33 research outputs found

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it

    Modelling and simulation of a biomimetic underwater vehicle

    Get PDF
    This paper describes work carried out at the University of Glasgow investigating biomimetic fish-like propulsion systems for underwater vehicles. The development of a simple mathematical model is described for a biomimetic fish like vehicle which utilizes a tendon drive propulsion system. This model is then compared with a model of a vehicle of similar size but with a propeller for main propulsion. Simulation results for both models are shown and compared

    生物模倣ソフト魚ロボットの研究開発

    Get PDF
    In nature, the environment varies from day to day. Through natural selection and competition law of survival of the fittest, the winning creatures survive and their species are able to retain and persist in nature. Based on this fact, creatures existent in nature have their unique features and advantages adapt to the surrounding environment. In recent years, many researches focused on the features of the creatures in nature have been done actively to clarify their morphology and functions and apply the morphology and functions to various fields. Among these researches, the development of the biomimetic robots based on mimicking the creature’s structures and functions has become an active field in robotics recently. In the research, the development of biomimetic robotic fish is focused. So far, there are many researches on biomimetic robotic fish, but improvement on motion performances and efficiency is still an important issue for robot development. Specially, on the biomimetic soft robotic fish utilizing the flexibility of fishes, the developments have been done by the trial and error approach. That is, the design and control method of soft robotic fish has not been established currently. Therefore, it motives us to investigate the design and control of soft robotic fish by numerical simulation that takes into account the interaction between flexible structure and surrounding fluid to develop the biomimetic soft robotic fish with high performance. In order to develop the biomimetic soft robotic fish with high performance, the basic design method and corresponding numerical simulation system are firstly proposed and constructed in this dissertation. Then, based on finite element method (FEM), modelling of soft robotic fish by mimicking the soft structure and driving mechanism of fishes is carried out. The propulsion motion and propulsive force of the soft robotic fish are investigated through two kinds of numerical analyses. One is the modal and transient analysis considering the surrounding fluid as acoustic fluid. The propulsion mode and amplitude of the propulsion motion of soft robotic fish corresponding directly to the propulsion mechanism and motion performance of the robotic fish can be investigated. The other is the fluid-structure interaction (FSI) analysis. The interaction between soft robot structure and surrounding fluid including the dissipation due to fluid viscosity and influence of wake performance around the soft robotic fish are taken into account. From FSI analysis, the hydrodynamic performances of the soft robotic fish can be obtained for investigating its propulsion motion. It is possible to further improve the performance of the soft robotic fish through its design and control based on FSI analysis. Besides, based on coupling analysis by using acoustic fluid, the turning motion control of the soft robotic fish is investigated by its propulsion modes in the fluid. In order to investigate the feasibility of modelling method and numerical simulation analysis on design and control of the biomimetic soft robotic fish, the performance evaluation is carried out by comparison between the simulation and experiment on an actual prototype. Finally, the optimization and improvement are performed for developing the biomimetic soft robotic fish with higher performance based on verified coupling analysis considering the fluid as acoustic fluid, and corresponding performance evaluation on new robot prototype is presented. The performance improvement of the soft robotic fish is confirmed through the new robot prototype. The dissertation consists of six chapters and the main contents are shown as follows. Chapter 1 is an introduction. The background and relative previous work about biomimetic soft robotic fish are briefly reviewed. It summarizes the current research status and problems of biomimetic soft robotic fish, and describes the purposes of this research. Chapter 2 presents the design method, procedures and numerical simulation system in the present research for developing the biomimetic soft robotic fish with high