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Abstract

This paper presents a literature review of the Cell Formation (CF) prob-
lem concentrating on formulations proposed in the last decade. It refers to
a number of solution approaches that have been employed for CF such as
mathematical programming, heuristic and metaheuristic methodologies and
artificial intelligence strategies. A comparison and evaluation of all method-
ologies is attempted and some shortcomings are highlighted. Finally, sugges-
tions for future research are proposed useful for CF researchers.
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1. Introduction

Group Technology (GT) can be defined as a manufacturing philosophy
identifying similar parts and grouping them together to take advantage of
their similarities in manufacturing and design (Selim et al. (1998)). Cellular
Manufacturing (CM) is an application of GT and has emerged as a promising
alternative manufacturing system. CM could be characterised as a hybrid
system linking the advantages of both the jobbing (flexibility) and mass
(efficient flow and high production rate) production approaches.
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CM entails the creation and operation of manufacturing cells. Parts are
grouped into part families and machines into cells. As reported by Wem-
merlov and Hyer (1989) the aim of CM is to reduce setup and flow times
and therefore to reduce inventory and market response times. Setup times
are reduced by using part family tooling and sequencing, whereas flow times
are reduced by minimising setup and move times, wait times for moves and
by using small transfer batches. Moreover, in a survey by Wemmerlov and
Johnson (1997), CM is promoted as the primary factor for the simplification
of production planning and control procedures.

The design of cellular manufacturing systems has been called Cell For-
mation (CF). Given a set of part types, processing requirements, part type
demand and available resources (machines, equipment, etc.), a general design
of cellular manufacturing consists of the following approaches: (a) Part fam-
ilies are formed according to their processing requirements, (b) Machines are
grouped into manufacturing cells, (c) Part families are assigned to cells. Note
that the above steps are not necessarily performed in the above order or even
sequentially. Depending upon the procedures/formulations employed to form
manufacturing cells and part families, three solution strategies are identified
(Selim et al. (1998)): (a) Part families are formed first and then machines
are grouped into cells according to the part families. This solution strategy
is referred to as Part Family Identification (PFI), (b) Manufacturing cells
(grouped machines) are first created based on similarity in part routings and
then the parts are allocated to cells. This solution strategy is referred to as
Machine Groups Identification (MGI), (c) Part families and manufacturing
cells are formed simultaneously. This is referred to as Part Families/Machine
Grouping (PF/MG) solution strategy.

For better understanding of a CF system and how cells are formed and
parts flow, within and between cells an example is shown here where seven
machine types and ten parts are taken into account together with multiple
machines of the same type for each machine. Moreover, part/machine util-
isation amounts and part machine operation sequences showing the actual
production flow are also included. A visual representation of a cell formation
system given the specifications described above is provided in Figure 1.

The problem to be solved is: allocate each machine to a cell where the
number of cells to be formed is to be determined and allocate each part, in
accordance with a known processing sequence, to machines for processing.
The objective of the problem is to minimise the total cost comprising of
intercellular movements and machine set-ups. The model formed may be
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generalised to include more complex cost structure and other features.
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Figure 1: Cells formed and part flows, within and between cells.

Please note that each item in the square boxes, i.e. Mk
i , denotes the

instance k of machine of type i currently used within a cell. Also the ele-
ments in the arrows use the notation, r(s) to indicate that part r is using
s capacity units of the machine1 that the arrow is pointing at. All parts
follow a certain machine route, shown by the direction of the arrows until
they are produced. The latter is indicated with an outgoing arrow from a
part/machine processing block pointing to nowhere.

In the last three decades much work has been undertaken seeking effective
methods for the CF problem. A first attempt to classify the approaches,
results in the following three categories:

1It is assumed that for each machine instance only a unity of its capacity can be spent
on processing a certain part. Where no part number or capacity is shown on a line a part
is moving to another cell to continue processing, e.g. part 2.
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• Informal methods

• Part coding analysis methods

• Production based methods

Informal methods or visual methods or simply “eye-balling” methods rely
on the visual identification of the correspondent part families and machine
cells. This methodology is trivial only when the number of parts and ma-
chines is small or could be larger but with considerable flows. Otherwise, the
identification task becomes impossible.

In part coding analysis (PCA) methodologies the design characteristic
of the parts has an important role in the formation of part families. These
methodologies use a coding system to assign numerical weights to part char-
acteristics and identify families using some classification scheme. PCA-based
systems are traditionally design oriented or shape-based, therefore they are
ideal for component variety reduction.

The core classification is production based methods, which can further
be classified as follows:

• Cluster analysis

• Graph partitioning approaches

• Mathematical programming methods

• Heuristic and Metaheuristic algorithms

• Artificial intelligence methodologies

Cluster analysis is composed of many diverse techniques for recognizing
structure in a complex data set. The main objective of this cell formation
tool is to group either objects or entities or attributes into clusters such
that individual elements within a cluster have a high degree of “natural”
association among themselves and very little “natural association” between
clusters. Clustering procedures can be classified as array based clustering,
hierarchical clustering and non-hierarchical clustering techniques.

In array based clustering the processing requirements of components on
machines can be represented by the machine/part matrix formulation. The
machine/part matrix has zero and one entries (aij). A ‘1’ entry in row i
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and column j of the matrix indicates that component j has an operation
on machine i, whereas a ‘0’ entry indicates that it does not. The array
based techniques try to allocate machines to groups and parts to associated
families by appropriately rearranging the order of rows and columns to find
a block diagonal form of the aij = 1 entries in the machine-part matrix. The
literature yields a number of array-based clustering algorithms with the most
recent been the Close Neighbour algorithm (Boe and Cheng (1991)).

Hierarchical clustering for CF comprises two stages. Initially, some form
of similarity or dissimilarity between machines or parts is employed, in order
to create machine cells or part families. Later, machines or parts are sep-
arated into a few broad cells, each of which is further divided into smaller
groups and each of these further partitioned and so on until terminal groups
are generated which cannot be subdivided. Essentially hierarchical tech-
niques can be classified into two: (a) Divisive methods where the process
starts with all the data (machines or parts) in a single group and a series of
partitions is created until each machine (part) is in a singleton cluster and, (b)
Agglomerative methods where the process starts with singleton clusters and
proceeds to merge them into larger partitions until a partition containing the
whole set is obtained. Important work utilising agglomerative methods can
be found in Gupta and Seifoddini (1990) and Gupta (1993). Also Vakharia
and Wemmerlov (1990) proposed a methodology for the CF problem, this
time based on the identification of part families rather than machine cells.

Non-hierarchical clustering methods are iterative methods but they also
employ a measure of similarity or dissimilarity for grouping parts or machines.
They begin with either an initial partition of the data set or the choice of a
few seed points. In either case, one has to decide the number of clusters in
advance. The most recent non-hierarchical procedures have been proposed
by Jayakrishnan Nair and Narendran (1998, 1999).

