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Abstract

In marine missions that involve 3D path following tasks, the overall goal of Underwater Vehicles
(UVs) is the successful completion of a path previously specified by the operator. This implies that
the path must be followed by the UV as closely as possible and arrive at a location for collection by
a vessel. In this paper, an Online Interval Type-2 Fuzzy Extreme Learning Machine (OIT2-FELM)
is suggested to achieve a robust following behaviour along a predefined 3D path using a Remotely
Operated Underwater Vehicle (ROV). The proposed machine is a fast sequential learning scheme to
the training of a more generalised model of TSK Interval Type-2 Fuzzy Inference Systems (TSK IT2
FISs) equivalent to Single Layer Feedforward Neural Networks (SLFNs). Learning new input data in
the OIT2-FELM can be done one-by-one or chunk-by-chunk with a fixed or varying size. The OIT2-
FELM is implemented in a hierarchical navigation strategy (HNS) as the main guidance mechanism
to infer local control motions and to provide the ROV with the necessary autonomy to complete
a predefined 3D path. For local path-planning, the OIT2-FELM performs signal classification for
obstacle avoidance and target detection based on data collected by an on-board scan sonar. To
evaluate the performance of the proposed OIT2-FELM, two different experiments are suggested.
First, a number of benchmark problems in the field of non-linear system identification, regression
and classification problems are used. Secondly, a number of experiments to the completion of a
predefined 3D path using an ROV is implemented. Compared to other fuzzy strategies, the OIT2-
FELM offered two significant capabilities. On the one hand, the OIT2-FELM provides a better
treatment of uncertainty and noisy signals in underwater environments while improving the ROV’s
performance. Secondly, online learning in OIT2-FELM allows continuous knowledge discovery from
survey data to infer the surroundings of the ROV. Experiment results to the completion of 3D
paths show the effectiveness of the proposed approach to handle uncertainty and produce reasonable
classification predictions (∼ 90.5% accuracy in testing data).

Keywords: Online interval type-2 Fuzzy learning, Extreme Learning Machine, hierarchical fuzzy behaviours,
Neural Networks.

1. Introduction1

Remotely Operated Underwater Vehicles (ROVs) are now being used for a variety of missions2

such as oceanic mapping, underwater structure inspection, environmental monitoring and explo-3

ration [1–10]. An ROV is an underwater vehicle generally guided by a human pilot through a link4
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cord or tether providing its power and data communication [11]. In the sector of oil and gas indus-5

try, ROVs have become a well-established technology to complete offshore activities that usually6

involve regular maintenance, assessment and security of pipelines and ship hulls [11–13]. In missions7

where minimal human intervention is not possible, autonomy and navigational accuracy are often8

two capabilities demanded in ROVs, especially to localize targets within sub-meter accuracy for9

later data analysis [12, 14–22]. Without an operator in the loop, the ROV must able to deter-10

mine its location, motion, orientation and interpret its surroundings such that it can autonomously11

maneuver in uncertain environments [23].12

With continuous advances in control, artificial intelligence, computer and sensor technology,13

autonomous navigation applied to ROV is very attractive not only to provide human assistance14

in decision making, but also for various control scenarios such as trajectory/target tracking, path15

following/planning and formation producing. Particularly high accuracy positioning and path fol-16

lowing have drawn compelling interest to the development of autonomous navigation strategies for17

the inspection of underwater structures in oil and gas industry as well as salvage and monitoring18

operations [11]. In underwater path following, navigational accuracy can be defined as the precision19

with which an underwater vehicle (UV) completes a mission [3], while autonomy is its ability to20

reduce overall human intervention to successfully complete a predefined path [14].21

The literature contains numerous references to the development of control and navigation strate-22

gies for path following [1, 2, 8, 10–12, 17–22, 24–28]. In [10], a two-layer control framework that23

consists of a fuzzy PID control and its optimisation through an heuristic fuzzy approach, was devel-24

oped to address the problem of 3D path following in underactuated UVs subject to uncertainties.25

In [11], authors addressed the problem of path following under model uncertainty, disturbance and26

measurement error by using redundant measurement and data fusion. An sliding mode controller27

was used to manage uncertainty and disturbance with a zero tracking error maintained by employing28

integral action in the control structure [12, 22]. The accurate accomplishment of marine missions,29

UVs usually faces three major challenges: (a) parametric uncertainties in the vehicle’s model, (b)30

sensor measurement states suffer from errors due to the bias, drift and noises, and (3) vehicles are31

usually exposed to the high dynamics of currents and waves affecting significantly their missions32

[10, 27].33

In an important branch of robotics and marine vehicle applications, fuzzy logic has been credited34

to be a suitable methodology for the design of robust guidance and control architectures able35

to provide a satisfactory performance in the face of nonlinearities, imprecision and uncertainty36

[12, 29, 30]. A number of path following and path planing strategies have employed hierarchical37

control structures in which fuzzy logic is the main guidance mechanism [2, 25, 26, 31]. Compared to38

traditional approaches based on sequential task decomposition for real-time response, hierarchical39

fuzzy control structures encode robot’s behaviour as a fuzzy rule that maps each sensor’s signal into40

control output according to a desired control policy [5]. These architectures are behaviour-based41

systems that facilitate real-time intelligence response by decomposing general robot’s behaviour42

into a set of local-purpose routines that operate concurrently rather than sequentially [32, 33]. Such43

structures decompose complex motion control into a number of simple reactive fuzzy controllers44

which can be classified into the following categories: 1) conventional fuzzy control, 2) adaptive fuzzy45

control and 3) hybrid fuzzy control, including fuzzy PID control, fuzzy sliding mode control and46

neuro-fuzzy controllers [29]. Having a hierarchical architecture that divides fuzzy logic controllers47

and fuzzy learning for robot’s control into smaller subsystems accounts to reducing the negative48

effect that a large rule-base may have on real-time applications [32]. Hierarchical structures also49

contribute to overcome the problem of insufficient knowledge for designing large fuzzy rule bases.50

For instance, in [31], a hierarchical/Lyapunov fuzzy control system for horizontal plane trajectory51

tracking in underactuated Autonomous Underwater Vehicles (AUV) was suggested. The fuzzy52
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architecture involved two different hierarchies, in which at high level, guidance control laws were53

executed through a type-1 fuzzy inference system. At low level, vehicle’s surge force and yaw54

control were generated by a kinetic control. In [25], a hierarchical type-2 fuzzy structure that55

consisted of two different levels was implemented in an mobile robot as the main path planner. An56

evolutionary approach based on genetic algorithms was used to optimise the parameters of each57

membership function (MF) in the fuzzy path planner. According to results presented in [25], in58

outdoor environments where uncertainty is inherent, Interval Type-2 fuzzy logic (IT2 FL) were59

employed to produce a better performance than traditional type-1 fuzzy logic systems (FLSs). IT2-60

FLSs have demonstrated to outperform their type-1 counterpart in a large number of applications61

[34]. This has been mainly attributed to the ability of IT2-FLSs to better treat uncertainty and62

imprecision, of which IT2 fuzzy sets can be seen to possess an uncountable number of embedded63

type-1 FSs [30, 35].64

This paper describes an Online Interval Type-2 Fuzzy Extreme Learning Machine (OIT2-FELM)65

applied to the completion of predefined 3D paths in indoors water containers using a Remotely66

Operated Vehicle (ROV). The OIT2-FELM is integrated into a hierarchical navigation strategy67

(HNS) to achieve two goals. First, the OIT2-FELM is used to train an Interval Type-2 Fuzzy68

Inference System (IT2 FIS) of Takagi-Sugeno-Kang to classify online data collected by a micro data69

sonar. This information is used by an ROV to recognise the type of contour (or objects) around70

it. Secondly, the outcome of data classification is utilised by the HNS for collision-avoidance and71

obstacle inspection. The proposed machine is a fast sequential learning method to the training of IT272

Fuzzy Inference Systems (IT2-FISs) in which data may arrive one-by-one or chunk-by-chunk with a73

fixed or varying size. The OIT2-FELM is derived from the functional equivalence between SLFNs74

and IT2 FISs. The application of the OIT2-FELM follows the theoretical principles of ELM, where75

each antecedent is arbitrarily selected while the consequent weights are determined analytically. The76

OIT2-FELM integrates into its structure a fast type-reduction process based on the SC algorithm77

which is an improved version of the non-iterative Center-Of-Sets-Type-Reduction-Without-sorting-78

requirement method (COSWSR). The main contributions of the proposed OIT2-FELM are:79

1. Compared to traditional IT2-FELM theory [36–38], the OIT2-FELM incorporates a non-80

iterative type-reduction process based on the SC algorithm [39]. By doing so, the proposed81

OIT2-FELM eliminates the need of sorting consequent weights that is usually performed82

in Karnik-Mendel algorithms and its variants. This makes the proposed OIT2-FELM more83

appropriate for cost-sensitive real-time applications, reducing not only the associated compu-84

tational burden, but also the associated model complexity.85

2. The proposed OIT2-FELM is a fast sequential learning approach for a generalised model of86

Interval Type-2 Fuzzy Inference Systems (IT2 FISs) to the solution of problems in the field87

of regression, classification and nonlinear system identification.88

3. The final model of an OIT2-FELM is an IT2-FIS where capabilities and new efforts from the89

theory of neural networks and fuzzy logic can be applied under adequate design considerations.90

4. Compared to conventional T1 fuzzy logic systems, the OIT2-FELM is a high order fuzzy91

system able to better handle uncertainties that mobile robots usually face in underwater92

environments where sensor measurements are typically noisy and affected by the conditions93

of the observations.94

To investigate the performance of the OIT2-FELM under real conditions, two different types of95

experiments are carried out in this work. First, to compare the performance of the OIT2-FELM96

with other literature methodologies, a number of benchmark problems in the field of non-linear97

system identification, regression and classification are suggested. In the second experiment, a TSK98

OIT2-FELM is implemented in a Hierarchical Navigation Strategy (HNS) as the main guidance99
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mechanism to successfully complete a predefined 3D path using an ROV. The path following task100

suggested in this work is a frequent application of UVs for the inspection of underwater structures.101

Such task consists of completing a number of predefined circuits at a different depth, where the102

ROV must follow a trajectory described by the geometric shape of a given underwater structure.103

The proposed HNS, together with the OIT2-FELM is inspired by the behaviour of some noctur-104

nal mammals for foraging and burrow in dark constrained spaces [40]. When foraging in unknown105

environments, some mammals such as desert rodents use the information gathered by their whiskers106

to distinguish objects by surface contact and texture. The central role of the OIT2-FELM is to107

classify information coming from the scanning sonar mounted in the ROV in order to infer rele-108

vant knowledge about its surroundings. This information is utilised by the HNS to facilitate the109

ROV with near-to-real time intelligence required to achieve the necessary level of autonomy in the110

completion of 3D paths. The proposed HNS is a two level strategy that follows the operation prin-111

ciple of fuzzy architectures with a bottom-up hierarchy of increased behavioural complexity. At112

low-level, the HNS provides autonomy via decomposing motion control capabilities into a number113

of fuzzy behaviours which are realised as IT2 fuzzy controllers. Such behaviours serve a single114

purpose by operating in a reactive manner. Each behaviour performs nonlinear mappings from115

different subsets of the ROV’s sensor suite to common actuators. At high-level, fuzzy behaviours116

are organised by a number of IF-THEN rules as a set of building blocks for more intelligent compos-117

ite behaviours. Therefore, overall ROV’s behaviour is encoded as a rule-base hierarchy that maps118

relevant information in the sensor input domain into control outputs according to a desired con-119

trol policy. Performance results of the OIT2-FELM and the HNS are presented on individual and120

composite fuzzy behaviours for the completion of 3D paths. Experiments highlight the relevance of121

the information provided by the OIT2-FELM to local planning as well as to target detection. The122

focus here is on indoor navigation, however the proposed methodology can be extended for outdoor123

maritime environments.124

The structure of this paper is organised as follows: Section 2 reviews related background theory,125

while in Section 3, the proposed methods are detailed. The performance of the proposed OIT2-126

FELM and a discussion are provided in section 4 and 5 respectively. Finally, section 6 draws127

conclusion.128

2. Background Material129

This section briefly reviews the basic concepts of Extreme Learning Machine (ELM), the equiv-130

alence between Single Layered Feedforward Networks (SLFNs) and Fuzzy Inference Systems (FISs)131

as well as theory about Online Sequential Fuzzy ELM (OS-Fuzzy-ELM), Interval Type-2 Fuzzy132

Extreme Learning Machine (IT2-FELM) and SC type-reduction respectively.133

2.1. Extreme Learning Machine (ELM)134

For ′P ′ arbitrary distinct samples (xi, ti), where xi = [xi1, . . . , xiP ]T ∈ RN and ti = [ti1, . . . , tiÑ ]T ∈
RÑ , SLFNs with M hidden nodes and activation function g(x) can be mathematically expressed
by the following equation [41]:

M∑
i=1

βigi(xj) =

M∑
i=1

βig(wi · xj + bi) = yj ; j = 1, . . . , N (1)

in which, wi = [wi1, . . . , wiN ]T is the weight vector connecting the ith hidden node and the input
nodes, and βi = [βi1, . . . , βiÑ ]T is the weight vector connecting the ith hidden node to the lth output.

