4,358 research outputs found

    Designing a manufacturing cell system by assigning workforce

    Get PDF
    Purpose: In this paper, we have proposed a new model for designing a Cellular Manufacturing System (CMS) for minimizing the costs regarding a limited number of cells to be formed by assigning workforce. Design/methodology/approach: Pursuing mathematical approach and because the problem is NP-Hard, two meta-heuristic methods of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms have been used. A small randomly generated test problem with real-world dimensions has been solved using simulated annealing and particle swarm algorithms. Findings: The quality of the two algorithms has been compared. The results showed that PSO algorithm provides more satisfactory solutions than SA algorithm in designing a CMS under uncertainty demands regarding the workforce allocation. Originality/value: In the most of the previous research, cell production has been considered under certainty production or demand conditions, while in practice production and demand are in a dynamic situations and in the real settings, cell production problems require variables and active constraints for each different time periods to achieve better design, so modeling such a problem in dynamic structure leads to more complexity while getting more applicability. The contribution of this paper is providing a new model by considering dynamic production times and uncertainty demands in designing cells.Peer Reviewe

    The evolution of cell formation problem methodologies based on recent studies (1997-2008): review and directions for future research

    Get PDF
    This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers

    Modeling reliability considerations in the design and analysis of cellular manufacturing systems.

    Get PDF
    Reliability plays a vital role in the overall performance of cellular manufacturing systems (CMSs). Machine failures significantly impact the fulfillment of due dates and other performance criteria, despite the option of part rerouting to alternative workstations. These facts suggest a need for the consideration of machine reliability during the operation allocation process. Attempting to improve a system\u27s reliability invariably results in higher costs. It follows that the ideal strategy for achieving optimum balance lies in an approach that integrates both cost and reliability information. A mixed integer multi-objective mathematical programming model that incorporates machine reliability and cost considerations is developed for the design of CMSs. The model selects processing route for each part type which maximizes the overall system reliability of machines along the route, while minimizing the overall costs. The proposed approach provides flexible routing, ensuring high CMS performance by minimizing the impact of machine failure through the provision of alternative process routes. To account for the constant and increasing failure pattern of manufacturing machines, the CMS design model considers both the exponential and Weibull distribution approaches. A performance evaluation criterion in terms of system availability for the part-process plan assignment based on the exponential distribution is also developed. Applicability of the model is demonstrated by solving example problems by following the ∈-constraint approach. Optimization techniques for solving such models for large practical-size problems require a substantial amount of time and memory space; therefore, a heuristic, based on the basic steps to simulated annealing and solution generation procedure of genetic algorithm is developed. The heuristic is evaluated by comparing the solutions generated by the heuristic with the LP relaxation solution for the large problems and optimal solution for the smaller-sized problems. The results reveal that the heuristic performs well in various problem instances for reliability and cost combinations. The sensitivity of the model outputs to key factors has also been investigated. A reliability-based, preventive maintenance (PM) planning model is also incorporated, allowing CMS to restrict deterioration of machines due to usage and age and improve system reliability. A procedure for the integration of PM planning into the CMS design model is included for overall reliability and cost improvement of the CMS. Example problems are solved to illustrate the model\u27s applicability.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation).Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .D37. Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 4032. Thesis (Ph.D.)--University of Windsor (Canada), 2006

    Human cognition inspired procedures for part family formation based on novel Inspection Based Clustering approach

    Get PDF
    Human cognition based procedures are promising approaches for solving different kind or problems, and this paper addresses the part family formation problem inspired by a human cognition procedure through a graph-based approach, drawing on pattern recognition. There are many algorithms which consider nature inspired models for solving a broad range of problem types. However, there is a noticeable existence of a gap in implementing models based on human cognition, which are generally characterized by “visual thinking”, rather than complex mathematical models. Hence, the natural power of reasoning - by detecting the patterns that mimic the natural human cognition - is used in this study as this paper is based on the partial implementation of graph theory in modelling and solving issues related to the grouping of the parts to be processed by one machine, regardless of their size. The obtained results have shown that most of the problems solved by using the proposed approach have provided interesting benchmark results when compared with previous results given by GRASP (Greedy Randomized Adaptive Search Procedure) heuristics.This work has been supported by national funds through FCT - Fundacao para a Ciencia e Tecnologia - under the [UID/CEC/00319/2019] project, and under the RD Units Projects Scopes: UIDP/04077/2020 and UIDB/04077/2020, UIDP/04077/2020 and UIDB/04077/2020

    Development of Manufacturing Cells Using an Artificial Ant-Based Algorithm with Different Similarity Coefficients

    Get PDF
    Although there exists several ways of solving the cellular manufacturing problem, including several ant-based algorithms, many of these algorithms focus on obtaining the best possible answer instead of efficiency. An existing artificial-ant based algorithm AntClass, was modified so that it is easier to manipulate. AntClass uses Euclidean vectors to measure the similarity between parts, because similarity is used to group parts together instead of distances, the modified version uses similarity coefficients. The concept of heaping clusters was also introduced to ant algorithms for cellular manufacturing. Instead of using Euclidean vectors to measure the distance to the center of a heap, as in the AntClass algorithm, an average similarity was introduced to measure the similarity between a part and a heap. The algorithm was tested on five common similarity coefficients to determine the similarity coefficient which gives the better quality solution and the most efficient process

    Computer-aided design of cellular manufacturing layout.

    Get PDF

    An Adapted Genetic Algorithm to Solve Generalized Cell Formation

    Full text link

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Meta-heuristics in cellular manufacturing: A state-of-the-art review

    Get PDF
    Meta-heuristic approaches are general algorithmic framework, often nature-inspired and designed to solve NP-complete optimization problems in cellular manufacturing systems and has been a growing research area for the past two decades. This paper discusses various meta-heuristic techniques such as evolutionary approach, Ant colony optimization, simulated annealing, Tabu search and other recent approaches, and their applications to the vicinity of group technology/cell formation (GT/CF) problem in cellular manufacturing. The nobility of this paper is to incorporate various prevailing issues, open problems of meta-heuristic approaches, its usage, comparison, hybridization and its scope of future research in the aforesaid area
    corecore