Although cluster analysis methodologies are simple to implement and so-
lutions can be obtained in reasonable amounts of time they have a main
drawback: usually only one objective is taken into account i.e. the minimi-
sation of intercell movements where only part operations and the machines
involved are considered. Other product data (such as operational sequences
and processing times) are not incorporated into the design process. Thus, so-
lutions obtained may be valid in limited situations. Similarly not much data
could be included in graph partitioning approaches where a graph or network
representation is employed for the CF problem, and machines and/or parts
are treated as vertices and the processing of parts as edges. Other important
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work employing graph partitioning approaches can be found in Ng (1993)
and Lin et al. (1996).

Mathematical Programming formulations for CF are nonlinear or linear
integer programming problems and have been used in a number of circum-
stances offering the distinct advantage of being able to incorporate ordered
sequences of operations, alternative resource plans, non consecutive part op-
erations on the same machine, setup and processing times, the use of multiple
identical machines as well as outsourcing of parts. However, the more manu-
facturing data involved in a CF model the more computationally intractable
this becomes for realistically large scale data sets. Due to the NP-hard na-
ture of the CF problem heuristic, metaheuristic and hybrid metaheuristic
approaches have been successfully proposed producing acceptable solutions
in reasonable time. Further, the decision making process in a manufacturing
system often involves uncertainties and ambiguities. Under such circum-
stances, fuzzy methodologies have proved to be effective tools for taking
fuzziness into consideration. Moreover, neural networks have been employed
successfully for CF due to their robust nature.

The primary objective of the present paper is not to provide a review of
all the CF literature available but to highlight recent studies concentrating on
methodologies such as: mathematical programming, heuristics, metaheuris-
tics, hybrid metaheuristics and artificial intelligent approaches. Research
papers, where either a static or a dynamic environment has been employed,
are identified and further discussed. A static environment refers to the tradi-
tional cellular manufacturing system where no changes in demand are taken
into account, whereas a dynamic environment examines cases where part
demand volume and part mix change reflecting fluctuating market require-
ments. Further, an attempt is made to identify possible future directions
useful for researchers and practitioners who wish to pursue research on the
CF problem and choose the appropriate technique for their study.

Good and useful discussions of cellular manufacturing systems can be
found in Suresh and Meredith (1985), Singh (1993), Joines et al. (1995),
Reisman et al. (1997), Selim et al. (1998), Balakrishnan and Cheng (2007).

2. CF Solution Methods

In this section major contributions to the CF problem will be identified
and described broadly. Later, certain key characteristics of these contribu-
tions will be tabulated (in Table 2). Classifications of methods for the CF
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problem have been proposed by many researchers. For the purpose of this re-
view a classification based on mathematical programming approaches, heuris-
tics, metaheuristics, hybrid metaheuristics and artificial intelligent method-
ologies is provided in Figure 2. Based on this classification a number of
procedures are reviewed with key elements emerging such as: problem formu-
lation, i.e. objectives and constraints involved; solution approach employed;
size of problems solved; quality of solutions obtained.

CF Solution
Methods

Mathematical
Programming

Heuristics Metaheuristics AI approaches

Simulated
Anealing

Tabu
Search

Hybrid
Metaheuristics

Trajectory
methods

Population
based methods

Fuzzy Theory
Neural

Networks

Evolutionary
Algorithms

Ant Colony
Optimisation

Genetic
Algorithms

Particle Swarm
Optimisation

Scatter Search

Figure 2: CF solution methods classification for current paper.

2.1. Mathematical Programming

Mathematical Programming formulations can be used in a number of
circumstances involving a wide range of manufacturing data. Several types
of integer programming formulations have been proposed over the last three
decades by a number of researchers: Kusiak (1987), Shtub (1989), Choobineh
(1988), Wei and Gaither (1990), Boctor (1991), Zhu et al. (1995). Most of
these research papers are identified and discussed by Selim et al. (1998)
together with the model of a comprehensive but hard to solve mathematical
programming formulation with the objective of minimising simultaneously
cost assignment of part operations, machines, workers and tooling to cells.
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Due to the combinatorial complexity of this model the authors identified sub
problems (with fewer constraints and variables) which had been proposed by
several researchers, proceeded with a general classification of CF procedures
based on their employed methodology, and identified a number of useful
suggestions for future research.

Won and Lee (2004) proposed a modified p-median approach for efficient
GT cell formation with the objective of maximising the sum of similarities
between machines in the same cell. The authors commented that the original
p-median formulation (Kusiak (1987)) when applied to real applications was
severely restricted due to two major factors: problem size and software type.
Their new formulation had two major advantages when compared with the
classical p-median model: speedy implementation, and large CF problem
capability even when using education-purpose software.

Foulds et al. (2006) developed a mixed integer mathematical program-
ming model where machine modification, as a key constraint not included in
earlier studies, was introduced. It is often the case for CF that it is important
to be able to reassign parts to additional machines, in order to create a better
cell system configuration and also avoid duplication of machines which might
be very expensive. Thus, they introduced machine modification to allow fur-
ther processing of a part within the same cell to reduce intercellular travel
and they claimed that the cost of such modifications could be balanced by the
consequent reduction in intercell travel cost. The objective was to minimise
the sum of the machine modification costs and the intercell travel. This prob-
lem was called the Sustainable Cell Formation Problem (SCFP). For small
problems XPRESSMP was used and for medium scale problems the authors
proposed and analyzed greedy and tabu search heuristics.

Diaby and Nsakanda (2006) developed a comprehensive integer program-
ming problem for the part routing problem (PRP) in cellular manufacturing
systems where both operations and part quantities for each of the parts to be
manufactured in specific machines were addressed. Several alternate process
plans existed for each product and any given operation could be performed
on alternate machines at different costs. The objective was to minimise the
total material handling, production, outsourcing and setup costs subject to
satisfying all part demands and not exceeding any of the machine capacity
limits. Due to the PRP computational complexity a Lagrangean relaxation-
based approach was developed to generate near optimal solutions to large
scale capacitated problems for a cellular manufacturing system.
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2.2. Heuristics

Heuristic algorithms have popularly been implemented for many practi-
cal applications as they are designed to provide an alternative framework for
solving a problem in contrast with a set of restricted rules-constraints that
cannot vary. Although heuristic approaches do not guarantee to provide op-
timal solutions (usually sub-optimal results are derived) they are very useful
in producing an acceptable solution in reasonable time.

Mukattash et al. (2002) proposed three heuristic procedures. Given a
CF solution, the heuristics were designed to assign parts to the cells in the
presence of alternative process plans, multiple alternative machines and pro-
cessing times. CF with the presence of alternative process plans and multiple
types of machines led to the elimination of exceptional elements. When mul-
tiple types of machines were considered some exceptional elements were also
eliminated. The exceptional elements could be further added to the bottle-
neck machines thus increasing machine utilisation. The heuristics were tested
using small problem sizes only.