From Eq. (1), a matrix notation can be written as Hβ = T, where H ∈ RP×M , β ∈ RM×Ñ and
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T ∈ RP×Ñ , in which, H is the hidden layer matrix of an SLFN [42, 43]. According to ELM theory,
SLFNs with M hidden nodes and activation function g(x) can approximate ′P ′ arbitrary distinct
samples with zero error means

∑P
i=1 ‖ yi− ti ‖= 0, if there exist parameters β̂i, b̂i and ŵi such that

[43]:

||H(ŵ1, . . . , ŵM , b̂i, . . . , b̂M )β̂ −T|| = min
wi,bi,β

||H(w1, . . . ,wM ,b1, . . . ,bM )β −T|| (2)

Eq. (2) is equivalent to minimising a cost function based on squared error E =
∑P

j=1(
∑M

i=1 βig(wixj+

bi)−tj)
2. Therefore, from the linear system expressed in Eq. (1) whose minimum norm least-squares

solution is unique, can be achieved by calculating the pseudo-inverse H† as:

β̂ = H†T (3)

where H† is the Moore-Penrose (MP) generalised inverse of matrix H. The projection method can
be efficiently used to compute H† = (HTH)−1HT , if HTH is nonsingular or H† = HT (HTH)−1, if
HHT is nonsingular. Based on ridge regression, the stability of ELM can be improved by adding a
positive term 1/λ to the diagonal of HTH or HHT . By adding 1/λ, Eq. (3) can be written as [41]:

β̂ =

(
1

λ
+ HHT

)−1

T (4)

2.2. Functional equivalence between SLFN and FISs135

As described in [44], ELM theory can be applied to the training of a class of FISs of type-1 that
are functionally equivalent to Single Layered Feedforward Networks (SLFNs) [45]. An FIS of TSK
(or Mamdani) type that is equivalent to a SLFN can be defined by a number of fuzzy rules Ri of
the form [28, 36]

Ri : IF x1 is A1i AND x2 is A2i AND . . .AND xN is ANi THEN (y1 is wk1) . . . (yÑ is wiÑ ) (5)

where, Aki(k = 1, . . . , N, i = 1, . . . ,M) are the fuzzy sets that correspond to the kth input variable
x (x = [x1, . . . , xN ]T ) in the ith rule, where Ñ is the dimension of the output vector y = [y1, . . . , yÑ ].

When an FIS employs a TSK inference engine, wij (k = 1, . . . ,M, j = 1, . . . , Ñ) is defined by a
linear combination of input variables, i.e. wij = qij,0 + qij,0x1 + . . . qij,NxN , otherwise if the FIS is
of Mamdani type, wij is a crisp value. In Fuzzy Logic System theory (FLS), the degree to which
any given input xk that satisfies the quantifier Aki in the ith rule is specified by its Membership
Function (MF) µAki

(cki, ai), where usually a non-constant piece-wise continuous MF is used. The
symbol ⊗ is used to the representation of any fuzzy logic AND operations, where the firing strength
of the ith fuzzy rule can be computed as

Ri(x; ci, ai) = µAi1(x1, c1i, ai)⊗ µAk2
(x2; c2i, ai)⊗ . . .⊗ µANi

(xN ; cNi, ai) (6)

Each fuzzy rule Ri can be normalised as

G(x; ci, ai) =
Rj(x; ci, ai)∑M
i=1R

i(x; ci, ai)
(7)

Similar to [44], G is called fuzzy basis function. The system output ŷ of the TSK fuzzy model can
be defined as a weighted sum of each normalised rule [44].

ŷ =

∑M
i=1 wiR

i(x; ci, ai)
M∑
i=1

Ri(x; ci, ai)

=
M∑
i=1

wiG(x; ci, ai) (8)

From Equation (4), a functional equivalence between FISs and SLFNs can be established if:136
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• Each G(·) represents the output function of each hidden node.137

• The vector wi represents the output weight vector.138

As indicated in [44], a SLFN with activation function G(·) can approximate any continuous target139

function as long as the parameters of the membership function µAki
are randomly generated and e140

membership function µAki
is bounded, nonconstant, and piecewise continuous.141

2.3. Online Sequential-Fuzzy-ELM Algorithm (OS-Fuzzy-ELM)142

Since a FIS can be viewed as a SLFN, ELM theory can be applied to the training of FISs
either of Takagi-Sugeno-Kang or Mamdani. In such an equivalence, parameters of each MF (c and
a) are randomly generated, while consequent of each fuzzy rule are determined analytically [44].
Given a number of ′P ′ distinct training samples (xp,tp), where xp = [xp1, . . . , xpN ]T ∈ RN and

tj = [tj1, . . . , tjÑ ]T ∈ RÑ , a FIS of TSK type with L fuzzy rules can be expressed as [41]:

fL(xp) =
M∑
i=1

wigi(xj) = tp; p = 1, . . . , P (9)

For a TSK fuzzy model, the consequent of each fuzzy rule is defined as a linear combination, in
which, each weight wi = xTp,eqi, and xp,e = [1 xTp ]T is the extended version of the input vector x.

qi =

 qi1,0 . . . qiÑ ,0
...

...
qi1,N . . . qiÑ ,N


(N+1)×Ñ

(10)

Therefore, Equation (9) can be written as:

fL(xp) =

M∑
i=1

xTp,eqiG(xp, ci, ai) = tp; p = 1, . . . , P (11)

A compact representation for Eq. (11) is given by

HQ = T (12)

in which, Q is the matrix of coefficients qij,k. If a TSK implication is employed, hidden matrix H
is defined by:

H(c1, . . . , cM , a1 . . . , aM ,x1, . . . ,xP ) = [xTp,eG(xp, c1, a1), . . . ,xTp,eG(xp; cM , aM )] (13)

and Q is the parameter matrix for the TSK model:

Q =

 q1
...

qM

 (14)

According to [44], Online Sequential ELM (OS-ELM) for SLFNs with additive or hidden neurons can143

be linearly extended to the training of TSK FISs. To implement OS-Fuzzy-ELM, first all parameters144

ci and ai of each MF are randomly generated. Secondly, OS-Fuzzy-ELM is implemented in two145

main phases to the calculation of the consequent part of each fuzzy rule. Therefore, given a number146

of MFs µAik and number of fuzzy rules L, training data D = {(xp, tp)|xp ∈ RN , tp ∈ RÑ , p =147

1, . . .}, P0 ≥ L arrives sequentially one-by-one or chunk-by-chunk [44].148
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• Step 1) Initialisation phase. Initialise the learning using a small chunk of initial training149

data D0 = {(xp, tp)P0
p=1 from the given training data D = {(xp, tp)|xp ∈ RN , tp ∈ RÑ , p =150

1, . . .}, P0 ≥ L.151

a) Assign random MF parameters (ci, ai), i = 1, . . . , L.152

b) Calculate the initial matrix H0 for the TSK models

H0 = H(c1, . . . , cL, a1, . . . , aL; x1, . . . ,xN0) (15)

c) Estimate the initial parameter matrix Q(0) = P0H
T
0 T0 where P0 = (HT

0 H0)−1 and153

T0 = [t1, . . . , tÑ0
]T154

d) Set s = 0155

• Step 2) Sequential learning phase. Present the (s + 1)th chunk of new observations156

Dl+1 = {(xp, tp)}
∑s+1

l=0 Pl

p=(
∑s

l=0 Pl)+1
, where Ps+1 is the number of observations in the s+ 1 chunk.157

In this step, compute:158

a) The partial matrix Hs+1 for the (s+ 1)th chunk of data Ds+1 for the TSK model, where
H is obtained as:

Hs+1 = H(c1, . . . , cL, a1, . . . , aL; x(
∑s

l=0 Pl)+1, . . . ,x∑s+1
l=0 Pl

) (16)

where the matrix H is defined as (13). Set Ts+1 = t(
∑s

l=0 Pl)+1, . . . , t∑s+1
l=0 Pl

)159

c) Compute the parameter matrix Q(s+1) as follows:

Ps+1 = Ps −PsHs+1(I + Hs+1PsHs+1)−1Hs+1Ps

Q(s+1) = Q(s) + Ps+1H
T
s+1(Ts+1 −Hs+1Q

(s)) (17)

In general, OS-Fuzzy-ELM involves two main phases, namely, a) a initialisation phase, where TSK160

FIS is trained using a batch data set that is discarded once the initialisation phase is finished. In161

the second phase,162

2.4. Interval Type-2 Fuzzy Extreme Learning Machine (IT2-FELM)163

IT2-FELM is a learning algorithm based on ELM theory for the fast training of IT2 FISs either
of Takagi-Sugeno-Kang (TSK) or Mamdani type that are functionally equivalent to SLFNs. Similar
to type-1 FISs, an IT2 FIS consists of a fuzzifier, a fuzzy rule base and an output processor. The
main difference lies on the output processor of an IT2 FIS, where it includes a type-reduction +
defuzzification process. The type-reducer produces a type-1 fuzzy set output and the defuzzifier
transforms such set into a crisp number. A type-2 FLS is again characterised by IF–THEN rules,
but its antecedent or consequent sets are now type-2. An interval type-2 fuzzy set Ã (IT2 FS)
is characterised by a three-dimensional MF, or a bivariate function on the Cartesian product,
µ : X× [0, 1] into [0, 1], where X is the universe of the primary variable x. To illustrate the concept
of an IT2 FS, in Fig. 1, an IT2 Gaussian MF is presented, in which the point value representation
of Ã is defined by:

Ã = {(x, u), µÃ(x, u) = 1|∀x ∈ X,∀u ∈ [0, 1]} (18)
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Xu

µÃ(x, u)

1.0
0.75

0.5
0.25

f(x)

LMF

f(x)

UMF xl

•

•

Fig. 1. Example of an Interval Type-2 Gaussian Membership Function, singleton fuzzification when x = xl (Taken
from [36]).

As illustrated in Fig. 1, the 2-D support of µÃ is called Footprint of Uncertainty (FOU - shadowed
area):

FOU(Ã) = {(x, u) ∈ X × [0, 1]|µÃ(x, u) > 0} (19)

where FOU(Ã) is bounded by its lower and upper membership functions [f(x), f(x)] (LMF, UMF)

respectively. For ′P ′ distinct training samples (xp, tp), where xp = {xp1, . . . , xpN} ∈ RN is an input

vector, and tp = [tp1, . . . , tpÑ ]T ∈ RÑ the corresponding target, a mathematical model for the jth
output of a Multiple-Input-Multiple-Output (MIMO) IT2 FIS of TSK type with ′M ′ fuzzy rules
and with a center-of-sets type-reduction is given by [36, 44, 45]:

yjp =
1

2

(
yjl + yjr

)
; j = 1, . . . , Ñ (20)

where Ñ is the number of outputs of an IT2 FIS. In such a scheme, a product inference rule base
for a TSK IT2 FIS is considered, where each rule is given by [37]:

Ri : IF xp1 is Ãi1 AND xp2 is Ãi2 AND . . . IF xN is AiN THEN wji = qji,1x1 + . . . qji,NxN (21)

k = 1 . . . , N, i = 1, . . . ,M and each Ãik is an IT2 FS of the kth input variable xk [46]. If wji is a
crisp value, the FIS is of Mamdani type. From Eq. (5), an IT2 FS Ãik uses a primary Gaussian
MF with a variable width [σ1

ik, σ
2
ik] and a fixed mean mik. The Footprint Of Uncertainty (FOU) of

this MF is defined by its lower and upper MF [µÃik
, µÃik

]:

[µÃik
, µÃik

] :=


exp

[
−1

2

(
xpk−mik

σ1
ik

)2
]

exp

[
−1

2

(
xpk−mik

σ2
ik

)2
] (22)

The firing strength F̃ i of each ith fuzzy rule is then obtained by performing fuzzy meet operation
with the inputs using an algebraic product operation as follows [47]:

F̃ i = [f i(~xp), f i(~xp)] (23)
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f i(~xp) =

M∏
i=1

µik, f i(~xp) =

M∏
i=1

µik (24)

Each consequent of IT2-FELM is a linear model expressed as:

wji = qji,0x0 + qji,1x1 + . . . qji,NxN =
N∑
k=1

qji,kxk (25)

Therefore, the type-reduced set of the jth output (yjl , y
j
r) can be obtained using the Enhanced

Karnik-Mendel algorithm (EKM) [48]. As indicated in [16], for Ñ > 1, each output yjp of a TSK
IT2-FELM can be associated to a submatrix representation as follows:

yjp =
1

2

(
Yj
l + Yj

r

)
wT
i , j = 1, . . . , Ñ (26)

in which yjl = Yj
lw

T
j and yjr = Yj

rw
T
j and

Yj
l =

fTQTj E
T
1jE1jQj + fTQTj E

T
2iE2jQj

rTl Qjf + sTljQjf
(27)

wj = [wj1, . . . , wjM ]T is the set of original rule-ordered consequent weights, and Yi
l = (ψlj,1, . . . , ψlj,M ),164

and the terms E1j , E2j , rlj and slj are defined as:165

E1j = (e1j |e2j | . . . |eLj |0| . . . |0)T Li ×M

E2j =
(
0| . . . |0|ξj1|ξ

j
2| . . . |ξ

j
M−Lj

)T
(M − Li)× 1

rlj ≡ (1, 1, . . . , 1︸ ︷︷ ︸
Lj

, 0, . . . , . . . , 0)T M × 1

slj ≡ (0, . . . , . . . , 0

M−Lj︷ ︸︸ ︷
1, 1, . . . , 1)T M × 1

in which Lj is the switching point that corresponds to the jth output, em ∈ RLi (m = 1, . . . , Li) and
ξm ∈ RM−Li , m = 1, . . . ,M − Li as the elementary vectors where all the elements are zero except
the mth one that is equal to 1.