performance. Different from previous development method, our purpose is how to design and control the soft robotic fish by utilizing interaction between the flexible structure and surrounding fluid effectively based on numerical simulations. Therefore, it is necessary to model a fish-like soft robot structure including soft actuators and an enclosed fluid. Besides, by the numerical analysis considering the interaction between flexible structure and fluid, the fish-like propulsion motion should be realized and established, and then the robot structure and control inputs are needed to be optimized for performance improvement. In order to meet these requirements of designing and developing the optimal soft robotic fish, the design method based on modelling, simulation analysis and improvement is presented and the numerical simulation system for soft robotic fish is built. In the simulation system, modelling of soft robotic fish, modal and transient analysis considering the enclosed fluid as acoustic fluid are firstly described based on FEM to realize the fish-like propulsion motion with large amplitude for the soft robotic fish. Then, the FSI analysis is performed to describe and establish the hydrodynamic performances of the soft robotic fish. Based on this numerical simulation system, it is possible to develop the biomimetic soft robotic fish with high performance effectively by optimization of design and control of the soft robotic fish. Chapter 3 describes the modelling and numerical analysis of biomimetic soft robotic fish by using the method presented in Chapter 2. The soft robotic fish uses the piezoelectric fiber composite (PFC) as soft actuator. Firstly, the relationships between the input voltage and generated stress of the PFC are derived. The generated stress can be applied on soft structure to investigate the motion performance of the soft robotic fish. To support the driving model of the PFC, the corresponding experiments on simple beam model are carried out. By comparing the simulation results with experimental results, the effectiveness of the driving model is verified. Then, the modal analysis in which the fluid is considered as acoustic fluid is performed. The structural mode frequencies and mode shapes of the soft robotic fish in the fluid are calculated. By comparing these modes’ motion with those of the real fishes, the fish-like propulsion mode is identified to realize the corresponding propulsion motion of the soft robotic fish. Furthermore, based on the verified driving model of soft actuator, the amplitude of the main propulsion motion of soft robotic fish is calculated. Through FSI analysis, the relationships of driving frequencies of input signal with propulsive force and displacement of propulsion motion, and vortex distribution in the wake around the soft robotic fish are investigated for the case of fixing robot head. Besides, the motion control of soft robot is investigated to realize turning motion in the fluid. Through controlling the input voltage amplitude on soft actuators of the robot, turning right and turning left motion are identified in the swimming when the input voltage amplitudes on two actuators are in asymmetric distribution. Chapter 4 is experiment evaluation. In order to validate the results of numerical simulation analysis described in Chapter 3, the mode shapes, amplitude of propulsion motion, propulsive force and vortex distribution around soft robotic fish for the case of fixing robot head, and turning motion are measured by using actual robot prototype. The present simulation results are congruent with experiments. By the results, the effectiveness of the modelling method and numerical analysis used in the research is verified and they are useful to predict the propulsion characteristics of the soft robotic fish in the fluid for performance improvement. Chapter 5 develops a new soft robotic fish with high performance based on above modelling method and numerical analysis by optimization. Firstly, the structural parameters of the robot are allowed to vary within a range and the amplitude of the propulsion motion for the soft robot is calculated for different parameters by the numerical analysis. Then the structural parameters of the robot capable of propulsion motion with largeramplitude are chosen for improvement. Based on this result, new soft robot is designed and evaluated by experiments. From the experimental results of the new soft robot, it is confirmed that the higher swimming speed, better fish-like swimming performance and larger turning velocity are realized. It can be said that the new soft robotic fish has been developed successfully for improvement. Chapter 6 summarizes the conclusions and future works of this research.電気通信大学201