Chan et al. (2003) developed a heuristic algorithm that addressed prob-
lems of machine allocation in cellular manufacturing only when the intra-cell
materials flow was taken into account. The proposed algorithm used an
adaptive approach to relate machines in a cell by examining the merged part
flow weights of machine pairs. The establishment of the part flow weight in-
cluded practical constraints, such as the part-handling factor and the number
of parts per transportation. The objective function employed was to min-
imise the total travelling score within one cell in which the total travelling
distance was covered. The current algorithm outperformed other approaches
as it provided near optimum solutions.

Kim et al. (2004) considered a more comprehensive CF problem with a
multi-objective machine formulation. Part route families and machine cells
needed to be determined in such a way that minimisation of the total sum of
intercell part movements and maximum machine workload imbalance could
be achieved. A two-phase heuristic algorithm was proposed. In the first
phase, representative part routes with part route families were determined
whereas in the second phase the remaining part routes were allocated to part
route families. The authors concluded that the two-phase heuristic algorithm
was effective in minimising intercell part movements and maximum machine
workload imbalance.
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2.3. Metaheuristics

Over the past two decades, metaheuristics have been mainly developed for
the solution of NP-hard combinatorial optimisation (CO) problems. The CF
problem is considered to be a complex and difficult optimisation problem.
Many researchers in order to gain more benefits of the CF problem have
applied metaheuristic algorithms. Five of the most notable members of the
metaheuristics group are: Simulated Annealing (SA), Tabu Search (TS),
Genetic Algorithms (GAs), Ant Colony Optimisation (ACO) and Particle
Swarm Optimisation (PSO), as shown in Figure 2.

2.3.1. Simulated Annealing and Tabu Search

Simulated Annealing (SA) and Tabu Search (TS) algorithms have a com-
mon characteristic as the search process starts from one initial state (the
initial solution) and describes a trajectory in the state space. SA is said
to be the oldest among metaheuristics. Suggestions for its performance im-
provement were produced by Eglese (1990). Also Souilah (1995) presents
the general SA algorithm and also shows how it has been used to group re-
sources into manufacturing cells, to design the intra-cell layout, and to place
the manufacturing cells on the available shop-floor surface. TS is one of the
most successful metaheuristics for the application to CO problems. A de-
scription of the method and its concepts can be found in Glover and Laguna
(1997).

Vakharia and Chang (1997) developed two heuristic methods for the CF
problem both based on simulated annealing and tabu search algorithms. The
objective function of their model was the minimisation of the total cost of the
machines required as well as the materials handling cost for loads transferred
between cells. A considerable amount of data was considered, such as pro-
cessing times and transportation costs. The performance of their heuristics
was examined using published as well as industrial data. The latter is an im-
portant element for CF since the algorithm was evaluated in real situations
showing its practicality and applicability. The results obtained indicated that
simulated annealing outperformed tabu search in terms of solution quality
and computational time.

Sofianopoulou (1999) developed a a nonlinear programming model for
solving the CF problem where multiple copies of machines were taken into
account together with alternative process plans for part types. The objective
of the model was to minimise the total amount of intercellular movement.
The processing sequence for each part type was also considered to determine
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the exact number of intercellular movements. A two-dimensional SA meta-
heuristic was proposed to produce enhanced system configurations of random
instances of medium sized production systems.

Aljaber et al. (1997) modelled the CF problem based on graph approaches
and more specifically a pair of shortest spanning path problems, one for
the machines (rows)and one for the parts (columns) without taking into
account additional manufacturing data. The authors proposed a TS heuristic
algorithm for the solution of both problems.

As part of the cellular manufacturing design process, machines must be
grouped in cells and the corresponding part families must be assigned. Limits
on both the number of machines per cell and the number of parts per family
can be considered. Lozano et al. (1999) proposed a weighted sum of intracell
voids and intercellular moves to evaluate the quality of the solutions. They
developed a TS algorithm that systematically explored feasible machine cells
configurations determining the corresponding part families using a linear
network flow model. The performance of this TS was benchmarked against
two SA approaches, another TS approach and three existing heuristics.

Spiliopoulos and Sofianopoulou (2003) proposed a two stage heuristic ap-
proach for the manufacturing cell design problem and a TS scheme for its
solution. The first stage tackled parts grouping whereas the second elimi-
nated intercellular traffic flow. The TS algorithm, as the third stage to be
implemented, integrated proper short and long term memory structures and
an overall search strategy for their use. At the code development phase spe-
cial care was taken to enhance the exploration capability of the algorithm by
correlating search statistics with the values of the search parameters. The
resulting algorithm proved to be robust and the results were encouraging.

Logendran and Karim (2003) produced a nonlinear integer programming
model for addressing two different issues for the CF problem: (a) the avail-
ability of alternative locations for a cell and, (b) the use of alternative routes
to move part loads between cells when the capacity of the material trans-
porter employed is limited. It is worth noting that the inclusion of a material
transporter in a CF system has received only limited attention in the liter-
ature. In addition other elements, such as machine capacity limitations,
batches of part demands, non-consecutive operations of parts and maximum
number of machines assigned to a cell, were also taken into account. The
non-linear model was converted into a mixed integer programming model by
explicitly fixing the values of key variables in order to obtain a solution of a
small sized problem. The choice of fixed values was then permuted, creating
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a set of small models, and the model with the smallest objective function
value was selected. A long term TS algorithm to improve solutions was ini-
tially developed followed by six different versions of it in order to investigate
the impact of long term memory and the use of fixed versus variable tabu list
sizes. All heuristic approaches outperformed the mixed integer programming
model obtaining solutions close to optimal in less than a minute.

Wu et al. (2004) considered a CF problem when process plans for parts
and production factors such as production volume and cell size were taken
into account. The aim was to decompose the manufacturing shop into sev-
eral manufacturing cells so that the total part flow within the cells can be
maximised. For solving this problem a comprehensive TS heuristic algo-
rithm that consisted of a dynamic tabu tenure and a long term memory
structure was proposed. Two methods for quickly generating the initial solu-
tions were proposed, namely the group-and-assign and the random approach.
Computational results were observed to be very good for a group-and-assign
methodology applied to the proposed TS approach for small to medium sized
problems.

Lei and Wu (2006) worked beyond a single objective for CF and pre-
sented a Pareto optimality based multi-objective tabu search (MOTS) al-
gorithm with objectives: minimisation of the weighted sum of intercell and
intra-cell moves and minimisation of the total cell load variation. A new ap-
proach was proposed to determine the non-dominated solutions among the
solutions produced by the tabu search algorithm. The computational results
demonstrated the strong ability of MOTS in multi-objective optimisation.