Yj
r =

fTQTi E
T
3iE3iQi + fTQTi E

T
4iE4iQi

rTriQif + sTliQif
(28)

where Yj
r = (ψri,1, . . . , ψri,M )

E3i = (e1i|e2i| . . . |eRi|0| . . . |0)T Ri ×M
E4i = (0| . . . |0|ξ1i|ξ2i| . . . |ξM−Ri)

T (M −Ri)× 1

rri ≡ (1, 1, . . . , 1︸ ︷︷ ︸
Ri

, 0, . . . , . . . , 0)T M × 1

sri ≡ (0, . . . , . . . , 0

M−Ri︷ ︸︸ ︷
1, 1, . . . , 1)T M × 1
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with em ∈ RRi (m = 1, . . . , Ri) and ξm ∈ RM−Ri , i = 1, . . . ,M − Ri as the elementary vectors
where all the elements are zero except the mth one that is equal to 1 [49]. f = (f1, . . . , fM )T ,

f =
(
f1, . . . , fM ,

)T
. Using Eq. (27) and (28), Eq. (26) can be expressed as:

yjp =
1

2

(
yjl + yjr

)
w=

1

2

M∑
j=1

(ψli,j + ψri,j)wij

=
1

2

M∑
j=1

hipj

(
N∑
k=0

xkqij,k

)
, xij,0 = 0, qij,0 = 1;

(29)

Where, hipj = (ψli,j + ψri,j). Therefore, Eq. (29) can be expressed as:

yjp = φiq (30)

where q = [qi1,k, . . . , qi1,k, . . . , qiM,k, . . . , qiM,k]
T and φi is

φp =
1

2
[(ψli,1 + ψri,1)xp1, . . . , ψli,1 + ψri,1)xpN , . . .

(ψli,M + ψri,M )xp1, . . . , ψli,M + ψri,M )xpN ]T ,∈ RM×N (31)

For P input vectors xp, a submatrix HA can be written as

HA(x) = (φ1 φ2 . . . φP )T ∈ RP×(M×N) (32)

According to ELM theory and IT2 Fuzzy Logic, for a multidimensional output T, a linear subsystem
is required to determine each ith output in the OIT2-FELM. As indicated in [16, 50], at the heart
of a TSK FIS, fuzzy modelling can be viewed as a process where the input data space is segmented
into fuzzily defined regions which are parameterised and associated with a linear subsystem. In
other words, a Multi-Input-Multi-Output FIS (MINO FIS) such as an IT2-FELM can be viewed
as a linear combination of a joint block structured pattern that consists of a group of MISO fuzzy
models [50]. Therefore, a linear subsystem can be defined for each ith output, where HA can be
now called Hi

A.

Hi
A(x)wi = tp, wi ∈ RM×Ñ (33)

Thus, consequent parameters are estimated with a common block structure over all dimensions of
the output variable as:

H1
BQ1 + . . .+ Hi

BQi + . . .+ HÑ
BQÑ = T (34)

Hi
BQi =


hi11 . . . hi1M
hi21 . . . hi2M

... . . .
...

hiP1 . . . hiPM




0 . . . w1i . . . 0
0 . . . w2i . . . 0
...

...
...

...
0 . . . wMi . . . 0


where Hi

B ∈ RP×(M×N), Qi ∈ R(M×N)×Ñ , and the target T is a matrix defined as follows:

T =


t11 . . . t1Ñ
t21 . . . t2Ñ
... . . .

...
tP1 . . . tpÑ


in which, T = [t1, . . . , tÑ ], is the desired output vector, and each ti = [t1i, . . . , tPi]. To determine166

the parameters of an IT2-FELM, a three-step process is implemented as follows:167
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• Step 1. Random initialisation of each MF’s parameter mjk and σjk168

• Step 2. Initialisation of each consequent qij,k using any of the two following methods:169

a) Calculate the initial value of each consequent qij,k from the following linear system (Ñ ≥
1):

QA = H†0T (35)

where H0 = [h1, . . . ,hP ]T , p = 1, . . . , P in which

hp =
1

2
[(y1

l + y1
r )xp1, . . . , (y

1
l + y1

r )xpN , . . . (y
M
l + yMr )xp1, . . . , (y

M
l + yMr )xpN ]T (36)

where hp ∈ R1×(M×N). To calculate QA, the value of yjl and yjr is obtained as:

yjl =

M∑
i=1

f ′iwji , f
′
i =

f i∑M
i=1 f i

(37)

yjr =

M∑
i=1

f ′iwji , f
′
i =

f i∑M
i=1 f i

(38)

Using Eq. (37) and (38), hp can be now computed as:

hp =
1

2
[(f ′1 + f ′1)xp1, . . . , (f

′
1 + f ′1)xpN , . . . , (f

′
M + f ′M )xp1, . . . , (f

′
M + f ′M )xpN ] (39)

b) Calculate each entry of H0 using a close-form approach such as the Nie-Tan method:

ϕpj =
f i + f i∑M

i=1 f i +
∑M

i=1 f i
(40)

Therefore, Eq. (39) is defined by

hp =
1

2
[ϕp1xp1, . . . , ϕp1xpN , . . . ϕpMxpM , . . . , ϕpMxpN ] (41)

• Step 3. Refinement of each consequent qji,k. Use the initial matrix QA to find the
switching points Lj and Rj by applying the EKM to each jth sublinear system. Use this

information to build each matrix Hj
B and to refine each consequent matrix Qj by:

Qj = (Hj
B)†tj (42)

Finally, compute the target vector T using Eq. (33).170
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Table 1: SC algorithm for computing the end points yjl and yjr for each output of an EIT2-FELM.171

Step Computing yjl Computing yjr

1 f i = 0, ∀i ∈ [1,M ], then

yjl = min(wji), yjr = max(wji)

∀i ∈ [1,M ] with f i 6= 0, Stop

2 Initialise zi = 1, ∆wji = f i − f i, ∀i ∈ [1,M ]

3 Calculate:{
δ1 =

M∑
i=1

f i, δ2 =

M∑
i=1

f iwji

}
4 flag = 0

5 For i = 1 to M , repeat the following operations of this step

Ai = xiδ1 − δ2
If Ai < 0 If Ai > 0

z′i = 1, else z′i = 0

If z′i 6= zi then

If zi = 1,

{
flag = 1, z1 = z1 + ∆wi

zi = z′i, z2 = z2 + wj∆wi

Else

{
flag = 1, z1 = z1 −∆wi

zi = z′i, z2 = z2 − wi∆wi

6 If flag 6= 0 go to step 4; else

cl = δ2/δ1; zli,j = zi cr = δ2/δ1; zri,j = zi

172

2.5. SC type-reduction Algorithm173

Because of their iterative nature, the use of KM algorithms in type-reduction may hinder the
deployment of IT2-FLSs to solve certain cost-sensitive real world problems [48]. This additional
computational load in KM algorithms usually results from determining the switching points. Thus,
a number of approaches for reducing the computational cost of IT2 FLSs has been suggested [48].
Such algorithms include three types of categories, namely 1) enhancements of the KM algorithm,
2) close-form type reduction methods and 3) the last category consists of simplified architectures of
IT2 FLSs, which can be combined with any of the two categories mentioned above. In this section,
a simplified version of the Center of Set Type Reducer Without Sorting Requirement Algorithm
(COSTRWSR) [39] that is called SC algorithms is revisited. The SC algorithm is a center of set type
reducer without sorting requirement that finds each [yjl , y

j
r ] based on a property of derivatives. Due

to the functional equivalence between SLFNs and IT2 FISs either of Takagi-SUgeno-Kang (TSK) or
Mandani type, the SC alforithm can be directly applied to determine the type-reduced set [yil , y

i
r].

As pointed out in [39], finding the centroids yl and yr can be seen as a process of determining the
max and min values of YCOS . Thus, Eq. (37) and (38) can be reformulated as [39]:

yjl =

∑Mf

i=1 f iwji −
∑Mf

i=1(1− zli,j)∆ujiwji∑Mf

i=1 f j −
∑Mf

i=1(1− zli,j)∆uji
(43)

And

yjr =

∑Mf

i=1 f iwji −
∑Mf

i=1(1− zri,j)∆ujiwji∑Mf

i=1 f i −
∑Mf

i=1(1− zri,j)∆uji
(44)

in which, ∆uji = f i−f i, ∀i ∈ [1,M ] is the difference of the Upper and Lower Membership Functions174

(UMF, LMF). Where terms [zli,j , zri,j ] can take the values from the interval [0, 1], and wji is the175
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corresponding consequent part (weight). Moreover, if the values for [zli,j , zri,j ] are taken either176

equal to zero or one, the resulting formula to determine each output yjp in an IT2 FIS (of TSK or177

Mamdani type) can be determined using the SC algorithm as shown in Table 1. Thus, Eq. (43) and178

(44) are two alternatives to KM algorithms where the need of a sorting process is eliminated. That179

means, the computing of terms Lj and Rj do not exist anymore. The SC type reducer is a simplified180

version of the Center of Set Type Reducer Without Sorting Requirement Algorithm (COSTRWSR)181

[39]. Hence, as detailed in Table 1, the SC algorithm finds each [ynl , y
n
r ] based on a property of182

derivatives. Compared to COSTRWSR, using the SC algorithm, [ynl , y
n
r ] can be obtained without183

adding the extra parameters [zli,j , zri,j ] [51].184

3. Methods185

3.1. Proposed OIT2-FELM for Data Classification186

As indicated in [37], the majority of applications of Interval Type-2 Fuzzy Extreme Learning187

Machine (IT2-FELM) has been concentrated on the solution of regression problems. Such systems188

are usually Multi-Input-Single-Output (MISO) systems with a Karnik-Mendel (KM) type-reduction189

where their training is in batch mode. In many real world applications sequential online learning in190

IT2 FISs may be preferred over batch learning as they do not require retraining whenever new data191

is received [52]. In this study, an Online sequential learning methodology for the training of a class192

of Interval Type-2 Fuzzy Inference Systems (IT2 FISss) of Takagi-Sugeno-Kang (TSK) is suggested.193

The proposed learning methodology called Online Interval Type-2 Fuzzy Extreme Learning Machine194

(OIT2-FELM) extends the concept of Online Sequential ELM (OS-ELM) for type-1 FISs to IT2195

FISs where training data can be presented one-by-one or chunk-by-chunk with a fixed or varying196

size [44, 53].197

To illustrate the proposed OIT2-FELM, a Multiple-Input-Multiple-Output (MIMO) IT2 FIS198

with a Gaussian MF [µÃjk
, µÃjk

] having a fixed mean mjk, variable standard deviation [σ1
jk, σ

2
jk], a199

predefined number of ′L′ fuzzy rules is used. To eliminate the need of sorting each consequent part200

and creating a number of sublinear systems that implies using KM algorithms, a SC type-reduction201

is incorporated in the output layer of the IT2 FIS. As described in [54], a FIS is considered of202

interval type-2 if only one of its components uses Interval Type-2 Fuzzy Sets (IT2-FSs). Hence,203

in this study, each consequent part is defined as wij = wij = wij . Given a number of ′P ′ distinct204

different training samples (xp, tp), the implementation of OIT2-FELM follows two main phases, i.e.:205

1) initialisation and 2) sequential learning phase.206

• Step 1 - Initialisation phase: Select an initial chunk of data D0 = {xp, tp}P0
p=1 from a given207

training data set D = {(xp, tp)|xp ∈ Rn, tp ∈ RÑ} where P0 ≥ M and its corresponding208

target vector tp = [tp1, . . . , tpÑ ].209

S1.a) Randomly generate the initial values to the MF parameters, for example, if a Gaussian210

MF of IT2 is selected, initial values of [σ1, σ2] and mk are randomly generated.211

