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Abstract

In marine missions that involve 3D path following tasks, the overall goal of Underwater Vehicles
(UVs) is the successful completion of a path previously specified by the operator. This implies that
the path must be followed by the UV as closely as possible and arrive at a location for collection by
a vessel. In this paper, an Online Interval Type-2 Fuzzy Extreme Learning Machine (OIT2-FELM)
is suggested to achieve a robust following behaviour along a predefined 3D path using a Remotely
Operated Underwater Vehicle (ROV). The proposed machine is a fast sequential learning scheme to
the training of a more generalised model of TSK Interval Type-2 Fuzzy Inference Systems (TSK IT2
FISs) equivalent to Single Layer Feedforward Neural Networks (SLFNs). Learning new input data in
the OIT2-FELM can be done one-by-one or chunk-by-chunk with a fixed or varying size. The OI'T2-
FELM is implemented in a hierarchical navigation strategy (HNS) as the main guidance mechanism
to infer local control motions and to provide the ROV with the necessary autonomy to complete
a predefined 3D path. For local path-planning, the OIT2-FELM performs signal classification for
obstacle avoidance and target detection based on data collected by an on-board scan sonar. To
evaluate the performance of the proposed OIT2-FELM, two different experiments are suggested.
First, a number of benchmark problems in the field of non-linear system identification, regression
and classification problems are used. Secondly, a number of experiments to the completion of a
predefined 3D path using an ROV is implemented. Compared to other fuzzy strategies, the OIT2-
FELM offered two significant capabilities. On the one hand, the OIT2-FELM provides a better
treatment of uncertainty and noisy signals in underwater environments while improving the ROV’s
performance. Secondly, online learning in OIT2-FELM allows continuous knowledge discovery from
survey data to infer the surroundings of the ROV. Experiment results to the completion of 3D
paths show the effectiveness of the proposed approach to handle uncertainty and produce reasonable
classification predictions (~ 90.5% accuracy in testing data).

Keywords: Online interval type-2 Fuzzy learning, Extreme Learning Machine, hierarchical fuzzy behaviours,
Neural Networks.

1. Introduction

Remotely Operated Underwater Vehicles (ROVs) are now being used for a variety of missions
such as oceanic mapping, underwater structure inspection, environmental monitoring and explo-
ration [IHI0]. An ROV is an underwater vehicle generally guided by a human pilot through a link
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cord or tether providing its power and data communication [IT]. In the sector of oil and gas indus-
try, ROVs have become a well-established technology to complete offshore activities that usually
involve regular maintenance, assessment and security of pipelines and ship hulls [ITHI3]. In missions
where minimal human intervention is not possible, autonomy and navigational accuracy are often
two capabilities demanded in ROVs, especially to localize targets within sub-meter accuracy for
later data analysis [12], 14H22]. Without an operator in the loop, the ROV must able to deter-
mine its location, motion, orientation and interpret its surroundings such that it can autonomously
maneuver in uncertain environments [23].

With continuous advances in control, artificial intelligence, computer and sensor technology,
autonomous navigation applied to ROV is very attractive not only to provide human assistance
in decision making, but also for various control scenarios such as trajectory/target tracking, path
following/planning and formation producing. Particularly high accuracy positioning and path fol-
lowing have drawn compelling interest to the development of autonomous navigation strategies for
the inspection of underwater structures in oil and gas industry as well as salvage and monitoring
operations [I1]. In underwater path following, navigational accuracy can be defined as the precision
with which an underwater vehicle (UV) completes a mission [3], while autonomy is its ability to
reduce overall human intervention to successfully complete a predefined path [14].

The literature contains numerous references to the development of control and navigation strate-
gies for path following [II, 2, 8, T0-12, 17-22, 24-28]. In [10], a two-layer control framework that
consists of a fuzzy PID control and its optimisation through an heuristic fuzzy approach, was devel-
oped to address the problem of 3D path following in underactuated UVs subject to uncertainties.
In [I1], authors addressed the problem of path following under model uncertainty, disturbance and
measurement error by using redundant measurement and data fusion. An sliding mode controller
was used to manage uncertainty and disturbance with a zero tracking error maintained by employing
integral action in the control structure [12, 22]. The accurate accomplishment of marine missions,
UVs usually faces three major challenges: (a) parametric uncertainties in the vehicle’s model, (b)
sensor measurement states suffer from errors due to the bias, drift and noises, and (3) vehicles are
usually exposed to the high dynamics of currents and waves affecting significantly their missions
[10, 27].