In contrast to all studies above which can be characterised as static,
Tavakkoli-Moghaddam et al. (2008) proposed an integer linear programming
model addressing the dynamic nature of a CF system. A multi-period plan-
ning horizon was assumed where product mix and demand were different but
deterministic in each period, i.e. the cells formed in the current period may
not be optimal in the period that follows. Thus reconfiguration of cells was
required consisting of reforming part families, machine groups and machine
cell allocation. Their objective was to minimise intercell movement and ma-
chine costs simultaneously. Due to the NP-hard nature of CF model a SA
algorithm was developed. The results obtained via the SA were compared
with the optimal results found via the mathematical model. The SA proved
to be efficient with mean deviations from the optimal to be less than four
percent.
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2.3.2. Evolutionary Algorithms and Ant Colony Optimization

Both Evolutionary Algorithms (EA) and Ant Colony Optimisation (ACO)
could be characterised as population-based searches. Evolutionary algo-
rithms (EA) are inspired by nature’s capability to evolve living beings well
adapted to their environment. EA prove to be particularly popular due to
their added characteristic of being able to search the solution space not from
a single point but from a population of points in parallel. There are sev-
eral variants of EA but for the purpose of this work two are identified: a)
Genetic Algorithms (GAs) (Holland (1975)), which has been used quite ex-
tensively for CF, b) Scatter Search (SS) (Marti et al. (2006)), and c) Particle
Swarm Optimization (PSO) (Kennedy and Eberhart (1995)) which has been
employed for CF only recently.

The core operation for GAs is based on evolution which usually starts
from a population of randomly generated individuals and happens in gener-
ations. In each generation, the fitness of every individual in the population
is evaluated, multiple individuals are stochastically selected from the current
population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new population is then
used in the next iteration of the algorithm. Commonly, the algorithm termi-
nates when either a maximum number of generations has been produced, or
a satisfactory fitness level has been reached for the population.

In contrast to GAs, SS, which was first introduced by Glover (1977), is
founded on the premise that designs and methods for creating new solutions
afford significant benefits beyond of those derived from resource to random-
ization. Solutions are purposely generated to take account of characteristics
in various parts of the solution space. SS orients its exploration to a set of
reference points that typically consists of good solutions obtained by prior
problem solving efforts. The criteria for ‘good’ are not restricted to objective
function values and may apply to sub-collections of solutions rather than to
a single solution.

PSO is inspired by flocking birds and it is initialised with a population of
random solutions evolving over generations to find optima. Generally speak-
ing, the set of rules that govern PSO are: evaluate, compare and imitate.
The evaluation phase measures how well each particle (candidate solution)
solves the problem at hand. The comparison phase identifies the best parti-
cles. The imitation phase produces new particles based on some of the best
particles previously found. These three phases are repeated until a given
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stopping criterion is met. The objective is to find the particle that best
solves the target problem.

ACO is one of the newest metaheuristics for the application to CF prob-
lems. The basic ideas of ACO were introduced in Dorigo et al. (1996),
Dorigo et al. (1999). ACO was inspired by the foraging behavior of real
ants (Deneubourg et al. (1990)) and its search process can be described as
the evolution of a probability distribution over the search process.

Venugopal and Narendran (1992) were the first researchers to approach
the CF problem using GAs. Their objective was the minimisation of the
intercell movements of parts and balancing of loads in the cells. A different
population of solutions was employed for each of the objectives. The solu-
tion representation was simple and efficient where each machine in the plant
corresponded to a gene in the chromosome. The value of the gene defined
the owning cell of the respective machine. The total number of cells was pre-
defined and the processing time of parts was also taken under consideration.

Gravel et al. (1998) considered a version of the CF problem that allowed
the existence of alternative process plans for the parts. A double-loop EA
was employed for the solution of the problem with the objective of minimising
the volume of intercell moves and balancing the workload within cells. For
the external loop of the EA, Venugopal and Naredran’s coding for the assign-
ment of machines to cells was used. A second internal loop that determined
the allocation of process plans to parts was employed for the evaluation of
solution created in the external loop. Different multi-objective optimisation
approaches were tested, including the epsilon-constraint approach and the
weighted-sum approach.

Mak et al. (2000) proposed an adaptive genetic approach as an effective
means of providing the optimal solution to the CF problem. The objective
was to group parts and machines into clusters by sequencing the rows and
columns of a part/machine incidence matrix to maximise the bond energy
measure of the matrix. The proposed approach was different from the use
of traditional GAs, because an adaptive scheme was adopted to adjust the
genetic parameters during the genetic search process. The effectiveness of
the approach was demonstrated by applying it to numerical results and a
number of benchmark problems obtained from the literature.

Solimanpur et al. (2004a) formulated a multi-objective integer program-
ming model for the CF problem with independent cells. A GA with multiple
fitness functions was proposed to solve their model. Two features made
their proposed algorithm differ from previous approaches i.e.: (a) a system-
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atic uniform design-based technique which was used to determine the search
directions, and (b) the search of the solution space in multiple directions
instead of a single direction. The results validated the effectiveness of the
proposed algorithm.

Defersha and Chen (2006) developed a comprehensive mathematical pro-
gramming model with the objective of minimising machine investment cost,
intercellular material handling cost, operating cost, subcontracting cost, tool
consumption cost, set-up cost, and system reconfiguration cost in an in-
tegrated manner. Also the model involved many other elements such as
alternative routings, sequence of operations, identical machines, workload
balancing and machine separation requirements. Due to the complexity of
the proposed model only small sized problems could be solved. For large
scale problems the authors proposed an efficient heuristic based on a GA.
The proposed heuristic was evaluated by comparing the computational re-
sults with the optimal solutions for small and medium sized problems and
the optimal solution of a larger solution obtained under certain assumptions.

The same authors (Defersha and Chen (2008)) proposed later a mathe-
matical programming model for an integrated dynamic CF and a multi-item
multi-level capacitated lot sizing problem considering the impact of lot size
on product quality. This model was an extension of the model discussed in
Chen (2001) where product structure (bill-of-materials), machine capacity,
workload balancing, alternative routings and impacts of lot sizes on product
quality were not taken into account. However, integrated models of this type
may impose computational difficulties and may not be solvable using off-the-
shelf optimization software even for small size problems. For this reason,
the authors developed a linear programming embedded GA. The algorithm
searched over the integer variables and for each visited integer solution the
corresponding values of the continuous variables were determined by solving
a linear programming subproblem using the simplex algorithm. Numerical
examples showed that the proposed method was efficient and effective in
searching for near optimal solutions.

Wu et al. (2007) proposed a hierarchical GA to simultaneously form man-
ufacturing cells and determine the group layout of cellular manufacturing.
The main feature of this algorithm was the development of a hierarchical
chromosome structure to encode two important cell design decisions, a new
selection scheme to dynamically consider two correlated fitness functions and
a group mutation operator to increase the probability of mutation. From the
computational results it was proved that both proposed structures and oper-
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ators developed were effective in terms of improving solution quality as well
as accelerating convergence.