S1.b) For a TSK IT2-FIS, based on the procedure described in Eq. (35), initialise each conse-212

quent weight qij,k by computing the initial consequent matrix Q
(0)
A . A similar procedure213

can be implemented for a Mamdani fuzzy model. Note, this initialisation process is214

performed once.215

S1.c) Use the SC algorithm to calculate each term [zli,j , zri,j ]. Build the matrix H
(0)
B

H
(0)
B (σ1

1, . . . ,σ
1
M ,σ

2
1, . . . ,σ

2
M ,m1, . . . ,mM ; xp) = [h

(0)
1 , . . . ,h

(0)
P ]T (45)
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Fig. 2. (a) Water container (open-tank) and computer station, and an (b) ROV (BlueROV2) equipped with a
sensory system with four sensors used for all experiments.

in which, p = 1, . . . , P and each vector h
(0)
p is defined as:

h(0)
p = [φp1xp1, . . . , φp1xpN , . . . , φpMxpM , . . . , φpMxpN ] (46)

where each entry φpi is defined as follows:

φpi =
1

2

(
f i − (1− zli,j)∆wji∑M

i=1 f i −
∑M

i=1(1− zli,j)∆wji
+

f i − (1− zri,j)∆wji∑M
i=1 f i −

∑M
i=1(1− zri,j)∆wji

)
(47)

in which, ∆wji = f i − f i, ∀i ∈ [1,M ].216

S1.d) Refine each consequent part qi,jk using the Equation below:

Q
(0)
B = P0HB,0T0 (48)

where P0 = (HT
B,0HB,0)−1 and T0 = [t1, . . . , tP0 ]T217

S1.e) Set s = 0218

• Step 2 - Sequential learning phase: Present the (s+1) chunk of new observations Ds+1x =219

{xp, tp}
∑s+1

l=0 Nl

p=(
∑s

l=0Nl)+1
where Ps+1 is the number of observations in the (s+ 1)th chunk. Thus,220

the process of finding each consequent vector Q
(s+1)
B is as follows:221

S2.b) By using Eq. (33), calculate the partial matrix Q
(s+1)
A for the (s + 1)th data chunk for

the TSK model in order to initialise each consequent part qji,k. Then, apply the SC

algorithm to calculate each term [zli,j , zri,j ]. Build the matrix H
(s+1)
B using Eq. (46-47).

H
(s+1)
B

(
σ1

1, . . . ,σ
1
M ,σ

2
1, . . . ,σ

2
M ,m1, . . . ,mM ; x(

∑k
l=0Nl)+1, . . . ,x

∑s+1
l=0 Nl

)
(49)

Set Ts+1 = [t(
∑s

l=0 Pl)+1, . . . t
∑s+1

l=0 Pl
]T222

S2.c) Calculate the parameter matrix Q
(s+1)
B using Eq. (50):

P
(s+1)
B = P

(s)
B −P

(s)
B (H

(s+1)
B )T (I + M(s+1))

−1H
(s+1)
B P

(s)
B

Q
(s+1)
B = Q

(s)
B + P

(s)
B (H

(s+1)
B )T (T

(s+1)
B −H

(s+1)
B Q

(s)
B )

(50)
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in which M(s+1) = H
(s+1)
B P

(s)
B

(
H

(s+1)
B

)T
223

S2.d) Set S = S + 1. Then, go to Step 2.224

OIT2-FELM is a sequential learning algorithm that consists of two main phases. First, an initial225

batch of data is used to train a TSK IT2-FIS, where initialisation data is discarded once the first226

phase is completed. Similar to its type-1 counterpart the OS-Fuzzy-ELM, it is recommended that the227

number of the initial training data is at least the same to the number of fuzzy rules of the TSK IT2-228

FIS. As detailed in the OIT2-FELM algorithm, in the first phase, a direct defuzzification method229

can be applied to approximate the value of each consequent weight wij . After the initialisation230

phase, the TSK IT2-FIS will learn new data one-by-one or chunk-by-chunk (with fixed or varying231

size). The second step is an iterative phase that involves Ñ calculations (where Ñ ≥ 1).232

3.2. Robotic Platform233

The ROV used for experiments is a BlueROV2 with a six-thruster vectored configuration as234

described in Fig. 2. All experiments were carried out in an indoors water container of 2.5×2.5×3.5235

metres size (Fig. 2(a)). To reproduce some undersea conditions, salty water with a density of about236

1028kg/m3 was added to the container.237

Four out of the six thrusters are oriented in a vertical direction while the remaining two are238

oriented horizontally (Fig. 2(c)). This gives the ROV the ability to move itself up-down as well239

as to control its yaw orientation and moves forward and backward (See Fig. 2(b)). The ROV’s240

dynamics vehicle are such that the vertical motion is largely decoupled from the lateral motion.241

The vehicle is also very stable in the roll and pitch axes due to the righting moment induced by242

four subsea buoyancy foams 2(b)). The ROV has an open-source electronics whose sensory system243

(See Fig. 3) was integrated at the Laboratory of Submarine Robotics, (LSR, CIDESI). As detailed244

in Fig. 3, such system consists of a 1) pressure sensor that is able to measure up to 30 Bar (300m245

depth) with a depth resolution of 2mm (Bluerobotics), 2) a ping sonar which is an open-source246

sensor able to measure distances up to 30 meters with a 30 degree beam width, a 3) micro data247

sonar Titrech with a range resolution of 7.5mm, a beam width of 3◦, and a variable scanned sector248

and (4) the Sparton compass that is a micro-sized and light weight attitude heading sensor with a249

static heading accuracy of 0.2◦ RMS and full 360◦ rollover capability.250
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Figure 3: System’s configuration used by the ROV (BlueROV2).252
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The micron data sonar is used as a dynamic echo-sounder whose scanned sector is defined by a255

sample window of five beams separated at 8◦ one to the other as shown in Fig. 4. As indicated256

in Fig. 3, the main computer in the ROV is a Raspberri Pi3, in which the middleware Robotic257

Operating System (ROS ubiquity) was installed to implement all machine learning algorithms and258

controllers. In this work, Python, C++ and Matlab were the main coding languages used in ROS.259

A line SSH connection between the Raspberri Pi3 and an Ubuntu computer was used to monitor260

sensor values and define the parameters of each experiment (See Fig. 2).261

3.3. Hierarchical Strategy Navigation (HNS) for path Following262

In hierarchical fuzzy structures, the number of fuzzy rules increases linearly with the number of263

input variables rather than exponentially as in single fuzzy logic systems (FLSs) [34]. For example,264

an FLS with six input sensors and four fuzzy sets, its fuzzy rule base will contain 46 = 4096 fuzzy265

rules. Such a big rule base is very difficult to design and very expensive in computational terms,266

leading to significant degradation in real-time response. Moreover, due to the monolithic structure267

of its fuzzy rule base, the implementation of single fuzzy logic structures that operate on multitask268

domains may become extremely complex. To cope with rule explosion, hierarchical architectures269

decompose general ROV’s behaviour into a number of fuzzy local behaviours. In a hierarchical270

architecture (either fuzzy or crisp model), each ROV’s behaviour is encoded as a mapping of each271

sensor’s signal into a desired control policy.272

The successful completion of a predefined path is directly related to the ability of the ROV273

to provide real-time planning with high autonomy. In this work, autonomy for the completion of274

predefined paths is achieved within a hierarchical navigation strategy (HNS) of fuzzy behaviours275

in which low-level navigation behaviours are realised using interval type-2 fuzzy logic control and276

the proposed OIT2-FELM, while high-level coordination behaviours are implemented as IF-THEN277

rules with singleton weights as detailed in Fig. 5(a). As depicted in Fig. 5(b, c), the proposed HNS278

follows a bottom-up hierarchy of increased behavioural complexity in which activity at a given level279

is the result of a function of behaviours given at the level below [5, 34]. In order to achieve multiple280

goals (or composite behaviours) whose priorities may change with time, the HNS decomposes overall281

ROV’s motion into single fuzzy behaviours that serve single purpose by operating in a reactive or282

reflexive manner [5]. On the low-level navigation behaviours, single fuzzy behaviours are realised to283

perform nonlinear mappings from different subsets of the ROV’s sensor suite to common actuators.284

These behaviours are building blocks for more intelligent behaviours where their coordination can285

be modulated on the high-level hierarchy suitable for complex goal-directed operations. In this286

paper, the completion of a 3D path-following task that consists of two circuits at different depth as287

illustrated in Fig. 6 is suggested. One circuit in the water container can be completed by following288
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Fig. 5. (a) Hierarchical Navigation Strategy (HNS), (b) Hierarchical decomposition of the ROV’s navigation, and
(c) High-level coordination activated by IF-THEN rules in order to complete one circuit.

a clockwise/anticlockwise path navigating along walls 1-2-3-4/4-3-2-1 respectively. To complete289

one path, the proposed HNS decomposes goal-directed navigation as a behavioural function of290

wall-follow (or route-follow), local path planning (contour recognition when the ROV reaches a291

corner in the container) and collision avoidance (collision free-navigation to some location). These292

behaviours can be further decompose into local fuzzy behaviours, namely, 1) heading behaviour, 2)293

depth behaviour, 3) edge-distance control (minimum distance between a wall and the ROV) and 4)294

contour classification.295

The first three low-level behaviors will be an interval type-2 Fuzzy Proportional Derivative296

Logic Controller (IT2 FPDFC) using interval type-2 fuzzy sets to represent the input and output297

variables of each behavior, while the last one will be the proposed OIT2-FELM. The first two298

behaviors provide the ROV with the necessary autonomy to navigate parallel to each wall at a299

predefined distance. The third behaviour consists of implementing an IT2 FPDC to control the300

vertical position of the ROV at a predefined depth. The fourth behaviour is related to the ability of301

the ROV to recognise the contour around it, i.e. what is it in front or next to? A corner, a wall or302

an object. In this behaviour, the proposed OIT2-FELM can learn incoming data that may arrive303

one-by-one or chunk by chunk (with fixed or varying size).304

The idea behind the proposed HNS methodology is to integrate a number of control algorithms305

that guide the ROV to complete a circuit (as shown in Fig. 6). As illustrated in Fig. 5 (flow306

diagram), a compass and a pressure sensor are used to estimate the yaw angle (See Fig. 2(b)- axis307

Zb) and the ROV’s vertical position (axis Zb) respectively. The ping sonar and the micro data308

sonar are utilised to estimate the distance between the ROV and the closest wall. While the ping309

sonar is a multipurpose single-beam echosounder used to estimate the distance between the ROV310

and obstacles on its right side (See Fig. 2), the micro data sonar provides five different distance311

readings (estimates) in a predefined scanned sector, where the value for reading 180◦ is aligned to312

the ROV’s front as illustrated in Fig. 4. Next subsections describe the model of the Interval Type-2313

Fuzzy Logic Controller used in each fuzzy behaviour and their implementation setup at low-level314
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hierarchy as well as their coordination at high-level.315
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Figure 6: Trajectory followed by the ROV (BlueROV2) to complete one circuit.317

3.4. IT2 FLC for heading, depth and edge-distance behaviour318

Because of their model simplicity, set point tracking performance, easy to tune and high relia-319

bility at acceptable cost, the implementation of IT2 Fuzzy Logic PD and PI Controllers (IT2 FLCs)320

controllers have been employed for more than one decade not only in industrial control loops [55],321

but also in mobile robotics [34], submarine applications and medicine [56]. Compared to T1 Fuzzy322

Logic Controllers (T1-FLCs), the design and implementation of IT2-FLCs have demonstrated to323

achieve a superior performance while providing a smoother control surface around the origin in a324

large number of real world problems [57]. This is usually due to the extra dimension provided by the325

Footprint-Of-Uncertainty (FOU), and hence with the same number of MFs, an IT2-FLC offers more326

design freedom [57]. In this work, fuzzy behaviours for depth control, edge-distance control and327

heading control are implemented using an IT2 Fuzzy PD Controller (IT2 FPDC) whose structure328

follows the architecture illustrated in Fig. 7.329

For simplicity, in our HNS, the structure of each fuzzy IT2 FPDC is configured with a predefined
number of equidistant triangular MFs for inputs, and equidistant singletons for output. Each IT2
FPDC contains three triangular Membership Functions (MFs), in which the corresponding error (e)
and derivative of error (∆e) are used as control inputs. The output of each IT2 FPDC is the Pulse
Width Modulation (PWM) that controls the angular speed of each thruster in the ROV. Where the
terms:

E(k) = Gee(k) = Ge(yref − yf )

∆E(k) = G∆e∆e(k) = G∆e(e(k)− e(k − 1))
(51)

in which, yf , yref is the output system and the reference signal respectively, and k is the sampling
instance. The output variable u(k) is calculated from the incremental output ∆u(k) and its previous
value u(k − 1) as follows:

u(k) = u(k − 1) + ∆(k) (52)

where ∆u(k) is obtained as:
∆u(k) = GUU(k) (53)
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Fig. 7. (a) Structure of an IT2 Fuzzy PD Controller used to perform the heading, depth and edge distance
behaviours.

where, GU is an scaling factor. As detailed in Fig. 5, high-level decision-making in the HNS is330

performed by a number of IF-THEN rules that facilitates real-time intelligence by breaking down331

overall motion control into a set of IT2 fuzzy controllers with quasi-parallel execution.332

3.5. Low-level Fuzzy Behaviours333

3.5.1. Heading Behaviour334

To navigate parallel to each wall in the water container, the ROV employs an IT2 FPDC to
control its heading (yaw angle). The IT2 FPDC is a fuzzy architecture with three triangular MFs
of IT2 and a Wu-Mendel type-reduction. As described in Fig. 5(c), heading behaviour is activated
if the value of yaw angle is out of the limits (βref − βL) ≤ βcp ≤ (βref + βU ), where βref is the
reference yaw angle and [βL, βU ] are its lower and upper limit respectively. The current heading
βcp of the ROV is provided by a compass as an angle value which is low-pass filtered. To perform
heading behaviour, an IT2 FPDC with three fuzzy rules, a Wu-Mendel (WM) type-reducer and one
output to control each thruster’s angular speed is suggested. To turn right/left, the ROV turn on
all four vertical thrusters with a predefined configuration as shown in Fig. 2. As described in Fig.
6, at the beginning of each experiment (path), the ROV is randomly located in the water container.
From there, by using the reference angle β = 0, the target heading βref that allows the ROV to
keep a parallel alignment to its closest wall βcp = βref can calculated as shown in Fig. 4. Therefore,
control inputs, e = βref −βcp, and its change ∆e = e(k)−e(k−1). The angle βref can be computed
by adding the current heading βcp and the angle θm which are directly obtained from the compass
and ping sonar readings correspondingly.

