2,479 research outputs found

    Application of fuzzy controllers in automatic ship motion control systems

    Get PDF
    Automatic ship heading control is a part of the automatic navigation system. It is charged with the task of maintaining the actual ship’s course angle or actual ship’s course without human intervention in accordance with the set course or setting parameter and maintaining this condition under the effect of disturbing influences. Thus, the corrective influence on deviations from a course can be rendered by the position of a rudder or controlling influence that leads to the rotary movement of a vessel around a vertical axis that represents a problem, which can be solved with the use of fuzzy logic. In this paper, we propose to consider the estimation of the efficiency of fuzzy controllers in systems of automatic control of ship movement, obtained by analysis of a method of the formalized record of a logic conclusion and structure of the fuzzy controller. The realization of this allows to carry out effective stabilization of a course angle of a vessel taking into account existing restrictions

    A novel fuzzy logic control for a zero current switching-based buck converter to mitigate conducted electromagnetic interference

    Get PDF
    This research provides a new control technique for mitigating conducted electromagnetic interference (EMI) in a buck converter designed for solar applications. Indeed, hard-switching direct current to direct current (DC-DC) converters, commonly used in industrial applications, pose a significant risk to the surrounding environment regarding electromagnetic compatibility (EMC). Usually, the fast-switching phase induces abrupt changes in current and voltage, which adds to substantial electromagnetic interference in both conducted and radiated modes and excessive auditory noise. An architecture based on the duality of soft-switching topology and fuzzy logic control technology is developed to address these issues. On the one hand, resonant circuit topologies are used to induce switches to achieve soft switching conditions, which subsequently lessen the effects of EMI. On the other hand, the adoption of fuzzy logic control technology is interesting since it can reduce electrical stresses during switching. Furthermore, the simulation results show that zero current switching (ZCS) soft-switching closed-loop fuzzy logic converters outperform typical open-loop converters and soft-switching closed-loop converters with proportional integral (PI) control in terms of EMC requirements

    Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation

    Get PDF
    first_page settings Open AccessArticle Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation by Cristian Napole 1,* [OrcID] , Oscar Barambones 1,* [OrcID] , Isidro Calvo 1 [OrcID] , Mohamed Derbeli 1 [OrcID] , Mohammed Yousri Silaa 1 [OrcID] and Javier Velasco 2 [OrcID] 1 System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain 2 Fundación Centro de Tecnologías Aeronáuticas (CTA), Juan de la Cierva 1, 01510 Miñano, Spain * Authors to whom correspondence should be addressed. Mathematics 2020, 8(11), 2071; https://doi.org/10.3390/math8112071 Received: 23 October 2020 / Revised: 16 November 2020 / Accepted: 17 November 2020 / Published: 20 November 2020 (This article belongs to the Special Issue Fuzzy Applications in Industrial Engineering) Download PDF Browse Figures Abstract Piezoelectric actuators (PEA) are devices that are used for nano- microdisplacement due to their high precision, but one of the major issues is the non-linearity phenomena caused by the hysteresis effect, which diminishes the positioning performance. This study presents a novel control structure in order to reduce the hysteresis effect and increase the PEA performance by using a fuzzy logic control (FLC) combined with a Hammerstein–Wiener (HW) black-box mapping as a feedforward (FF) compensation. In this research, a proportional-integral-derivative (PID) was contrasted with an FLC. From this comparison, the most accurate was taken and tested with a complex structure with HW-FF to verify the accuracy with the increment of complexity. All of the structures were implemented in a dSpace platform to control a commercial Thorlabs PEA. The tests have shown that an FLC combined with HW was the most accurate, since the FF compensate the hysteresis and the FLC reduced the errors; the integral of the absolute error (IAE), the root-mean-square error (RMSE), and relative root-mean-square-error (RRMSE) for this case were reduced by several magnitude orders when compared to the feedback structures. As a conclusion, a complex structure with a novel combination of FLC and HW-FF provided an increment in the accuracy for a high-precision PEA.This research was funded by Basque Government and UPV/EHU projects

    Radar Target Classification Technologies

    Get PDF
    • …
    corecore