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    Improving Swimming Performance and Flow Sensing by Incorporating Passive Mechanisms

    Get PDF
    As water makes up approximately 70% of the Earth\u27s surface, humans have expanded operations into aquatic environments out of both necessity and a desire to gain potential innate benefits. This expansion into aquatic environments has consequently developed a need for cost-effective and safe underwater monitoring, surveillance, and inspection, which are missions that autonomous underwater vehicles are particularly well suited for. Current autonomous underwater vehicles vastly underperform when compared to biological swimmers, which has prompted researchers to develop robots inspired by natural swimmers. One such robot is designed, built, tested, and numerically simulated in this thesis to gain insight into the benefits of passive mechanisms and the development of reduced-order models. Using a bio-inspired robot with multiple passive tails I demonstrate herein the relationship between maneuverability and passive appendages. I found that the allowable rotation angle, relative to the main body, of the passive tails corresponds to an increase in maneuverability. Using panel method simulations I determined that the increase in maneuverability was directly related to the change in hydrodynamic moment caused by modulating the circulation sign and location of the shed vortex wake. The identification of this hydrodynamic benefit generalizes the results and applies to a wide range of robots that utilize vortex shedding through tail flapping or body undulations to produce locomotion. Passive appendages are a form of embodied control, which manipulates the fluid-robot interaction and analogously such interaction can be sensed from the dynamics of the body. Body manipulation is a direct result of pressure fluctuations inherent in the surrounding fluid flow. These pressure fluctuations are unique to specific flow conditions, which may produce distinguishable time series kinematics of the appendage. Using a bio-inspired foil tethered in a water tunnel I classified different vortex wakes with the foil\u27s kinematic data. This form of embodied feedback could be used for the development of control algorithms dedicated to obstacle avoidance, tracking, and station holding. Mathematical models of autonomous vehicles are necessary to implement advanced control algorithms such as path planning. Models that accurately and efficiently simulate the coupled fluid-body interaction in freely swimming aquatic robots are difficult to determine due, in part, to the complex nature of fluids. My colleagues and I approach this problem by relating the swimming robot to a terrestrial vehicle known as the Chaplygin sleigh. Using our novel technique we determined an analogous Chaplygin sleigh model that accurately represents the steady-state dynamics of our swimming robot. We additionally used the subsequent model for heading and velocity control in panel method simulations. This work was inspired by the similarities in constraints and velocity space limit cycles of the swimmer and the Chaplygin sleigh, which makes this technique universal enough to be extended to other bio-inspired robots

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Developing High Performance Linear Carangiform Swimming

    Get PDF
    This thesis examines the linear swimming motion of Carangiform fish, and investigates how to improve the swimming performance of robotic fish within the fields of kinematic modeling and mechanical engineering, in a successful attempt to replicate the high performance of real fish. Intensive research was conducted in order to study the Carangiform swimming motion, where observational studies of the common carp were undertaken. Firstly, a full-body length Carangiform swimming motion is proposed to coordinate the anterior, mid-body and posterior displacements in an attempt to reduce the large kinematic errors in the existing free swimming robotic fish. It optimizes the forces around the centre of mass and initiates the starting moment of added mass upstream therefore increasing performance, in terms of swimming speed. The introduced pattern is experimentally tested against the traditional approach (of posterior confined body motion). A first generation robotic fish is devised with a novel mechanical drive system operating in the two swimming patterns. It is shown conclusively that by coordinating the full-body length of the Carangiform swimming motion a significant increase in linear swimming speed is gained over the traditional posterior confined wave form and reduces the large kinematic errors seen in existing free swimming robotic fish (Achieving the cruising speeds of real fish). Based on the experimental results of the first generation, a further three robotic fish are developed: (A) iSplash-OPTIMIZE: it becomes clear that further tuning of the kinematic parameters may provide a greater performance increase in the distance travelled per tail beat. (B) iSplash-II: it shows that combining the critical aspects of the mechanical drive system of iSplash-I with higher frequencies and higher productive forces can significantly increase maximum velocity. This prototype is able to outperform real Carangiform fish in terms of average maximum velocity (measured in body lengths/ second) and endurance, the duration that top speed is maintained. (C) iSplash-MICRO: it verifies that the mechanical drive system could be reduced in scale to improve navigational exploration, whilst retaining high-speed swimming performance. A small robotic fish is detailed with an equivalent maximum velocity (BL/s) to real fish