βref = βcp + θm (54)

dw is the target distance to the closest wall and dc the current ping sonar reading measured in335

metres.336

3.5.2. Depth behaviour337

In underwater navigation, ROV’s dynamics are highly nonlinear and for control purposes, the
hydrodynamic coefficients of the vehicles are difficult to estimate under different underwater condi-
tions. In this sense, IT2 fuzzy logic represents an ideal solution when a dynamic model of the ROV
is not available. The depth behaviour is needed to control the vertical position of the ROV through-
put the completion of one path. An IT2 FPDC with triangular MFs, a Wu-Mendel type-reducer
and two inputs, i.e. e and ∆e is considered.

e = dref − dROV (55)

where dref is the desired depth, dROV is the current vertical position obtained by a depth sensor in338

cm. The change of e is calculated as ∆e = e(k)− e(k − 1). Because of the dimensions of the water339
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container, the largest value for dref is suggested as dref = 2.3m, while its smallest value is equal340

to 0.0m. The output value of the proposed IT2 FPDC is the pulse width to regulate the angular341

speed of the two horizontal thrusters position at the center of the ROV chassis.342

3.5.3. Edge Distance Behaviour343

Edge distance behaviour is employed to follow a parallel trajectory along each wall at a desired344

distance. To execute edge distance behaviour, an echosounder was mounted on the right side of345

the ROV, where its reading is provided in centimetres. The signal obtained from the echosounder346

is the output of a low-pass filter used to discriminate signals with frequency lower than a selected347

cutoff frequency. To control lateral motion, an IT2F-PD controller with two inputs, i.e. error and348

change in error with respect to the distance measured by the echosounder is employed to regulate349

the angular speed of thrusters M001-M004 with a predefined configuration. The IT2F-PD controller350

has three MFs and a Wu-Mendel type reducer, in which the lower and upper boundaries of the FOU351

are determined experimentally.352

3.5.4. Contour Classification353

The proposed OIT2-FELM is integrated into the HNS structure to achieve two different goals.
First, the OIT2FELM is utilised to train TSK IT2 FIS in order to classify the data coming from
a micro data sonar and recognise the type of contour around the ROV. Three different types of
contour are suggested, wall, corner and an irregular object (obstacle). Secondly, the information
provided by the process of contour classification is used by the HNS for collision-avoidance and
obstacle inspection. As shown in Fig. 5(a), for contour classification, the training of a TSK IT2 FIS
follows a two-stage process. First, OIT2-FELM is applied to train TSK IT2 FIS using a static data
set that is collected offline. Then, for real experiments, the trained TSK IT2 FIS is integrated into
the structure of the proposed HNS, in which sonar data with varying size and collected during each
experiment is fed to the TSK IT2 FIS. In the second stage, online data is preprocessed and used by
the OIT2-FELM to update the parameters of TSK IT2 FIS. To input training data to TSK IT2 FIS,
raw data coming from the sonar follows a two-stage preprocessing in which data is first low-pass
filtered and then normalised to the interval [0, 1]. The initial training data is obtained by collecting
sonar readings at different locations in the water container. As illustrated in Fig. 4, a scanning
sector that consists of five angles, namely, xk = [180◦, 172◦, 164◦, 156◦, 148◦] is employed, in which
k is the current sonar reading. The reading frequency in the compass at which data was collected
was set equal to 0.02Hz. For contour classification in real experiments, a voting scheme based on
a recursive accumulation on the average value of four consecutive outputs of the OIT2-FELM is
implemented. This classification process is completed once a belief threshold βe is exceeded, where
e = 1, . . . , Ne, and Ne is the total number of sonar readings fed into the TSK IT2 FIS. This action
triggers a decision making process for the classification of each contour where the current predicted
class is computed by:

ĉ = arg max
c

(yt(c|xk)) (56)

in which c is used to denote the current class, and xk is the sonar data collected at time k. Where
yt is calculated as:

yt(c|xk) =
1

ns

k∑
k=k−ns

yi(xk) (57)

where ns is the number of consecutive samples used to compute the average value yt, and yi(xk)354

is the output of the OIT2-FELM at time k. Finally, decision-making in the HNS is based on this355

information to provide the ROV with more autonomy and real time planning capabilities.356
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Figure 8: Objects used for the collection of sonar data located at either wall one or wall three.358

3.6. High-Level Coordination359

Coordination of low-level behaviours in the HNS is carried out by a high-level hierarchy that
follows the principle operation of fuzzy architectures with singleton activation [5], in which the
number of rules does not increase exponentially, but linearly with the number of input variables.
Near-to-real-time response in the ROV is achieved by the concurrent operation of ROS and the
rule-base structure of crisp IF-THEN rules that facilitates the HNS with quasi-parallel execution
of two or more local behaviours. As described in Fig. 5(c), ROV’s behaviour is encoded as a rule-
base that maps relevant sensor inputs to control outputs according to a desired control policy or
goal, while the HNS incorporates task-achieving behaviours whose priorities may change in time.
Activation of fuzzy behaviours follow a scheme that employs a weighted decision-making based on
each qth fuzzy rule as:

Rq : Yaw angle is large (βcp ≥ βref + 5o) AND . . .

ROV’s depth is small (dROV ≤ dref ) . . .

THEN depth and heading behaviour (58)

3.7. Collection and Preprocessing of Training Data360

The recognition of the type of contour was performed by the proposed OIT2-FELM. Initial361

chunks of data for training and testing were used for cross-validation purposes. A scanning data362

sonar installed in the ROV was used to collect data offline at different locations in the water363

container with a different depth, of which, a final data set of 1273 records was created. Each input364

vector in the data set consists of five attributes - each one corresponding to a distance measurement365

for the angles {180◦, 172◦, 164◦ 156◦, 148◦} (See Fig. 4). For real experiments, online learning is366

continuously performed by the proposed OIT2-FELM, where new data may arrive one-by-one or367

chunk-by-chunk with a fixed or varying varying size.368

In order to make online learning feasible, sonar data needed to be cleaned online. This cleaning369

process was necessary because sonar data - supplied as a set of five-dimensional points contained370

noisy and spurious information.371
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Figure 9: Example of sonar data used to cross-validate the proposed OIT2-FELM.373

Especially, spurious values may result from multiple reflections due to the size of the water container374

and the materials used to build it. Other factors such as the pitching and the rolling of the375

ROV as well as inaccuracy and miscalibration of measurement devices may negatively affect data376

collection. Within this context, the purpose of the cleaning stage was not to remove noisy data377

but eliminate spurious readings and properly form input data to the OIT2-FELM. As shown in378

Fig. 8(a), to evaluate the performance of the proposed OIT2-FELM in the presence of irregular379

walls, two different objects are located next to either wall 1 or wall 3 during data collection. In380

this research work, a balanced data set for binary classification was collected as shown Fig. 9. 673381

samples are used to denote a class that corresponds to sonar signals that describe a corner, while382

the remaining data is used to denote a wall or walls where an object has been placed at (See Fig.383

8). Training was normalised to the range [0-1]. In Fig. 9, an example of 600 sonar records after384

cleaning for the angle 180o, 172o and 164o is illustrated.385

4. Performance Evaluation of the OIT2-FELM386

To evaluate the proposed OIT2-FELM, three different types of experiments are suggested in387

this section. For the first two experiments, the OIT2-FELM is applied to solve popular benchmark388

problems in the areas of nonlinear system identification, regression and classification. Finally,389

the OIT2-FELM is integrated into a Hierarchical Navigation Strategy (HNS) of an ROV as its390

main navigation mechanism to complete a predefined 3D path. All simulations are carried out in391

MATLAB 16b environment running in a 2.7 GHz intel core i5 processor.392
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Table 2: PERFORMANCE FOR NONLINEAR SYSTEMS IDENTIFICATION.393

Model Training (RMSE) Testing (RMSE)

Mean Time(s) Mean SD # Rules

G
a
u
ss

m
f

OS-FELM 0.0781 2.290 0.0173 0.0119 15

ANFIS 0.1311 145.0 0.0588 0.0078 27

SAFIS 0.1493 22.47 0.0533 0.0103 30

OIT2-FELM-
SC

0.0662 2.990 0.0130 0.0100 15

OIT2-FELM-
NT

0.0701 2.410 0.0144 0.0911 15

OIT2-FELM-
EKM

0.0670 3.331 0.0139 0.0120 15

C
a
u
ch

y
m

f

OS-FELM 0.0773 2.197 0.0169 0.0124 15

ANFIS 0.1264 150.8 0.0479 0.0096 27

Simp1 eTS 0.3305 75.70 0.1169 0.0115 42

OIT2-FELM-
SC

0.0612 3.011 0.0117 0.0198 15

OIT2-FELM-
NT

0.0623 2.430 0.0128 0.0116 15

OIT2-FELM-
EKM

0.0609 3.761 0.0122 0.079 15

394

4.1. NonLinear System Identification395

In this work, the nonlinear dynamic system to be identified is that suggested in [44], which is
described by:

y(k) =
y(k − 1)y(k − 2)(y(k − 1) + 2.5)

1 + y2(k − 1) + y2(k − 2)
(59)

As indicated in [44], the equilibrium state of the unforced system described by Eq. 59 is (0, 0). The
training input u(k) is uniformly selected in the range [−2, 2] and the testing input data is generated
by u(k) = sin(2πk/25). For cross-validation purposes, a data set of 5000 and 200 observations is
created for training and testing the proposed OIT2-FELM respectively. A uniformly distributed
noise in the range of [−0.2, 0.2] is added to all training observations, while a noise-free signal is
added to the testing data. For comparison reasons, in this work an input-output configuration
[y(k− 1) y(k− 2), u(k− 1)] and y(k) is selected correspondingly. Therefore, the identified model is
given by:

ŷ(k) = f̂(y(k − 1) y(k − 2), u(k − 1))

To compare the performance of the proposed OIT2-FELM with respect to other existing fuzzy396

methodologies, an OIT2-FELM using three different output layers is suggested, namely: an output397

layer with an SC algorithm, with a NT approach and with an EKM algorithm respectively. For the398

nonlinear system identification, in Table 2, a comparison of the average performance of ten exper-399

iments between the proposed OIT2-FELM and other learning fuzzy methodologies such as ANFIS400

model [58], Sequential-Adaptive-Fuzzy-Inference-System (SAFIS) [59], and the classical version of401

sequential Online FELM (OS-FELM) [44]. For the implementation of OIT2-FELM, two different402

types of MFs are implemented, i.e. a) a Cauchy MF and b) a Gaussian MF. To evaluate the asso-403

ciated computational complexity in the OIT2-FELM, three different type-reduction approaches are404

implemented, namely, an Enhanced Karnik-Mendel algorithm (EKM), SC method, and a Nie-Tan405

direct deduzzification approach (NT).406
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Table 3: DETAILS OF REAL-WORLD BENCHMARK PROBLEMS.407

Datasets # Attributes # Observations

Training Testing

Regression Data Sets

California Housing 8 10320 10320

Auto-MPG 6 196 196

2D Planes 10 10,000 30,768

Bank 8 4,500 3,692

Kinematics of Robot Arm 8 4,000 4,192

Classification Data Sets

Page blocks 8 10320 10320

Spam Emails 6 196 196

2D Planes 10 10,000 30,768

Letter Recognition 8 4,500 3,692

408

From Table 2, it can be observed that the best performance is obtained by those fuzzy approaches409

with 15 rules. In particular, compared to other methodologies, the OIT2-FELM with an SC type-410

reduction offers a similar or better trade-off between accuracy, model simplicity and training time.411