In an important branch of robotics and marine vehicle applications, fuzzy logic has been credited
to be a suitable methodology for the design of robust guidance and control architectures able
to provide a satisfactory performance in the face of nonlinearities, imprecision and uncertainty
[12, 29, B0]. A number of path following and path planing strategies have employed hierarchical
control structures in which fuzzy logic is the main guidance mechanism [2 25 26, 31]. Compared to
traditional approaches based on sequential task decomposition for real-time response, hierarchical
fuzzy control structures encode robot’s behaviour as a fuzzy rule that maps each sensor’s signal into
control output according to a desired control policy [5]. These architectures are behaviour-based
systems that facilitate real-time intelligence response by decomposing general robot’s behaviour
into a set of local-purpose routines that operate concurrently rather than sequentially [32], [33]. Such
structures decompose complex motion control into a number of simple reactive fuzzy controllers
which can be classified into the following categories: 1) conventional fuzzy control, 2) adaptive fuzzy
control and 3) hybrid fuzzy control, including fuzzy PID control, fuzzy sliding mode control and
neuro-fuzzy controllers [29]. Having a hierarchical architecture that divides fuzzy logic controllers
and fuzzy learning for robot’s control into smaller subsystems accounts to reducing the negative
effect that a large rule-base may have on real-time applications [32]. Hierarchical structures also
contribute to overcome the problem of insufficient knowledge for designing large fuzzy rule bases.
For instance, in [31], a hierarchical /Lyapunov fuzzy control system for horizontal plane trajectory
tracking in underactuated Autonomous Underwater Vehicles (AUV) was suggested. The fuzzy
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architecture involved two different hierarchies, in which at high level, guidance control laws were
executed through a type-1 fuzzy inference system. At low level, vehicle’s surge force and yaw
control were generated by a kinetic control. In [25], a hierarchical type-2 fuzzy structure that
consisted of two different levels was implemented in an mobile robot as the main path planner. An
evolutionary approach based on genetic algorithms was used to optimise the parameters of each
membership function (MF) in the fuzzy path planner. According to results presented in [25], in
outdoor environments where uncertainty is inherent, Interval Type-2 fuzzy logic (IT2 FL) were
employed to produce a better performance than traditional type-1 fuzzy logic systems (FLSs). IT2-
FLSs have demonstrated to outperform their type-1 counterpart in a large number of applications
[34]. This has been mainly attributed to the ability of IT2-FLSs to better treat uncertainty and
imprecision, of which IT2 fuzzy sets can be seen to possess an uncountable number of embedded
type-1 FSs [30, 35].

This paper describes an Online Interval Type-2 Fuzzy Extreme Learning Machine (OIT2-FELM)
applied to the completion of predefined 3D paths in indoors water containers using a Remotely
Operated Vehicle (ROV). The OIT2-FELM is integrated into a hierarchical navigation strategy
(HNS) to achieve two goals. First, the OIT2-FELM is used to train an Interval Type-2 Fuzzy
Inference System (IT2 FIS) of Takagi-Sugeno-Kang to classify online data collected by a micro data
sonar. This information is used by an ROV to recognise the type of contour (or objects) around
it. Secondly, the outcome of data classification is utilised by the HNS for collision-avoidance and
obstacle inspection. The proposed machine is a fast sequential learning method to the training of I'T2
Fuzzy Inference Systems (IT2-FISs) in which data may arrive one-by-one or chunk-by-chunk with a
fixed or varying size. The OIT2-FELM is derived from the functional equivalence between SLFNs
and IT2 FISs. The application of the OIT2-FELM follows the theoretical principles of ELM, where
each antecedent is arbitrarily selected while the consequent weights are determined analytically. The
OIT2-FELM integrates into its structure a fast type-reduction process based on the SC algorithm
which is an improved version of the non-iterative Center-Of-Sets-Type-Reduction-Without-sorting-
requirement method (COSWSR). The main contributions of the proposed OIT2-FELM are:

1. Compared to traditional IT2-FELM theory [36H38], the OIT2-FELM incorporates a non-
iterative type-reduction process based on the SC algorithm [39]. By doing so, the proposed
OIT2-FELM eliminates the need of sorting consequent weights that is usually performed
in Karnik-Mendel algorithms and its variants. This makes the proposed OIT2-FELM more
appropriate for cost-sensitive real-time applications, reducing not only the associated compu-
tational burden, but also the associated model complexity.