Tavakkoli-Moghaddam et al. (2007) presented a fuzzy linear mixed-integer
programming model for design of CM systems with fuzzy part demands and
product mix changeable under a multi-period planning horizon. The objec-
tive was to minimize the sum of the constant/ variable/ relocation machine
costs as well as inter-cell movements cost. Because of the complexity of
the proposed model, which was a combinatorial nonlinear optimization, the
authors developed an efficient GA with novel representation and operators
for solving the proposed model. A number of data sets of small, medium
and large-sized problems were generated to evaluate the performance of the
proposed model and the efficiency of the developed GA.

Bajestani et al. (2009) have also addressed the dynamic nature of the
CF problem and proposed a multi-objective model where the total cell load
variation and sum of miscellaneous costs such as machine cost, inter-cell
material handling cost, and machine relocation cost were to be minimised
simultaneously. Due to the NP-hard nature of this problem, the authors
developed a multi-objective scatter search for finding locally Pareto-optimal
frontier. The latter was compared with two genetic algorithms from the
literature. The computational results proved the superiority of the proposed
approach.

Andrés and Lozano (2006) were the first authors to consider a PSO algo-
rithm for the CF problem. The objective involved was the minimization of
inter-cell movements. A number of published results were used to assess the
proposed algorithm. The computational results showed that the proposed
algorithm can generate optimal or near optimal solutions but only for small
data sets.

Durán et al. (2008) proposed a modified PSO algorithm. The main mod-
ification made to the original PSO algorithm is that the current algorithm
did not use the vector of velocities as the standard PSO algorithm does. The
proposed algorithm used the concept of proportional likelihood with modifi-
cations, a technique that is used in data mining techniques. Some simulations
were presented and compared. The criterion used to group the machines in
cells was based on the minimization of inter-cell movements. The compu-
tational results showed that the PSO algorithm is able to find the optimal
solutions in almost all instances.

Islier (2005) developed an ACO algorithm for the CF problem in order
to get block diagonalised structures for the part/machine incidence matrices.
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The grouping problem was first represented as an artificial ant system, via
which better and better groupings were obtained as semi-blind ants could
find their way by a communication-supported random search process. The
proposed technique was compared with other approaches such as GA, SA and
TS. The most remarkable outcome was that ant systems performed better
than the other techniques as far as an equal number of solution alternatives
was concerned.

Prabhaharan et al. (2005) also proposed an ACO approach for grouping
the machines, with the objective of minimising total cell load variation and
total intercellular moves. A number of parameters were also considered in this
study, such as demands for numbers of parts, routing sequences, processing
time, machine capacities and machine workload status. The results of the
ACO approach were compared with a GA taken from the literature. The
former proved to have better performance.

Kao and Li (2008) presented a part clustering algorithm for the CF prob-
lem that used the concept of the recognition system of artificial ants. The
proposed algorithm mimicked the random meetings of real ants to build up
the ability of object recognition and then to form many initial part clus-
ters with high similarities. These initial part clusters were further merged
into larger and larger clusters in an agglomerative way until the designated
number of part families was reached. The effectiveness of this algorithm was
tested with a variety of data sets collected from the literature.

Spiliopoulos and Sofianopoulou (2008) proposed an ACO algorithm, which
used a tight eigenvalue-based bound to guide and accelerate the search, when
minimisation of intercellular moves was considered. The resulting algorithm
produced most promising results for medium to large scale problems.

Megala and Rajendran (2008) considered the problem of cell formation
with the objective of maximising the grouping efficacy and developed an
ACO algorithm to obtain machine cells and part families. Their proposed
algorithm was tested by using many benchmark data sets. The grouping effi-
cacy obtained was compared with grouping efficacies of existing approaches.
The comparison showed that the new algorithm performed very well in terms
of maximising the grouping efficacy.

2.4. Neural Networks

Neural networks (NNs) have been widely applied in CF due to their robust
and adaptive nature. Different types of NNs have been employed successfully
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with the most popular being: Hopfield network, self-organizing map (SOM),
adaptive resonance theory (ART1) and transiently chaotic neural network.

Zolfaghari and Liang (1997) proposed a new structure of Hopfield neural
network, OSHN, for the machine grouping problems. The OSHN was de-
signed in conjunction with an objective-guided search. The solution quality
of the algorithm was tested using twenty eight machine grouping problems
collected from the literature. The main advantages of the proposed approach
were that it did not require the training process and could effectively handle
bottleneck machines.

Liang and Zolfaghari (1999) presented a neural network approach to the
machine cell/part family formation problem considering processing time, lot
size, machine capacity, and machine duplication. A generalised grouping ef-
ficiency index incorporating processing times and lot sizes has been proposed
and used to guide the neural network algorithm’s search process towards the
global optimum. The computational results obtained were compared against
those obtained via a SA approach.

Lozano et al. (2001) considered a more comprehensive CF problem where
the sequence of operations on part types was also included. The authors
proposed two sequence-based neural network approaches with the objective of
minimising transportation costs, i.e. both intra and inter cellular movements.
Of the two energy-based neural network approaches investigated, namely
Hopfield model and Potts Mean Field Annealing, the latter proved to give
better and faster solutions.

Soleymanpour et al. (2002) addressed a number of drawbacks of previous
neural network-based approaches for the CF problem and proposed a Tran-
siently Chaotic Neural Network algorithm with supplementary procedures
to overcome a number of deficiencies. The current algorithm was tested on
a number of existing data sets, and also compared with various approaches
from the literature where its superiority was proved.

Saidi-Mehrabad and Safaei (2007) proposed a nonlinear integer program-
ming model for the CF problem under dynamic conditions where alternative
process plans and a sequence of operations were taken into account. A lin-
earised form of the proposed model was produced and the optimum solution
was found in a number of test problems. In addition, due to the NP-hard
nature of the CF problem, a neural network approach was employed based on
mean field theory for solving the proposed model. Comparison of optimum
and neural approach solutions showed the efficiency of the NN approach.
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Guerrero et al. (2002) proposed a two phase strategy for grouping parts
into families and machines into cells. In phase one, the part family formation
problem (PFFP) was modelled as a quadratic programming problem where
weighted similarity coefficients were computed and parts were clustered using
a new self-organizing neural network (SONN). In phase two, a linear network
flow model was used to assign machines to families. To test the proposed
approach, different problems from the literature were solved. As benchmark
a Maximum Spanning Tree heuristic (Lozano et al. (1999)) was also used.

Solimanpur et al. (2004b) studied the sensitivity, feasibility and robust-
ness of the Transiently Chaotic Neural Network for solving the CF prob-
lem. The dynamics of the network were demonstrated through an example,
whereas the effect of the size of the CF problem on the feasibility and robust-
ness of the proposed network was investigated through test problems from
the literature.