4.2. Regression and Classification Problems412

In this section, eight data sets related to regression and classification problems are considered413

to evaluate the performance of the proposed OIT2-FELM. For the solution of regression problems414

an OIT2-FELM with a Multiple-Input-Single-Output structure is applied. For comparison reasons,415

a Multiple-Input-Multiple-Output (MIMO) structure for the OIT2-FELM is used to the solution of416

classification problems. Details of all data sets are included in Table 3, in which, for comparison417

reason, all algorithms use Cauchy MFs. Input and Output attributes for both types of problems are418

normalised in the range [0,1]. The optimum number of fuzzy rules in the OIT2-FELM is determined419

by trial and error until the best performance is achieved. To determine the best balance between420

training time and model accuracy, different experiments using data chunks with different size was421

implemented.422

Table 4 presents the average performance of ten experiments, in which, the results obtained by423

other fuzzy methods are implemented, i.e. the full version of the ANFIS model [58], Simp1 eTS and424

the OS-FELM [44]. To compare the performance of the incorporation of the SC algorithm in the425

structure of an OIT2-FELM, three different versions of the proposed OIT2-FELM is implemented:426

a) an OIT2-FELM with a SC algorithm (or OIT2-FELM-SC for short), b) an OIT2-FELM having427

a NT direct-defuzzification method, and c) an OIT2-FELM with an Enhanced Karnik-Mendel428

algorithm (EKM). Based on our experiments (See Table 4), for both problems, it can be concluded429

that in general the proposed OIT2-FELM provides a similar or better testing performance with430

respect to other methodologies, especially when the number of fuzzy rules is small. Based on431

experimentation, it was determined that for all the data sets presented in Table 4, the smallest432

size of each training data chunk that produces the highest performance is in the interval 50 − 80433

samples. Generally speaking, the OIT2-FELM provides a high trade-off between model accuracy434

and model simplicity with a high efficiency in terms of computational complexity for the solution435

of regression and classification problems using benchmark data sets.436
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Table 4
AVERAGE MODEL PERFORMANCE FOR THE SOLUTION OF REGRESSION AND CLASSIFICATION PROBLEMS.

Model OS-FELM ANFIS-
Full

EIT2-RBFNN OIT2-FELM-
SC

OIT2-FELM-
NT

OIT2-FELM-
EKM

ELM

Data Avg. Performance Regression Problems

C
a
li
fo

rn
ia

H
o
u

si
n

g Training RMSE 0.1305 0.1123 0.1019 0.1307 0.1312 0.1302 0.1311

Testing RMSE 0.1322 0.1445 0.1293 0.1313 0.1318 0.1306 0.1335

Training Time 2.010 3002 1180 2.910 2.120 4.210 0.1310

Number of Rules 5 256 5 5 5 5 25

A
u

to
M

P
G Training RMSE 0.0673 0.0301 0.0401 0.0583 0.0661 0.0679 0.0726

Testing RMSE 0.0771 0.1012 0.0509 0.0680 0.0775 0.0642 0.0964

Training Time 0.0510 5.2200 110.10 0.3100 0.1200 3.1130 0.0100

Number of Rules 3 64 3 3 3 3 10

C
en

su
s

(H
o
u

se
8
L

) Training RMSE 0.0670 0.0589 0.0492 0.0636 0.0671 0.0601 0.0710

Testing RMSE 0.0698 0.0911 0.0577 0.0649 0.0688 0.0612 0.0729

Training Time 2.9010 3220.3 1321.1 3.5460 3.0110 7.1202 0.0641

Number of Rules 8 256 8 8 8 8 20

K
in

em
a
ti

cs
R

o
b

o
ti

c
A

rm

Training RMSE 0.0772 0.0211 0.0546 0.0701 0.0723 0.0669 0.0770

Testing RMSE 0.0698 0.0901 0.0601 0.0811 0.0688 0.0612 0.0824

Training Time 6.4010 1009.2 677.10 7.8013 6.8320 8.4772 0.9320

Number of Rules 50 256 50 50 50 50 200

B
a
n

k Training RMSE 0.0381 0.0199 0.0201 0.0357 0.0379 0.0372 0.0451

Testing RMSE 0.0443 0.1126 0.0359 0.0372 0.0400 0.0382 0.0503

Training Time 1.7800 1198.0 988.10 2.5910 1.9220 2.9030 4.2100

Number of Rules 15 256 15 15 15 15 400

Model OS-FELM Simp1 eTS EIT2-
RBFNN

OIT2-
FELM-SC

OIT2-
FELM-NT

OIT2-FELM-
EKM

ELM

Performance % Classification Problems

P
a
g
e

B
lo

ck
s Training RMSE 96.93 95.13 97.80 97.11 97.22 96.70 95.52

Testing RMSE 95.92 94.55 96.89 96.39 95.97 96.21 95.89

Testing Time 1.5300 17.780 601.30 3.440 2.401 5.109 0.156

Number of Rules 10 14 10 10 10 10 45

S
p

a
m

E
m

a
il
s Training RMSE 92.64 87.48 94.01 92.70 93.01 92.64 94.77

Testing RMSE 91.59 87.37 92.79 92.09 91.99 92.11 92.13

Training Time 5.460 4348 1904 13.09 7.110 16.19 0.188

Number of Rules 8 17 8 8 8 8 300

L
et

te
r

R
ec

o
g
n

it
io

n Training RMSE 96.27 81.71 97.19 96.85 96.24 96.72 96.46

Testing RMSE 93.63 80.56 94.21 93.92 93.70 93.86 93.77

Training Time 46.12 29790 9881 222.1 55.19 280.4 12.12

Number of Rules 70 79 70 70 70 70 900

4.3. OIT2-FELM applied to Path following using an ROV437

In this section, the performance of the proposed OIT2-FELM is evaluated in world-real condi-438

tions to the completion of a predefined 3D path following using an ROV in a water container of439

dimensions 2.5m × 2.5m × 3.5m. As described in Fig. 10(a), in this work, each successful exper-440

iment is the completion of a predefined 3D path that consists of two circuits at different depths.441

Each circuit in the water container can be completed by following a clockwise/anticlockwise path442
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navigating along walls 1-2-3-4/4-3-2-1 respectively. The trained TSK IT2 FIS is integrated into an443

HNS as the main classification mechanism to determine the type of contour that is in front and444

next to the ROV.445
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Figure 10: Predefined 3D path to be completed.447
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Figure 11: Final distribution of (a) Gaussian MFs and (b) Cauchy MFs.449

This information is utilised by the HNS to decompose control motion into a number of four individual450

fuzzy behaviours. Three behaviours are applied to control the heading and vertical position (depth)451

of the ROV, as well as its distance to the closest wall or object. The fourth behaviour involves452

contour classification performed by the OIT2-FELM. At the low-level hierarchy, such behaviours453

are activated according to stimuli, while at the high-level hierarchy, they are coordinated by a454

number of IF-THEN rules with singleton activation. To investigate the average performance of455

the HNS and the proposed OIT2-FELM under real conditions, a number of five successful random456

experiments to the completion of the proposed 3D path using an ROV is implemented. At each457

experiment, the initial depth is defined as dp1 = 0.0m, while the depth dp2 for the second circuit458

is defined with the values {1.0m, 1.2m, 1.3m, 1.5m, 1.6m} to each experiment correspondingly. A459

value of dref = 0.55m (See Fig. 10(b)) is used for all experiments. To evaluate the performance460

of the OIT2-FELM in the presence of irregular shapes, an obstacle is located next to a random461

wall as illustrated in Fig. 10(b). The rest of this section presents results that correspond to the462

model accuracy achieved by the OIT2-FELM for off-line contour classification (off-line training),463

and the performance provided by the ROV to complete a 3D path under real world conditions464

(Online contour classification).465

4.3.1. Off-line Contour Classification Results466

For Contour classification, in this section two types of results are presented. First, the classifi-
cation accuracy of the proposed OIT2-FELM is evaluated using a data set of 1273 sonar records of
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which, 1073 samples were used for training, and 200 samples for testing. The second type of results
present the classification performance of the proposed OIT2-FELM in real experiments for the com-
pletion of a predefined 3D path. In Table 5, the average model accuracy of ten random experiments
performance of the proposed OIT2-FELM is compared to other existing methodologies, in which
two types of neural structures for the OIT2-FELM are implemented, i.e.: a) Multiple-Input-Single-
Output (MISO) and b) Multiple-Output-Multiple-Output (MIMO). For contour classification using
an MISO TSK IT2 FIS, the test sample is then classified by the following criterion:

yip =

{
Corner if yip ≤ −1

Wall if yip > +1
(60)

467

Table 5: PERFORMANCE FOR CONTOUR CLASSIFICATION.468

Model Training (RMSE) Testing (RMSE)

Mean(%) Time(s) Mean(%) SD # Rules

MISO Models

C
a
u
ch

y
M

F

OS-FELM 90.81 2.41 80.06 0.019 16

OIT2-FELM-
SC

92.27 3.42 83.53 0.009 16

OIT2-FELM-
NT

89.29 2.80 81.24 0.150 16

OIT2-FELM-
EKM

93.19 4.05 83.81 0.021 16

G
a
u
ss

ia
n

M
F OS-FELM 91.25 2.45 82.28 0.009 16

OIT2-FELM-
SC

93.92 3.44 84.10 0.010 16

OIT2-FELM-
NT

89.88 2.60 82.01 0.005 16

OIT2-FELM-
EKM

94.03 3.92 85.10 0.056 16

ML-ELM 95.96 6.19 89.14 0.003 16

BELM 90.21 4.94 78.77 0.002 30

MIMO Models

C
a
u
ch

y
M

F

OS-FELM 89.96 2.53 82.97 0.003 16

OIT2-FELM-
SC

94.05 3.02 84.29 0.019 16

OIT2-FELM-
NT

89.90 2.62 81.79 0.095 16

OIT2-FELM-
EKM

94.20 4.12 83.70 0.008 16

G
a
u
ss

ia
n

M
F OS-FELM 95.21 2.59 82.69 0.05 16

OIT2-FELM-
SC

95.01 3.00 83.00 0.017 16

OIT2-FELM-
NT

90.19 2.55 81.10 0.023 16

OIT2-FELM-
EKM

94.23 4.22 83.88 0.044 16

ML-ELM 98.21 6.33 87.41 0.005 16

BELM 92.02 5.01 80.01 0.090 30

469

For contour classification using an MIMO TSK IT2 FIS, the test sample is classified based on
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the criterion:

yip =

{
Corner if yip = [−1,+1]T

Wall if yip = [+1,−1]T
(61)

From our experiments, it was found that an OIT2-FELM with sixteen fuzzy rules using a Gaussian470

MF of IT2 provided the best trade-off between model generalisation and model simplicity for both471

types of neural structures. For cross-validation, an initial chunk of 500 records was employed to472

calculate the initial values of each Online Model. Subsequent data chunks of size smaller or equal to473

80 records were fed into the OIT2-FELM in order to update its parameters. According to our results,474

it was determined that chunks of data that are larger than 80 records do not improve significantly475

the generalisation capabilities of an OIT2-FELM in this experiment. Details of the average Root-476

Mean-Square-Error (RMSE) of five experiments for contour classification are presented in Table477
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Figure 12: Confusion matrix of simultaneous classification provided by the OIT2-FELM.480

As indicated in table 5, three versions of the OIT2-FELM are suggested, namely, the proposed481

OIT2-FELM with a type-reduction (called OIT2-FELM-SC for short), an OIT2-FELM with an482

NT algorithm and OIT2-FELM with an EKM algorithm respectively. To compare the efficiency483

of the proposed network, three neural models based on ELM theory are implemented, i.e. Online-484

Sequential ELM [60], Multilayer ELM (ML-ELM) [61] and Bayesian ELM [62]. Columns for training485

and testing were the percentage of correct classification over the validation data for each contour.486

Unlike networks with three layer, the neural structure of the ML-ELM includes two autoencoders487

and a classifier with a number of hidden units defined with [45, 45, 30] correspondingly. Evidently,488

from the table, an average performance to recognise new data is about 80%, of which the highest489

accuracy is that provided by an ML-ELM. However, the best trade-off between low computational490

complexity, model simplicity and high generalisation properties is provided by an MISO OIT2-491

FELM-EKM and an MIMO OIT2-FELM-SC with sixteen fuzzy rules. In Fig. 11, an example492

of the final discourse of universe for the input Sonar Signal 156o is illustrated. As described in493

Fig. 11, even though the MFs on individual variables are used to form input space partitioning,494

the distinguishability of these MFs produced by using traditional IT2-FELM is not guaranteed.495

In this study, the proposed OIT2-FELM is a data-driven neural fuzzy approach equivalent to a496

possibility fuzzy model in which sufficient overlapping is necessary for model accuracy but not for497

model interpretability [63].498
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499