    Self-propelled fish locomotion in an otherwise quiescent fluid

    Get PDF
    Since the deep observations by Leonardo da Vinci, understanding fish locomotion in water has always attracted the attention of scientists in many fields, from fluid mechanics to other disciplines concerning environmental sciences. The complexity of this problem is mainly given by the non-linear interaction between the fish body and the surrounding fluid otherwise at rest, leading to the desired forward locomotion and to the unavoidable angular and lateral recoil reactions, which are essential for a correct evaluation of the swimming performance. Despite many advances have been obtained for the study of fish self-propulsion in recent years, from simple mathematical models up to complex numerical solutions, the main mechanisms underlying fish locomotion are not fully clarified and still require further investigations. In this thesis free swimming conditions is deeply analyzed for both steady swimming and fast maneuvers by a theoretical approach which considers the full body-fluid system to obtain the ex- changed internal forces. The focus is on the added mass and the vortex shedding contributions to the locomotion performance and on the role of recoil motions which, together with the prescribed body deformation, define the free swimming behavior. To this purpose, the impulse formulation allows for an easy isolation of the potential contri- bution, related to the added mass, and of the vortical contribution related to bound and released vorticity and a simple two-dimensional numerical model with concentrated vorticity is adopted for the numerical simulations to generate meaningful results able to clarify these physical phenomena. The aim is a unified procedure for both undulatory and oscillatory swimming to obtain valid an- swers for cruising speed, expended energy and kinematics, hence for the swimming performance in terms of the cost of transport and propulsive efficiency. The same model is also able to give new insights on the impressive performance characterizing fish fast maneuvers. The extreme turning capability and the large acceleration, so essential to fish survival along pray-predator encounters, are studied by highlighting the potential and the vortical impulses and their interplay induced by recoil motions, to show their relevance for the realization of the maneuver

    A comparison study of biologically inspired propulsion systems for an autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past two decades. Application areas for AUVs are numerous and varied; from deep sea exploration, to pipeline surveillance to mine clearing. However, one limiting factor with the current technology is the duration of missions that can be undertaken and one contributing factor to this is the efficiency of the propulsion system, which is usually based on marine propellers. As fish are highly efficient swimmers greater propulsive efficiency may be possible by mimicking their fish tail propulsion system. The main concept behind this work was therefore to investigate whether a biomimetic fish-like propulsion system is a viable propulsion system for an underwater vehicle and to determine experimentally the efficiency benefits of using such a system. There have been numerous studies into biomimetic fish like propulsion systems and robotic fish in the past with many claims being made as to the benefits of a fish like propulsion system over conventional marine propulsion systems. These claims include increased efficiency and greater manoeuvrability. However, there is little published experimental data to characterise the propulsive efficiency of a fish like propulsive system. Also, very few direct experimental comparisons have been made between biomimetic and conventional propulsion systems. This work attempts to address these issues by directly comparing experimentally a biomimetic underwater propulsion system to a conventional propulsion system to allow for a better understanding of the potential benefits of the biomimetic system. This work is split into three parts. Firstly, the design and development of a novel prototype vehicle called the RoboSalmon is covered. This vehicle has a biomimetic tendon drive propulsion system which utilizes one servo motor for actuation and has a suite of onboard sensors and a data logger. The second part of this work focuses on the development of a mathematical model of the RoboSalmon vehicle to allow for a better understanding of the dynamics of the system. Simulation results from this model are compared to the experimental results and show good correlation. The final part of the work presents the experimental results obtained comparing the RoboSalmon prototype with the biomimetic tail system to the propeller and rudder system. These experiments include a study into the straight swimming performance, recoil motion, start up transients and power consumption. For forward swimming the maximum surge velocity of the RoboSalmon was 0.18ms-1 and at this velocity the biomimetic system was found to be more efficient than the propeller system. When manoeuvring the biomimetic system was found to have a significantly reduced turning radius. The thesis concludes with a discussion of the main findings from each aspect of the work, covering the benefits obtained from using the tendon drive system in terms of efficiencies and manoeuvring performance. The limitations of the system are also discussed and suggestions for further work are included

    Intersection between natural and artificial swimmers: a scaling approach to underwater vehicle design.