2. The proposed OIT2-FELM is a fast sequential learning approach for a generalised model of
Interval Type-2 Fuzzy Inference Systems (IT2 FISs) to the solution of problems in the field
of regression, classification and nonlinear system identification.

3. The final model of an OIT2-FELM is an IT2-FIS where capabilities and new efforts from the
theory of neural networks and fuzzy logic can be applied under adequate design considerations.

4. Compared to conventional T1 fuzzy logic systems, the OIT2-FELM is a high order fuzzy
system able to better handle uncertainties that mobile robots usually face in underwater
environments where sensor measurements are typically noisy and affected by the conditions
of the observations.

To investigate the performance of the OIT2-FELM under real conditions, two different types of
experiments are carried out in this work. First, to compare the performance of the OIT2-FELM
with other literature methodologies, a number of benchmark problems in the field of non-linear
system identification, regression and classification are suggested. In the second experiment, a TSK
OIT2-FELM is implemented in a Hierarchical Navigation Strategy (HNS) as the main guidance
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mechanism to successfully complete a predefined 3D path using an ROV. The path following task
suggested in this work is a frequent application of UVs for the inspection of underwater structures.
Such task consists of completing a number of predefined circuits at a different depth, where the
ROV must follow a trajectory described by the geometric shape of a given underwater structure.

The proposed HNS, together with the OIT2-FELM is inspired by the behaviour of some noctur-
nal mammals for foraging and burrow in dark constrained spaces [40]. When foraging in unknown
environments, some mammals such as desert rodents use the information gathered by their whiskers
to distinguish objects by surface contact and texture. The central role of the OIT2-FELM is to
classify information coming from the scanning sonar mounted in the ROV in order to infer rele-
vant knowledge about its surroundings. This information is utilised by the HNS to facilitate the
ROV with near-to-real time intelligence required to achieve the necessary level of autonomy in the
completion of 3D paths. The proposed HNS is a two level strategy that follows the operation prin-
ciple of fuzzy architectures with a bottom-up hierarchy of increased behavioural complexity. At
low-level, the HNS provides autonomy via decomposing motion control capabilities into a number
of fuzzy behaviours which are realised as IT2 fuzzy controllers. Such behaviours serve a single
purpose by operating in a reactive manner. Each behaviour performs nonlinear mappings from
different subsets of the ROV’s sensor suite to common actuators. At high-level, fuzzy behaviours
are organised by a number of IF-THEN rules as a set of building blocks for more intelligent compos-
ite behaviours. Therefore, overall ROV’s behaviour is encoded as a rule-base hierarchy that maps
relevant information in the sensor input domain into control outputs according to a desired con-
trol policy. Performance results of the OIT2-FELM and the HNS are presented on individual and
composite fuzzy behaviours for the completion of 3D paths. Experiments highlight the relevance of
the information provided by the OIT2-FELM to local planning as well as to target detection. The
focus here is on indoor navigation, however the proposed methodology can be extended for outdoor
maritime environments.

The structure of this paper is organised as follows: Section 2 reviews related background theory,
while in Section 3, the proposed methods are detailed. The performance of the proposed OIT2-
FELM and a discussion are provided in section 4 and 5 respectively. Finally, section 6 draws
conclusion.

2. Background Material

This section briefly reviews the basic concepts of Extreme Learning Machine (ELM), the equiv-
alence between Single Layered Feedforward Networks (SLFNs) and Fuzzy Inference Systems (FISs)
as well as theory about Online Sequential Fuzzy ELM (OS-Fuzzy-ELM), Interval Type-2 Fuzzy
Extreme Learning Machine (IT2-FELM) and SC type-reduction respectively.

2.1. Extreme Learning Machine (ELM)

For ' P’ arbitrary distinct samples (x;, t;), where x; = [z;1,...,z;p]T € RY and t; = [t;, ... ,tiN]T €
RV , SLFNs with M hidden nodes and activation function g(x) can be mathematically expressed
by the following equation [41]:

M M
> Bigi(x;) =Y Big(wi-xj+b)=y; j=1,...,N (1)
i=1 i=1

in which, w; = [w;1,...,w;n]T is the weight vector connecting the ith hidden node and the input

nodes, and g; = [Bi1, . - - ,ﬁiN]T is the weight vector connecting the ith hidden node to the lth output.
From Eq. (1), a matrix notation can be written as H3 = T, where H € R”>*M g ¢ RM*N and