Figure 13: Contour classification regime that corresponds to sonar readings 148o and 164o.500

In Fig. 12, the confusion matrix that corresponds to the average testing performance of an OIT2-501

FELM-SC with interval Gaussian MFs is presented. From the Figure, it can be observed that the502

largest confusion is produced to the recognition of corners.503

The confusion between corners and walls (including objects) is consistent with visual data ob-504

tained by the optimum operation regime (surface) constructed from the prediction of a OIT2-FELM-505

SC as described in Fig. 13. From the figure, signal readings that correspond to the angle 148o and506

164o are used as a representative classification regime, in which small values indicate the presence507

of corners or objects.508

4.3.2. Performance of the ROV to complete 3D path-following509

This section reports the average performance of the proposed HNS and the classification accuracy510

of an OIT2-FELM for the completion of 3D paths under real conditions. To discriminate between511

walls and corners, an MISO structure for the TSK IT2 FIS was suggested. Since the dynamic of the512

ROV is not available, the dynamic properties of the closed-loop structure and the parameters of each513

IT2-FS as well as the corresponding consequent of each IF-THEN fuzzy rule were derived intuitively514

and experimentally. Sonar data collected in real time was used by the proposed OIT2-FELM with515

a SC type-reduction to update the parameters of TSK IT2 FIS. To illustrate the performance516

of each fuzzy behaviour, in Fig. 14, the trajectory followed by the ROV using an OIT2-FELM517

and two different types of fuzzy controllers is presented. For example, in Fig. 14(a) and (b), the518

performance of the fuzzy behaviour for yaw angle control based on an IT2 FPD controller and519

a T1 FPD controller is illustrated respectively. From both figures, it can be observed the time520

necessary to navigate each wall in the water container is different. This is a natural response due521

to the different navigation transitions and uncertainties present in the container. In Fig. 14(c),522

the performance of edge distance behaviour using an IT2 FPD controller versus T1 FPD controller523

is presented. In Fig. 14(d) and (e), the performance of the fuzzy behaviour for depth control524

using an IT2 FPD controller and T1 FPD controller is illustrated correspondingly. As depicted in525

Fig. 14 [64], the implementation of IT2 FPD controllers as low-level fuzzy behaviours improves the526

overall performance of T1 FPD in the face of noisy signals and inherent uncertainties in the water527

container. As pointed out in [65], the incorporation of higher order fuzzy controllers not only allows528

more degree of freedom in the fuzzy sets, but also improves system stability with a better treatment529

of uncertainty. Recent advances the design of high order fuzzy logic controllers such as General530

Type-2 Fuzzy controllers (GT2 FLCs) [66] and interval Type-3 fuzzy control controllers (IT3 FLCs)531

have demonstrated to outperform conventional fuzzy controllers due to their capabilities to better532
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Fig. 14. Comparison performance of two different types of fuzzy controllers for 3D Path following using an ROV:
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control with IT2 FPD controller vs T1 FPD controller and Vertical position (depth) using an (c) IT2 FPD controller
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handle dynamic perturbation and actuator nonlinearities [64]. While in IT3 FLCs, upper and the533

lower of the FOU are not constant and the secondary MF is of interval type-2, in GT2 and IT2534

FLCs are T1 fuzzy sets and crisp numbers respectively.535

In Fig. 15, the 3D trajectory followed by the ROV using an HNS whose low-level fuzzy be-536

haviours are based on an (a) OIT2-FELM wtih a SC type-reduction and IT2 FPD control and (b)537

an OIT2-FELM wtih a SC type-reduction and T1 FPD control is presented. As described in 15,538

the initial navigation point in the first circuit begins at the position A, and ends in the point B.539

Once the first circuit is completed, the ROV descends 1.2m reaching the starting point of circuit540

two (location D). Finally, the successful completion of the 3D path is reached at point E. In this541

experiment, an obstacle (a traffic cone) was placed next to wall three at a depth of 1.3m in order to542

investigate the ability of the HNS and the proposed OIT2-FELM-SC to deal with irregular shapes.543

From Fig. 14(a), it can be observed that decision making in the ROV takes longer at the beginning544

of the first circuit (Fig. 14(c) and Fig. 15), and when it is navigating along the wall three during545

the completion of the second circuit.546
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547

Figure 15: 3D path following task completed by the ROV using a water container of 2.5m× 2.5m× 3.5m and an
obstacle situated in wall three using an (a) HNS based on IT2 FPD control and the proposed OIT2-FELM, and an
(b) HNS based on T1 FPD control and OS-FELM (T1 fuzzy counterpart).548

In the first circuit, this is mainly due to the number of navigation actions the ROV needs to complete549

before reaching its position to the closest wall.550

First, the reference yaw angle βref is estimated using signal readings from the sonar, the551

echosounder and the compass.552

This information is then used by the HNS to guide the ROV to maintain a position to the closest553

wall (or object, See Fig. 14(c)) with a parallel alignment and predefined depth (Fig. 14(d, e)). From554

this position, based on the information provided by each fuzzy behaviour, local path planning is555

executed in near-to-real-time. In the second circuit, in the presence of obstacles, a larger number556

of sonar samples is required to distinguish between walls, obstacles and corners. As shown in Fig.557

14(a), the reference yaw angle βref is increased 90o each time the ROV reaches a corner. At the558

beginning of each wall, the HNS estimates the new value for the reference angle βref . The heading559

behaviour is activated once the yaw angle is out of the range [βref − 5o, βref + 5o]. In general, from560

our experiments it can be concluded that the average time that takes the ROV to complete a 3D561

path that consists of two circuits is approximately 450sec (7.5minutes).562

In Fig. 16, a random example of the ROV’s behaviour in three different locations during the563

completion of a predefined 3D path is illustrated. Fig. 16(a) shows the position at which the ROV564

has completed the first circuit and it is descending from the surface to the initial point of the second565

circuit. In Fig. 16(b), the ROV is next to an obstacle which creates an irregularity while navigating566

along the wall three. It is worth mentioning that in this position, the ROV is executing three actions567

concurrently, i.e. heading control, depth control and contour classification. Finally, in Fig. 16(c),568

the ROV reaches the final point of the 3D path, and from there it is ascending to the surface.569
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Figure 17: Confusion Matrix of real time contour classification.571

From our experiments, it was found that a value ĉ ≥ 0.75 and a max number of four consecutive572

sonar data signals favours an average classification performance of approximately 90% with an573

average computing time of 1.6s. In Fig. 17, the average confusion matrix of five experiments is574

shown. In the matrix, it can be observed that the largest confusion is for the recognition of corners.575

We believe this is due to a dead zone that is created during the construction of the sonar data to576

discriminate corners from walls. Particularly to the correct definition at which values of 180o, 172o577

and 164o it is close enough to consider a wall as a corner. From the confusion matrix, it can also578

be observed that an average number of 116 sonar samples can be collected at each experiment, of579

which, a larger number correspond to class walls.580

5. Discussion581

Path following is a navigation task frequently required in marine missions that involve the582

inspection of underwater structures such as dams, ship hulls, harbors and oil pipelines. Other583

applications for path following includes the mapping and monitoring of the marine environment,584
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data collection in oceanic areas of difficult access to vessel-based instruments, e.g. underwater caves,585

under-ice missions in polar regions and tasks that involve scientific survey and sampling to the full586

depth of the ocean [67]. A crucial requirement for safe operation and recovery of UVs is their ability587

to autonomously complete predefined paths in uncertain environments [14, 15].588

In this work, we implemented an Online-Interval Type-2 Fuzzy Extreme Learning Machine as the589

main guidance mechanism to the completion of a 3D path using a Remotely Operated Underwater590

Vehicle (ROV). The proposed OIT2-FELM is an online sequential learning scheme to the training591

of a more generalised model of Interval Type-2 Fuzzy Inference Systems (IT2-FISs) in which data592

may arrive one-by-one or chunk-by-chunk with a fixed or varying size. We use the term ”more593

generalised” to refer to the design of neural structures that follows the general taxonomy of IT2-594

FISs. An OIT2-FELM is derived from the functional equivalence between SLFNs and IT2-FISs595

using a TSK inference, in which, capabilities from the theory of neural networks and fuzzy logic596

may be applied directly to its structure under some mild conditions. To extent the application of597

the OIT2-FELM onto FISs of Mamdani type, consequent weights become a crisp value. Similar to598

Fuzzy Logic Systems (FLSs), the OIT2-FELM is an IT2-FIS that contains four main components,599

i.e., a process for fuzzification, a rule base, an inference engine and an output processor. In the600

output processor, a type-reduction (TR) method projects IT2 fuzzy sets into an interval of numbers601

which are finally mapped by a defuzzifier to obtain their centroid (crisp value) [30, 34, 45]. Based on602

ELM theory, the parameters of each antecedent in the OIT2-FELM are arbitrarily chosen while the603

consequent weights are determined analytically. The resulting OIT2-FELM model can be viewed604

as a linear system in which each consequent is obtained through a generalised inverse operation of605

hidden layer output matrices. A common practice for the design of IT2-FELMs is to perform this606

process through the implementation of TR methods based on KM algorithms. This practice still607

represents a fast training process for the design of IT2-FELMs, however the iterative nature of KM608

algorithms may represent a bottleneck to certain cost-sensitive real world solutions. To reduce the609

associated computational load of KM algorithms, in this work we investigated three versions of the610

OIT2-FELM based on the type of TR. An enhanced KM algorithm (EKM), a simplified version of611

the COSTRWSR called SC algorithm, and the Nie-Tan closed-form method were implemented. In612

addition, two different types of bounded nonconstant piecewise continuous MFs are also suggested,613

namely, a Cauchy and Gaussian MF.614

To further investigate the performance of the proposed OIT2-FELM with respect to other ex-615

isting methodologies, an experiment that involves the solution of nonlinear system identification,616

regression and classification problems was implemented. From this experiment, data sets of differ-617

ent size and complexity were considered. For nonlinear system identification, the OIT2-FELM was618

evaluated in the presence of noise. Based on our simulations, it was observed an improved general-619

isation performance from the OIT2-FELM. This was mainly due to extra parameters that involve620

the design of each FS in the OIT2-FELM, and its ability to treat uncertainty as a deficiency that621

results from imprecise boundaries in the fuzzy sets. As suggested in [54], each FS in an IT2-FIS622

can be thought as a design degree of freedom. This accounts for a better treatment of noisy signals623

that may be translated into uncertainties in the antecedent MFs.624

In terms of computational efficiency, the incorporation of IT2 FSs usually represents an increase625

of the final computational complexity. One solution, is the use of TR algorithms that avoid the626

iterative nature of KM algorithms. It is worth mentioning, in some cases reducing the size of627

each training data for online learning may contribute to an increase in the final training time628

[44]. In general, from the first experiment, the OIT2-FELM is a well-suited methodology for the629

modelling of complex data sets that provides a high trade-off between model simplicity, accuracy and630

computational burden. An OIT2-FELM inherits the capabilities of online learning fuzzy systems631

to naturally describe system behaviour as a series of linguistic rules. Such behaviour formulates an632
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adequate optimisation of MFs in terms of semantic fuzzy criteria while properly dealing with the633

coverage, completeness and consistency of rules to get insights into the system being modelled.634

The second experiment involved the implementation of the OIT2-FELM in a Hierarchical Nav-635

igation Strategy (HNS) to provide an ROV with the necessary autonomy to complete a predefined636

3D path. The proposed OIT2-FELM proved to be a suitable methodology to extract in near-to-real637

time conditions useful knowledge about the surroundings of the ROV. In the face of uncertainty and638

imprecision, the OIT2-FELM demonstrated to deliver a better performance than the OS-FELM.639

External and internal uncertainties include the noisy signals coming from sensor measurement,640

in particular sonar data, and the disturbance and imprecision that results from the tether. As641

described in [30], IT2 fuzzy logic has been credited with being an adequate methodology to the642

robust design of FISs that are able to model and handle uncertainties [34]. The incorporation of643

Interval Type-2 fuzzy logic allows the HNS to handle the uncertainties in nonlinear control systems644

directly from the sensory system [68]. This is mainly due to the adaptiveness of each low-level fuzzy645

behaviour to define the bounds of each type-reduced interval FS with respect to input changes.646

The information provided by the OIT2-FELM was crucial to the HNS to decompose the ROV’s647

behaviour into a bottom-up hierarchy of increased behavioural complexity [5]. At the low level, fuzzy648

behaviours served a single purpose by operating in a reactive fashion. They performed nonlinear649

mappings from different sensors to motion actuators. Each behaviour knew nothing about other650

behaviours, and alone had been insufficient for autonomous navigation. These behaviours can be651

modulated through synergistic coordination to produce more composite behaviours allowing the652

ROV to achieve goal-directed operations (high-level hierarchy).653

The proposed navigation methodology, together with the OIT2-FELM is also inspired by the654

decision making process used by some nocturnal mammals to distinguish objects and the shape of655

confined spaces in dark environments. In some desert rodents, whisking is a cognitive process that656

allows them to estimate where an object is located, how big it is, and what kind of surface texture657

it has [40]. This information can help the rodent to distinguish a stone from a seed or a threat.658

