources. The closed loop control of the proposed IBC with multiplier module is analyzed and simulated for high voltage gain using MATLAB Simulink

    Multi-Stage DC-AC Converter Based on new DC-DC converter for energy conversion

    Get PDF
    This paper proposes a multi-stage power generation system suitable for renewable energy sources, which is composed of a DC-DC power converter and a three-phase inverter. The DC-DC power converter is a boost converter to convert the output voltage of the DC source into two voltage sources. The DC-DC converter has two switches operates like a continuous conduction mode. The input current of DC-DC converter has low ripple and voltage of semiconductors is lower than the output voltage. The three-phase inverter is a T-type inverter. This inverter requires two balance DC sources. The inverter part converts the two output voltage sources of DC-DC power converter into a five-level line to line AC voltage. Simulation results are given to show the overall system performance, including AC voltage generation. A prototype is developed and tested to verify the performance of the converter

    Implementation of sliding mode controller plus proportional double integral controller for negative output elementary boost converter

    Get PDF
    AbstractThis article presents a design, output voltage and inductor current regulations of the negative output elementary boost converter (NOEBC) operated in continuous conduction mode (CCM) using sliding mode controller (SMC) plus proportional double integral controller (PDIC). The NOEBC is a dc–dc converter that can provide high voltage transfer gain, high efficiency, and reduced output voltage and inductor current ripples in comparison with the conventional boost converter. Owing to the time varying switched mode operation, the dynamic characteristics of the NOEBC is non-linear and the designed SMC plus PDIC aims at enhancing the dynamic characteristics along with the inductor current and the output voltage regulations of the NOEBC. The proposed SMC is more appropriate to the essentially variable-structured NOEBC when represented in the state-space average based model. Here, the PDIC suppresses the steady state error and excellent initial start-up response of NOEBC in spite of input supply voltage and load resistance variations. The performance of the SMC plus PDIC is verified for its robustness to perform over a broad range of working conditions in MATLAB/Simulink models as well as in the experimental with the comparative study of a SMC plus proportional-integral-controller (PIC). Simulation and experimental results are presented

    Design of Power/Analog/Digital Systems Through Mixed-Level Simulations

    Get PDF
    In recent years the development of the applications in the field of telecommunications, data processing, control, renewable energy generation, consumer and automotive electronics determined the need for increasingly complex systems, also in shorter time to meet the growing market demand. The increasing complexity is mainly due to the mixed nature of these systems that must be developed to accommodate the new functionalities and to satisfy the more stringent performance requirements of the emerging applications. This means a more complex design and verification process. The key to managing the increased design complexity is a structured and integrated design methodology which allows the sharing of different circuit implementations that can be at transistor level and/or at a higher level (i.e.HDL languages).In order to expedite the mixed systems design process it is necessary to provide: an integrated design methodology; a suitable supporting tool able to manage the entire design process and design complexity and its successive verification.It is essential that the different system blocks (power, analog, digital), described at different level of abstraction, can be co-simulated in the same design context. This capability is referred to as mixed-level simulation.One of the objectives of this research is to design a mixed system application referred to the control of a coupled step-up dc-dc converter. This latter consists of a power stage designed at transistor-level, also including accurate power device models, and the analog controller implemented using VerilogA modules. Digital controllers are becoming very attractive in dc-dc converters for their programmability, ability to implement sophisticated control schemes, and ease of integration with other digital systems. Thus, in this dissertation it will be presented a detailed design of a Flash Analog-to-Digital Converter (ADC). The designed ADC provides medium-high resolution associated to high-speed performance. This makes it useful not only for the control application aforementioned but also for applications with huge requirements in terms of speed and signal bandwidth. The entire design flow of the overall system has been conducted in the Cadence Design Environment that also provides the ability to mixed-level simulations. Furthermore, the technology process used for the ADC design is the IHP BiCMOS 0.25 µm by using 50 GHz NPN HBT devices

    Advances in Fuel Cell Vehicle Design

    Get PDF
    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research presents a novel fuel cell-battery-ultracapacitor topology which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator created in MATLAB/Simulink is used to perform a comprehensive parametric study on different fuel cell vehicle types, resulting in general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles. Next, a general analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter

    Advanced high frequency switched-mode power supply techniques and applications

    Get PDF
    This Thesis examines the operation and dynamic performance of a single-stage, single-switch power factor corrector, S4 PFC, with an integrated magnetic device, IM. Also detailed isthe development and analysis of a high power light emitting diode, HP LED, power factorcorrection converter and proposed voltage regulation band control approach.The S4 PFC consists of a cascaded discontinuous current mode, DCM, boost stage anda continuous current mode, CCM, forward converter. The S4 PFC achieves a high powerfactor, low input current harmonics and a regulated voltage output, utilising a singleMOSFET. A steady-state analysis of the S4 PFC with the IM is performed, identifying theoperating boundary conditions for the DCM power factor correction stage and the CCMoutput voltage regulation stage. Integrated magnetic analysis focuses on understanding theperformance, operation and generated flux paths within the IM core, ensuring the device doesnot affect the normal operation of the converter power stage. A design method for the S4 PFCwith IM component is developed along with a cost analysis of this approach. Analysis predictsthe performance of the S4 PFC and the IM, and the theoretical work is validated by MATLABand SABER simulations and measurements of a 180 W prototype converter.It is not only the development of new topological approaches that drives theadvancement of power electronic techniques. The recent emergence of HP LEDs has led to aflurry of new application areas for these devices. A DCM buck-boost converter performs thepower factor correction and energy storage, and a cascaded boundary conduction current modebuck converter regulates the current through the LED arrays. To match the useful operatinglifetime of the HP LEDs, electrolytic capacitors are not used in the PFC converter. Analysisexamines the operation and dynamic characteristics of a PFC converter with low capacitiveenergy storage capacity and its implications on the control method. A modified regulationband control approach is proposed to ensure a high power factor, low input current harmonicsand output voltage regulation of the PFC stage. Small signal analysis describes the dynamicperformance of the PFC converter, Circle Criterion is used to determine the loop stability.Theoretical work is validated by SABER and MATLAB simulations and measurements of a180 W prototype street luminaire.EThOS - Electronic Theses Online ServicePSU DesignsDialight LumidrivesGBUnited Kingdo
    corecore