Venkumar and Haq (2005) proposed a modified binary adaptive ART1
algorithm for the CF problem. The input to the algorithm was the ma-
chine/part matrix comprised of the binary digits ‘0’ and ‘1’. The generated
output was the list of the part families, machine cells and number of excep-
tional elements. This method was applied to known benchmark problems
from the literature where it was found to outperform other algorithms in
terms of minimising the number of exceptional elements. The same authors
(Venkumar and Haq (2006)) also proposed another algorithm for the CF
problem, this timed based on Kohonen self-organising map neural network.
The effectiveness of the cell formation problem was measured in terms of the
number of exceptional elements, bottleneck parts, and grouping efficiency.
The results of testing proved the superiority of the proposed approach.

Dagli and Huggahalli (1995) adopted the ART1 network with an applica-
tion in machine-part CF and later Yang and Yang (2008) proposed a modified
ART1 neural learning algorithm to overcome a number of drawbacks. In the
modified ART1, the vigilance parameter was estimated by the data in order
to be more efficient and reliable for selecting a vigilance value. The authors
applied the proposed algorithm to machine-part CF. Several examples were
presented to illustrate its efficiency. In comparison with the Dagli and Hug-
gahalli (1995) methodology the modified ART1 neural learning algorithm
provided better results.
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2.5. Fuzzy Theory

The decision making process in a manufacturing system often involves
uncertainties and ambiguities. A number of researchers have applied fuzzy
clustering, fuzzy mathematics, fuzzy mathematical programming and fuzzy
neural networks for the CF problem.

Masnata and Settineri (1997) tailored a fuzzy c-means clustering algo-
rithm for developing a non-binary approach to group technology based on
the capabilities of fuzzy logic. They also integrated fuzzy c-means with the
strategy for minimum make-span scheduling.

Susanto et al. (1999) modified a fuzzy clustering approach presented by
Chu and Hayya (1991) and proposed a new fuzzy c-means and assignment
technique able to perform part-type clusters and machine-type clusters sep-
arately. A numerical example was illustrated and problems that arose in im-
plementing this approach were discussed. The proposed algorithm increased
the global efficiency of the resulting manufacturing cells.

Lozano et al. (2002) also proposed a modified approach of the standard
fuzzy c-means clustering algorithm (Chu and Hayya (1991)) by taking into
account the effect of the weighting component on the fuzziness of the solution
and the linking between the degree of membership of parts as well as machines
and the prototypes of machine cells and part families. The modified algo-
rithm clustered the part types and machines concurrently, while annealing
with the weighting component, leading to a crisp solution where the whole
objective function was approximately equal to the sum of the number of
voids and exceptional elements in the part machine grouping obtained. The
results obtained showed that the proposed algorithm, although it required
more computational time than the standard approach, gave better solutions
when compared to the best non-fuzzy cell formation algorithms.

Torkul et al. (2006) employed fuzzy logic to study the design of part
families and machine cells simultaneously. Their main aim was to compare
manufacturing cell design made of fuzzy clustering algorithm (fuzzy c-means)
with the crisp methods. The computational results obtained proved the
superiority of fuzzy clustering solutions for selected data sets.

Ravichandran and Rao (2001) proposed a new fuzzy clustering algorithm
and a new similarity coefficient for sub-grouping parts/machines before the
optimal grouping and for optimal grouping. For analyzing output, the pro-
posed algorithm performed quite well when compared to a fuzzy c-means
clustering algorithm and other conventional algorithms. The results showed
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that the new approach to fuzzy part-family formation and grouping efficiency
provided a more realistic solution methodology for part family formation in
CM applications.

Park and Suresh (2003) addressed the problem of identifying families of
parts with similar routing sequences by proposing an improved fuzzy ART
neural network approach and comparing it with traditional hierarchical clus-
tering procedures. New representation schemes, clustering performance mea-
sures and experimental procedures were developed in this process. Both fuzzy
ART neural network and traditional, hierarchical clustering procedures were
used to address the part-machine grouping problem with considerations of
operation sequences and problem sizes larger than those considered in the
past. The experiments proved the superior performance of fuzzy ART over
hierarchical clustering.

Won and Currie (2007) proposed a more comprehensive Fuzzy ART ap-
proach for part-machine grouping, named Fuzzy ART/RSS-RSS
(Fuzzy ART/ReaRRangement-ReaSSignment), where parameters such as the
operation sequences with multiple visits to the same machine, production vol-
ume of parts and multiple copies of machines were taken into account. Their
approach was based on a non-binary part/machine matrix where all param-
eters involved were incorporated simultaneously. The algorithm adopted a
two phase approach to find the proper block diagonal solution where parts
and machines were assigned to their most preferred part families and ma-
chine cells, for minimisation of intercellular movements and maximisation
of within-cell machine utilisation. To prove the robustness of the proposed
algorithm a modified procedure of replicated clustering was also presented.
Results showed that the Fuzzy ART/RRR-RSS algorithm had robustness
and recoverability for large size ill-structured data sets.

Safaei et al. (2008) developed a fuzzy programming-based approach to
solve an extended mixed-integer programming model for a dynamic CF prob-
lem. The dynamic condition indicated a multi-period planning horizon, in
which product mix and demand in each period were different having as a
result the need for reconfiguration as the best cells designed for one period
may not be the most efficient for subsequent periods. Moreover, in real man-
ufacturing systems some parameters turn out to be uncertain in nature. For
the purposes of this paper, the fluctuation in part demand and the avail-
ability of manufacturing facilities in each period were regarded as piecewise
fuzzy numbers to provide coefficients in the objective function and the tech-
nological matrix respectively. The main aim was to determine the optimal
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cell configuration in each period with the maximum degree of satisfying the
fuzzy objective under the given constraints.

Papaioannou and Wilson (2008) proposed a comprehensive mathemati-
cal programming formulation where parts are assigned to machines and ma-
chines to cells simultaneously by taking into account part machine operation
sequences, part/machine utilization amounts, part/machine set-up costs and
multiple machines of the same type. The objective function combined min-
imising the number of distinct cells used by each part, set-up costs when
allocating machines to cells and the number of times a part revisits a cell for
a later machine operation. The authors considered the fuzziness concept in
some of the constraints and the main objective function involved and used
a number of existing fuzzy operators and membership functions to solve the
fuzzy models mathematically. To illustrate the behavior of the proposed
models, a number of numerical examples were generated and the associated
computational results were compared and discussed.

2.6. Hybrid Metaheuristics

Over the last few years, interest in hybrid metaheuristics (Talbi (2002))
has risen considerably among researchers in combinatorial optimisation. Hy-
brid metaheuristics are a skillful combination of a metaheuristic with other
optimization techniques providing a more efficient behavior and a higher flex-
ibility. The latter can be achieved by combining the complementary strengths
of metaheuristics on one side with the strengths of, for example, more clas-
sical optimization techniques on the other side.

Nsakanda et al. (2006) presented a comprehensive model for designing
a CM system when there are multiple routings for each part with multiple
alternative routings for each of those process plans. The authors proposed
a solution methodology based on a combination of GAs and large-scale op-
timization techniques. A computational study was carried out to prove the
algorithm’s efficiency when large scale data sets are used. Also additional
testing was carried out with smaller problems, which were special cases of
their proposed model, in order to compare their approach with existing mod-
els.