    Get PDF
    Approximately 72% of the Earth’s surface is covered by water, yet only 20% has been mapped [1]. Autonomous Underwater Vehicles (AUVs) are one of the main tools for ocean exploration. The demand for AUVs is expected to increase rapidly in the coming years [2], so there is a need for faster and more energy efficient AUVs. A drawback to using this type of vehicle is the finite amount of energy that is stored onboard in the form of batteries. Science and roboticists have been studying nature for ways to move more efficiently. Phillips et al. [3] presents data that contradicts the idea that fish are better swimmers than conventional AUVs when comparing the energetic cost of swimming in the form of the Cost of Transport (COT). The data presented by Phillips et al. only applies to AUVs at higher length and naval displacement (mass) scales, so the question arises of whether an AUV built at different displacements and length scales is more efficient than biological animals and if current bio-inspired platforms are better than conventional AUVs. Besides power requirements, it is also useful to compare the kinematic parameters of natural and artificial swimmers. In this case, kinematic parameters indicate how fast the swimmer travels through the water. Also, they describe how fast the propulsion mechanism must act to reach a certain swimming speed. This research adopts the approach of Gazzola et al. [4] where the Reynolds number is associated with a dimensionless number, Swim number (Sw) in this case, that has all the kinematic information. A newly developed number that extends the swim number to conventional AUVs is the Propulsion number (Jw), which demonstrates excellent agreement with the kinematics of conventional AUVs. Despite being functionally similar, Sw and Jw do not have a one-to-one relationship. Sw, Jw, COT represent key performance metrics for an AUV, herein called performance criteria, which can be used to compare existing platforms with each other and estimate the performance of non-existent designs. The scaling laws are derived by evaluating the performance of 229 biological animals, 163 bioinspire platforms, and 109 conventional AUVs. AUVs and bio-inspired platforms have scarce data compared with biological swimmers. Only 5% of conventional and 38% of bio-inspired AUVs have kinematic data while 30% of conventional and 18% of bio-inspired AUVs have energetic data. The low amount of performance criteria data is due to the nature of most conventional AUVs as commercial products. Only recently has the COT metric been included in the performance criteria for bio-inspired AUVs. For this reason, the research here formulates everything in terms of allometric scaling laws. This type of formulation is used extensively when referring to biological systems and is defined by an exponential relationship f (x) = axb, where x is a physical parameter of the fish or vehicle, like length or displacement. Scaling laws have the added benefit of allowing comparisons with limited data, as is the case for AUVs. The length and displacement scale (physical scale) must be established before estimating the performance criteria. Scale is primarily determined by the payload needed for a particular application. For instance, surveying the water column in deep water will require different scientific tools than taking images of an oyster bed in an estuary. There is no way to identify the size of an AUV until it is designed for that application, since these scientific instruments each have their own volume, length, and weight. A methodology for estimating physical parameters using computer vision is presented to help determine the scale for the vehicle. It allows accurate scaling of physical parameters of biological and bio-inspired swimmers with only a side and top view of the platform. A physical scale can also be determined based on the vehicle’s overall volume, which is useful when determining how much payload is needed for a particular application. Further, this can be used in conjunction with 3D modeling software to scale nonexistent platforms. Following the establishment of a physical scale, which locomotion mode would be most appropriate? Unlike conventional AUVs that use propeller or glider locomotion, bio-inspired platforms use a variety of modes. Kinematics and energy expenditures are different for each of these modes. For bio-inspired vehicles, the focus will be on the body-caudal fin (BCF) locomotion, of which four types exist: anguilliform, carangiform, thunniform, and ostraciiform. There is ample research on anguilliform and carangiform locomotion modes, but little research on thunniform and ostraciiform modes. In order to determine which locomotion mode scales best for a bio-inspired AUV, this research examines the power output and kinematic parameters for all four BCF modes. In order to achieve this, computational fluid dynamics simulations are performed on a 2D swimmer for all four modes. Overset meshes are used in lieu of body-fitted meshes to increase stability and decrease computational time. These simulations were used to scale output power over several decades of Reynolds numbers for each locomotion mode. Carangiform locomotion was found to be the most energy efficient, followed by anguilliform, thunniform, and ostraciiform. In order to utilize the above scaling laws in designing a novel platform, or comparing an existing one, there must be a unifying framework. The framework for choosing a suitable platform is presented with a case study of two bio-inspired vehicles and a conventional one. The framework begins by determining how the platform can be physically scaled depending on the payload. Based on the physical scale and derived scaling laws, it then determines performance criteria. It also describes a method for relative cost scaling for each vehicle, which is not covered in the literature. The cost scaling is based on the assumption that all payloads and materials are the same. The case study shows that a conventional AUV performs better on all performance criteria and would cost less to build
    corecore