Similar to the whisking process used by some desert rodents, the sonar information is processed by659

the OIT2-FELM to provide the ROV with a more complete sensory picture of its surroundings [69].660

This information also allows the ROV to distinguish a corner from a wall while local planning is661

achieved.662

An HNS treats each fuzzy behaviour as building blocks for more intelligent composite fuzzy663

behaviours. This is achieved by the concurrent execution of two or more low-level behaviours. The664

completion of one circuit in the water container implies that goal-directed navigation is decomposed665

by the HNS as a behavioural function of wall-follow, local path planning and collision avoidance.666

These behaviours can be further decomposed into low-level fuzzy behaviours, of which, the out-667

come of contour classification influences the overall ROV’s behaviour to a greater or lesser degree668

depending on the current situation.669

The results presented in this work only apply to autonomous navigation in indoor environments.670

The proposed robotic platform and the OIT2-FELM can be applied in outdoor environments as well.671

Future research includes the application of this robotic platform and the proposed methodology for672

the inspection of oil structures in shallow-depth zones of the Gulf of Mexico.673

6. Conclusion674

In this paper, a new sequential Learning methodology for the training of TSK IT2 FISs and its675

application to 3D path following using remotely operated underwater vehicles (ROVs) is suggested.676

The proposed methodology called Online Interval Type-2 Fuzzy Extreme Learning Machine (OIT2-677

FELM) is a learning scheme applied to a more generalised model of IT2 FISs equivalent to SLFNs,678
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in which data may arrive one-by-one or chunk-by-chunk with a fixed or varying size.679

The OIT2-FELM was integrated into a Hierarchical Navigation Strategy (HNS) as the main680

mechanism for local path planning to the successful completion of a predefined 3D path in un-681

derwater remotely operated underwater vehicles (ROVs). To provide the ROV with the necessary682

autonomy to complete predefined 3D paths, the OIT2-FELM inferred the surroundings of the ROV683

by classifying the information collected by an on-board scanning sonar. This information was684

utilised by the HNS to break down the navigation strategy into a number of local fuzzy behaviours685

that facilitate an accurate following behaviour with near-to-real-time intelligence.686

From our experiments, we showed that the OIT2-FELM is able to provide a well suited method-687

ology for robust behaviour in autonomous navigation in the presence of noisy signals, of which, data688

can be learned one-by-one or chunk-by-chunk (with fixed or varying size). The ROV showed an689

accurate tracking performance under different types of uncertainties such as dynamic perturbation690

and intrinsic actuator nonlinearities common in underwater environments.691

For a better treatment of uncertainty, future work includes the development and study of hier-692

archical navigation strategies where low-level behaviours are based Type-3 fuzzy logic control and693

adaptive Type-2 fuzzy controllers.694
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[13] S. Krupiński, G. Allibert, M.-D. Hua, T. Hamel, Pipeline tracking for fully-actuated au-733

tonomous underwater vehicle using visual servo control, in: 2012 American control conference734

(ACC), IEEE, 2012, pp. 6196–6202.735

[14] J. J. Leonard, A. Bahr, Autonomous underwater vehicle navigation, in: Springer Handbook of736

Ocean Engineering, Springer, 2016, pp. 341–358.737

[15] A. Kim, R. M. Eustice, Real-time visual slam for autonomous underwater hull inspection using738

visual saliency, IEEE Transactions on Robotics 29 (3) (2013) 719–733.739

[16] P. Angelov, C. Xydeas, D. Filev, On-line identification of mimo evolving takagi-sugeno740

fuzzy models, in: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.741

04CH37542), Vol. 1, IEEE, 2004, pp. 55–60.742

[17] L. Lapierre, B. Jouvencel, Robust nonlinear path-following control of an auv, IEEE Journal of743

Oceanic Engineering 33 (2) (2008) 89–102.744

[18] Y. Ma, M. Hu, X. Yan, Multi-objective path planning for unmanned surface vehicle with745

currents effects, ISA transactions 75 (2018) 137–156.746

[19] H. C. Lamraoui, Z. Qidan, Path following control of fully-actuated autonomous underwater747

vehicle in presence of fast-varying disturbances, Applied Ocean Research 86 (2019) 40–46.748

[20] X. Liang, X. Qu, Y. Hou, J. Zhang, Three-dimensional path following control of underactu-749

ated autonomous underwater vehicle based on damping backstepping, International Journal of750

Advanced Robotic Systems 14 (4) (2017) 1729881417724179.751

[21] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, D. Lane, Path planning for autonomous752

underwater vehicles, IEEE Transactions on Robotics 23 (2) (2007) 331–341.753

[22] Z. Peng, J. Wang, Q.-L. Han, Path-following control of autonomous underwater vehicles sub-754

ject to velocity and input constraints via neurodynamic optimization, IEEE Transactions on755

Industrial Electronics 66 (11) (2018) 8724–8732.756

36



[23] W. Yang, S. Fan, S. Xu, P. King, B. Kang, E. Kim, Autonomous underwater vehicle naviga-757

tion using sonar image matching based on convolutional neural network, IFAC-PapersOnLine758

52 (21) (2019) 156–162.759

[24] X. Liang, X. Qu, L. Wan, Q. Ma, Three-dimensional path following of an underactuated auv760

based on fuzzy backstepping sliding mode control, International Journal of Fuzzy Systems761

20 (2) (2018) 640–649.762

[25] T. Zhao, Y. Xiang, S. Dian, R. Guo, S. Li, Hierarchical interval type-2 fuzzy path planning763

based on genetic optimization, Journal of Intelligent & Fuzzy Systems (Preprint) (2020) 1–12.764

[26] H. Mehrjerdi, M. Saad, J. Ghommam, Hierarchical fuzzy cooperative control and path following765

for a team of mobile robots, IEEE/ASME Transactions on Mechatronics 16 (5) (2010) 907–917.766

[27] X. Liang, L. Wan, J. I. Blake, R. A. Shenoi, N. Townsend, Path following of an underactuated767

auv based on fuzzy backstepping sliding mode control, International Journal of Advanced768

Robotic Systems 13 (3) (2016) 122.769

[28] A. R. Solis, G. Panoutsos, Granular computing neural-fuzzy modelling: A neutrosophic ap-770

proach, Applied Soft Computing 13 (9) (2013) 4010–4021.771

[29] X. Xiang, C. Yu, L. Lapierre, J. Zhang, Q. Zhang, Survey on fuzzy-logic-based guidance and772

control of marine surface vehicles and underwater vehicles, International Journal of Fuzzy773

Systems 20 (2) (2018) 572–586.774

[30] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zslices, IEEE775

Transactions on Fuzzy Systems 18 (4) (2010) 637–660.776

[31] F. M. Raimondi, M. Melluso, Hierarchical fuzzy/lyapunov control for horizontal plane trajec-777

tory tracking of underactuated auv, in: 2010 IEEE International Symposium on Industrial778

Electronics, IEEE, 2010, pp. 1875–1882.779

[32] S. Panasuraman, V. M. Ganapathy, B. Shirinzadeh, Behavior based neuro-fuzzy controller for780

mobile robot navigation, in: International Conference on Mechatronics Technology 2002, Tokyo781

Institute of Technology, 2002, pp. 364–371.782

[33] S. Nurmaini, B. Tutuko, Intelligent robotics navigation system: Problems, methods, and algo-783

rithm., International Journal of Electrical & Computer Engineering (2088-8708) 7 (6) (2017).784

[34] H. A. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile785

robots, IEEE Transactions on Fuzzy systems 12 (4) (2004) 524–539.786

[35] A. Castro-Lopez, J. Puente, R. Vazquez-Casielles, Fuzzy inference suitability to determine the787

utilitarian quality of b2c websites, Applied Soft Computing 57 (2017) 132–143.788

[36] A. Rubio-Solis, U. Martinez-Hernandez, G. Panoutsos, Evolutionary extreme learning machine789

for the interval type-2 radial basis function neural network: A fuzzy modelling approach, in:790

2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2018, pp. 1–8.791

[37] A. Rubio-Solis, G. Panoutsos, C. Beltran-Perez, U. Martinez-Hernandez, A multilayer interval792

type-2 fuzzy extreme learning machine for the recognition of walking activities and gait events793

using wearable sensors, Neurocomputing (2020).794

37



[38] A. Rubio-Solis, T. Salgado-Jimenez, L. G. Garcia-Valdovinos, L. Nava-Balanzar, R. A.795

Hernandez-Hernandez, U. Martinez-Hernandez, An evolutionary general type-2 fuzzy neural796

network applied to trajectory planning in remotely operated underwater vehicles, in: 2020797

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2020, pp. 1–8.798

[39] M. A. Khanesar, A. J. Khakshour, O. Kaynak, H. Gao, Improving the speed of center of799

sets type reduction in interval type-2 fuzzy systems by eliminating the need for sorting, IEEE800

Transactions on Fuzzy Systems 25 (5) (2016) 1193–1206.801

[40] S. A. Hires, L. Pammer, K. Svoboda, D. Golomb, Tapered whiskers are required for active802

tactile sensation, Elife 2 (2013) e01350.803

[41] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications,804

Neurocomputing 70 (1-3) (2006) 489–501.805

[42] A. Rubio-Solis, G. Panoutsos, Iterative information granulation for novelty detection in complex806

datasets, in: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2016,807

pp. 953–960.808

[43] G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and mul-809

ticlass classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-810

netics) 42 (2) (2011) 513–529.811

[44] H.-J. Rong, G.-B. Huang, N. Sundararajan, P. Saratchandran, Online sequential fuzzy extreme812

learning machine for function approximation and classification problems, IEEE Transactions813

on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (4) (2009) 1067–1072.814

[45] A. Rubio-Solis, G. Panoutsos, Interval type-2 radial basis function neural network: a modeling815

framework, IEEE Transactions on Fuzzy Systems 23 (2) (2014) 457–473.816

[46] Z. Deng, K.-S. Choi, L. Cao, S. Wang, T2fela: Type-2 fuzzy extreme learning algorithm for817

fast training of interval type-2 tsk fuzzy logic system, IEEE transactions on neural networks818

and learning systems 25 (4) (2013) 664–676.819

[47] U. Martinez-Hernandez, A. Rubio-Solis, G. Panoutsos, A. A. Dehghani-Sanij, A combined820

adaptive neuro-fuzzy and bayesian strategy for recognition and prediction of gait events using821

wearable sensors, in: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),822

IEEE, 2017, pp. 1–6.823

[48] D. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems:824

overview and comparisons, IEEE Transactions on Fuzzy Systems 21 (1) (2012) 80–99.825

[49] J. M. Mendel, Computing derivatives in interval type-2 fuzzy logic systems, IEEE Transactions826

on Fuzzy Systems 12 (1) (2004) 84–98.827

[50] M. Luo, F. Sun, H. Liu, Joint block structure sparse representation for multi-input–multi-828

output (mimo) t–s fuzzy system identification, IEEE Transactions on Fuzzy Systems 22 (6)829

(2013) 1387–1400.830

[51] C. Chen, D. Wu, J. M. Garibaldi, R. I. John, J. Twycross, J. M. Mendel, A comprehensive831

study of the efficiency of type-reduction algorithms, IEEE Transactions on Fuzzy Systems832

(2020).833

38



[52] G.-B. Huang, N.-Y. Liang, H.-J. Rong, P. Saratchandran, N. Sundararajan, On-line sequential834

extreme learning machine., Computational Intelligence 2005 (2005) 232–237.835

[53] J. Zhao, Z. Wang, D. S. Park, Online sequential extreme learning machine with forgetting836

mechanism, Neurocomputing 87 (2012) 79–89.837

[54] J. M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial, IEEE Transactions838

on Fuzzy Systems 22 (5) (2013) 1162–1182.839

[55] G. Lakhekar, L. M. Waghmare, Robust maneuvering of autonomous underwater vehicle: an840

adaptive fuzzy pi sliding mode control, Intelligent Service Robotics 10 (3) (2017) 195–212.841

[56] R. S. Yadav, Application of soft computing techniques to calculation of medicine dose during842

the treatment of patient: a fuzzy logic approach, in: Handbook of Computational Intelligence843

in Biomedical Engineering and Healthcare, Elsevier, 2021, pp. 151–178.844

[57] A. J. Humaidi, H. T. Najem, A. Q. Al-Dujaili, D. A. Pereira, I. K. Ibraheem, A. T. Azar,845

Social spider optimization algorithm for tuning parameters in pd-like interval type-2 fuzzy846

logic controller applied to a parallel robot, Measurement and Control 54 (3-4) (2021) 303–323.847

[58] A. Pandey, S. Kumar, K. K. Pandey, D. R. Parhi, Mobile robot navigation in unknown static848

environments using anfis controller, Perspectives in Science 8 (2016) 421–423.849
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