James et al. (2007) presented a hybrid grouping GA for the CF prob-
lem that combined a local search with a standard grouping GA to form
part/machine cells. Computational results were produced using the group-
ing efficacy measure for a set of CF data sets borrowed from the literature.
The hybrid grouping genetic approach outperformed the standard grouping
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GA by exceeding the solution quality on all test problems and by reducing
the variability among the solutions found. Overall, the proposed algorithm
performed well on all test problems by either exceeding or matching the
solution quality of the results presented in the literature.

3. Comparison of CF methods

As can be seen from the previous section a significant but not exhaustive
list of research papers has been included emphasizing work on CF carried
over the last decade. It is worth noting that these papers were selected to
be included in this review as their contribution towards CF covers a large
spectrum of research directions over the last ten years. All papers have been
classified based on different methodologies employed such as mathematical
programming, heuristics/metaheuristics and artificial intelligence approaches
and their contribution discussed.

For the purpose of this section a comparison and evaluation of the CF
formulations is carried out. Table 1 presents a numbered list of CF ref-
erence sources and Table 2 a comparison of these numbered sources based
on major criteria. The latter involves major objectives and constraints in-
cluded, solution approaches employed, maximum size of problem data solved,
identification of whether the optimum value or deviation from the optimum
solution is provided when largest problem solved and whether methodology
has been compared to other existing methodologies and finally implementa-
tion tools adopted. Major objectives are identified as minimisation of inter-
cellular movements, machine/load utilisation and numerous cost considera-
tions such as: machine operating cost, machine modification costs, machine
(re)configuration cost, subcontracting cost, machine setup cost, inventory
holding cost, replacement costs of defective parts. Also major constraints
are described as: part/machine operation sequences, multiple machines of
the same type, part/machine utilisation or processing times, alternative pro-
cess plans and multi-period time horizon when a dynamic CF system is en-
countered.
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Table 1: List of sources
No. Ref. Source No. Ref. Source
1. Zolfaghari and Liang (1997) 27. Islier (2005)
2. Vakharia and Chang (1997) 28. Prabhaharan et al. (2005)
3. Aljaber et al. (1997) 29. Venkumar and Haq (2005)
4. Masnata and Settineri (1997) 30. Andrés and Lozano (2006)
5. Selim et al. (1998) 31. Foulds et al. (2006)
6. Gravel et al. (1998) 32. Diaby and Nsakanda (2006)
7. Lozano et al. (1999) 33. Lei and Wu (2006)
8. Sofianopoulou (1999) 34. Nsakanda et al. (2006)
9. Liang and Zolfaghari (1999) 35. Defersha and Chen (2006)
10. Susanto et al. (1999) 36. Venkumar and Haq (2006)
11. Mak et al. (2000) 37. Torkul et al. (2006)
12. Ravichandran and Rao (2001) 38. Wu et al. (2007)
13. Lozano et al. (2001) 39. James et al. (2007)
14. Mukattash et al. (2002) 40. Tavakkoli-Moghaddam et al. (2007)
15. Guerrero et al. (2002) 41. Saidi-Mehrabad and Safaei (2007)
16. Soleymanpour et al. (2002) 42. Won and Currie (2007)
17. Lozano et al. (2002) 43. Defersha and Chen (2008)
18. Logendran and Karim (2003) 44. Durán et al. (2008)
19. Spiliopoulos and Sofianopoulou (2003) 45. Safaei et al. (2008)
20. Park and Suresh (2003) 46. Yang and Yang (2008)
21. Won and Lee (2004) 47. Tavakkoli-Moghaddam et al. (2008)
22. Kim et al. (2004) 48. Kao and Li (2008)
23. Wu et al. (2004) 49. Spiliopoulos and Sofianopoulou (2008)
24. Solimanpur et al. (2004a) 50. Papaioannou and Wilson (2008)
25. Solimanpur et al. (2004b) 51. Megala and Rajendran (2008)
26. Tavakkoli-Moghaddam et al. (2005) 52. Bajestani et al. (2009)
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Table 2: Comparison of the CF methods
No. Objectives Constraints Solution Approaches Comp. Results Impl. Tools

O1 O2 O3 C1 C2 C3 C4 C5 MP H T S A G P SS F N DS O D C
1. X X (40×100) N C
2. X X X X X (78×325) X N ZOOM/XMP
3. X X X (100×500) N Fortran
4. X (7×25) X Y
5. X X X X X X N N/A
6. X X X (15×30) N Bor. Delphi
7. X X (30×90) X Y
8. X X X X X (20×30) N Fortran
9. X X X X (40×100) Y C
10. X X X (30×41) Y Turbo C++
11. X X (40×100) X Y
12. X X X (9×9) Y
13. X X X X (50×100) X Y
14. X X X X X (13×13) Y
15. X X (20×40) Y
16. X X X (40×100) Y Borland C++
17. X X X (50×150) Y
18. X X X X X (15×30) X N LINGO & C++
19. X X X (30×30) X N Fortran
20. X X X X (25×40) Y
21. X X (50×150) X N Pascal & Lindo
22. X X X X (40×40) N
23. X X X (18×5) X X N CPLEX & C
24. X X X X (15×30) N
25. X X X (8×20) X N
26. X X X X X X X (20×30) X N Lingo
27. X X (40×100) Y
28. X X X X X (40×100) Y
29. X X (40×100) Y C++
30. X X X (10×10) X N C
31. X X X X X X (5×7) X N XPRESSMP & C

... continues on next page
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Table 2 – continues from previous page
No. Objectives Constraints Solution Approaches — Comp. Results Impl. Tools

O1 O2 O3 C1 C2 C3 C4 C5 MP H T S A G SS P F N DS O D C
32. X X X X X (10000×25) X N Lagr. Relax. & C
33. X X X X (15×30) Y
34. X X X X X (50×1000) X Y C
35. X X X X X X X (30×90) X N Lingo
36. X X (40×100) Y MatLab
37. X X (18×25) Y
38. X X X X N Visual C++
39. X X X X (40×100) X Y Visual Basic
40. X X X X X X X X X X (10×10) X N Lingo
41. X X X X X X (9×10) X N Lingo
42. X X X X X (16×43) Y C++
43. X X X X X X (6×12) X X N ILOG CPLEX
44. X X X (12×12) N
45. X X X X X X (6×8) X N Lingo
46. X X (46×105) Y
47. X X X X (17×30) X X N Lingo
48. X X (50×150) X Y Java
49. X X X X (37×53) X Y Fortran
50. X X X X X X X (9×9) X N XPRESSMP

51. X (40×100) Y Visual C++
52. X X X X X X (9×10) Y MatLab & ANOVA

... continues on next page

26



Table 2 – continues from previous page
Notes:
(I) Major Objectives considered by different models (shown in column two)
O1=Maximising cell independence (minimising intercell movements)
O2=Considering costs e.g machine operating cost, machine modification costs, machine (re)configuration cost,

subcontracting cost, machine setup cost, inventory holding cost, replacement costs of defective parts etc.
O3=Considering machine/load utilisation
(II) Major Constraints considered by different models (shown in column three)
C1=Considering part/machine operation sequences
C2=Considering availability of multiple machines of the same type
C3=Considering part/machine utilisation or processing times
C4=Considering process plans and/or alterative process plans
C5=Considering multi-period time horizon
(III) Solution approaches used (shown in column four)
MP=Mathematical Programming model H=Heuristics
T=Tabu Search S=Simulated Annealing
A=Ant Colony Optimization G=Genetic Algorithms
P=Particle Swarm Optimisation SS=Scatter Search
F=Fuzzy Theory N=Neural Networks
(IV) Computational Results (shown in column five)
DS=Largest data set used (machines × parts)
O=Provides optimal solution when largest data set used
D=Provides percentage deviation from the optimum or lower bound for largest data set used
C=Is compared to other existing methodologies (Y=yes and N=no).
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A number of conclusions can be drawn from Table 2 such as:

• Most of the formulations for CF propose a mathematical programming
model with the main objective of minimising the total number of inter-
cellular movements. Other mathematical programming formulations
involve cost related objective functions and only a few consider ma-
chine/load utilisation as a goal parameter for CF;

• Mathematical programming formulations for CF are hard to implement
due to computational limitations for large scale problems. Hence, the
majority of these formulations serve for setting the problem up and
for providing a lower bound or a sub optimum value against which
computational results of additional methodologies proposed within each
study can be compared;

• Most of the proposed models involve two or three of the identified
major constraints but only very few comprehensive formulations have
been proposed;

• The largest size of problem solved varies amongst authors. The num-
ber of machines and number of cells are principal determinants of the
complexity of the CF problem. The number of parts is a secondary
factor influencing problem difficulty and this number will generally rise
in proportion to the number of machines;

• The dynamic nature of the CF problem reflecting today’s market re-
quirements has received attention in the last five years with a few for-
mulations being proposed. A multi-period time horizon constraint is
assumed where reconfiguration of cells is required as the best cell design
for one period may not be the same for subsequent periods;

• Due to the NP-hard nature of the CF problem, methodologies such as
heuristic and metaheuristic strategies have been employed to integrate
larger scale systems meeting today’s requirements. The most popular
metaheuristics employed in the last decade are GAs, TS and SA;

• PSO and ACO have only recently received attention for CF. The former
has been employed for clustering purposes for CF when a part/machine
incidence matrix was considered, whereas the latter has been proposed
for addressing in most of the studies the intercellular layout of the CF
problem;
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• Only a few hybrid formulations, where a combination of methodologies
is examined, have been produced for CF;

• Fuzzy theory has been employed mainly for clustering purposes and
within mathematical programming formulations for addressing uncer-
tainty in certain model parameters;

• Neural network algorithms have been employed quite extensively over
the last decade for the CF problem, however only a few of them ad-
dressed a more comprehensive CF problem with additional constraints
within;

• Most of the proposed methodologies in the last decade focus on a single
criterion for CF. Only a few studies deal with multiple objectives;

• Only half of the studies in the literature have their results compared
with other existing methodologies. The reason for this is that both
objective and constraint specification of the methods differ.

4. Suggestions for future research

Based on the CF methodologies classification and comparison a number
of suggestions are presented here regarding possible future research directions
for the CF problem for both newly and already established researchers.

A large number of different methodologies have been proposed for the
CF problem over the last decade as shown in Table 2. In order to be able
to evaluate those methodologies and obtain overall performance criteria, i.e.
applicability, practicability, there is still a need for objectively comparing
them on benchmark problems.

All CF approaches that have been proposed have been tested with a vari-
ety of problem sizes and in some cases compared with existing methodologies.
An additional stage which would complement the process of evaluating re-
sults would be to use industrial data to test a proposed formulation’s stability
and ability for reconfiguration when real situations are encountered.

The main focus of the CF problem is to group parts into part families
and machines into machine cells when certain objective functions are taken
into account. In the past, it has been suggested by Selim et al. (1998), that
to achieve the goal of creating efficient manufacturing cells it is imperative
to go beyond just grouping parts and machines by adding workers and tools
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as third and fourth dimensions to parts and machines respectively to meet
industrial specifications. To the best knowledge of the authors the latter
has not been examined during the last decade by any CF study, hence more
attention should be given to utilising workers and tools.

More attention should be given to employing metaheuristics such as PSO
and ACO which seem particularly promising and their performances should
be compared with traditional metaheuristics such as SA, TS and GAs.

The majority of CF procedures ignore any changes in demand over time
caused by product redesign and uncertainties due to volume variation, part
mix variation, and resource unreliability. It is only recently that some re-
searchers have addressed a dynamic CF problem, thus it would be useful if
some well known techniques could be extended to incorporate a multi-period
planning horizon and act further as benchmarks for newer methodologies.

The applicability of the CF approaches is also limited due to the unavail-
ability of an interactive software program supporting such an application.
It would be beneficial if future research methods could include interactive
support software for facilitating industrial applications.

5. Conclusions

This paper presented a literature review for the CF problem concentrat-
ing mainly on research undergone during the last decade. A significant, but
not exhaustive, list of research papers was identified and classified based
on different methodologies employed such as mathematical programming,
heuristics/metaheuristics, fuzzy theory and neural networks. All proposed
formulations were compared and evaluated on the basis of both constraints
and objectives involved, solution methodologies employed, computational re-
sults obtained and solution techniques applied. Finally, a number of future
suggestions were identified which should prove useful for CF researchers. It
is clear that research on the CF problem is an active area with many papers
published in the last decade. In this review it has been identified that a
number of elements included in the research agenda proposed by Selim et
al. (1998) such as inclusion of part/machine utilisation, multiple machines of
the same type, operation processing requirements, unstable demand environ-
ment have been addressed over the last decade by a number of researchers as
shown in Table 2. On the other hand, some other important features such as
applicability of CF approaches in an industrial context, manufacturing cells
where not only parts and machines are taken into account but also tools and
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workers, and an overall assessment and comparison of existing methodolo-
gies using realistic problem sizes have not yet been considered, thus future
research could concentrate in this area to incorporate more realism in models.
Finally, some additional components could be included in the future agenda
for CF: researchers should focus more on multiple objectives rather than sin-
gle objectives, the dynamic nature of the CF should be included when more
comprehensive models are taken into account reflecting reality; more atten-
tion should be given to PSO and ACO as both seem promising methodologies
for CF; uncertainty in part/machine utilisation could be studied by employ-
ing fuzzy theory; hybrid metaheuristics are powerful tools which should be
employed more frequently for complex systems such CF.
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