T € ROV , in which, H is the hidden layer matrix of an SLFN [42] 43]. According to ELM theory,
SLFNs with M hidden nodes and activation function g(x) can approximate! Pi arbitrary distinct
samples with zero error means Zfi 1 Il ¥; —ti ||= 0, if there exist parameters §;, b; and w; such that
[43]:

||H(QZ)1, 712)M7617,8M)B_ T|| = Wmlzl)n HH(Wb?WMablavbM)B - T|| (2)
Eq. (2) is equivalent to minimising a cost function based on squared error E = Zle (M Big(wizj+
bi) —tj)z. Therefore, from the linear system expressed in Eq. (1) whose minimum norm least-squares
solution is unique, can be achieved by calculating the pseudo-inverse H' as:

B=H'T (3)
where HT is the Moore-Penrose (MP) generalised inverse of matrix H. The projection method can
be efficiently used to compute H = (HTH)~'H”, if HTH is nonsingular or Hf = HT (HTH) !, if
HH” is nonsingular. Based on ridge regression, the stability of ELM can be improved by adding a
positive term 1/ to the diagonal of H'H or HH”. By adding 1/), Eq. (3) can be written as [41]:

B= <i + HHT> - T (4)

135 2.2. Punctional equivalence between SLEN and FISs
As described in [44], ELM theory can be applied to the training of a class of FISs of type-1 that
are functionally equivalent to Single Layered Feedforward Networks (SLFNs) [45]. An FIS of TSK
(or Mamdani) type that is equivalent to a SLFN can be defined by a number of fuzzy rules R’ of
the form [28] [36]

R :IF x1 is Ay; AND 25 is Ag; AND ...AND zy is Ay; THEN (y1is wgr) ... (yy isw;5) (5)

where, Ag;(k=1,...,N,i=1,..., M) are the fuzzy sets that correspond to the kth input variable
X (x = [x1,...,2x]7) in the ith rule, where N is the dimension of the output vector y = W1y Yl
When an FIS employs a TSK inference engine, w;; (k =1,...,M,j =1,... ,N) is defined by a
linear combination of input variables, i.e. w;; = gij0 + qij,0T1 + ... ¢ij NTN, otherwise if the FIS is
of Mamdani type, wj; is a crisp value. In Fuzzy Logic System theory (FLS), the degree to which
any given input x; that satisfies the quantifier Ag; in the ith rule is specified by its Membership
Function (MF) p4,,(cki,ai), where usually a non-constant piece-wise continuous MF is used. The
symbol ® is used to the representation of any fuzzy logic AND operations, where the firing strength
of the ith fuzzy rule can be computed as

R'(x;¢i,a5) = fa;, (21, €16, @) ® fia,, (025 C2i, a3) @ ... @ pay, (TN CNi, 5) (6)
Each fuzzy rule R’ can be normalised as
R (x;¢;,a;)
YL, Ri(x; ¢, a:)

Similar to [44], G is called fuzzy basis function. The system output y of the TSK fuzzy model can
be defined as a weighted sum of each normalised rule [44].

G(x;ci,a:) =

(7)

M
W X C;,Q;
5’ = ZZ 1 : Y z sz X3 cuaz (8)

=1
E RZ (x; ¢, a7)

s From Equation (4), a functional equlvalence between FISs and SLFNs can be established if:

5
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e Each G(-) represents the output function of each hidden node.

e The vector w; represents the output weight vector.

As indicated in [44], a SLFN with activation function G(-) can approximate any continuous target
function as long as the parameters of the membership function p4,, are randomly generated and e
membership function p4,, is bounded, nonconstant, and piecewise continuous.

2.3. Online Sequential-Fuzzy-ELM Algorithm (OS-Fuzzy-ELM)

Since a FIS can be viewed as a SLFN, ELM theory can be applied to the training of FISs
either of Takagi-Sugeno-Kang or Mamdani. In such an equivalence, parameters of each MF (c and
a) are randomly generated, while consequent of each fuzzy rule are determined analytically [44].
Given a number of 'P’ distinct training samples (x,,t,), where x, = [z1,...,2,n]T € RY and
t; = [tj1,. .., th]T € R", a FIS of TSK type with L fuzzy rules can be expressed as [41]:

M
fr(xp) :Zwigi(xj) =t p=1,...,P 9)
i=1

For a TSK fuzzy model, the consequent of each fuzzy rule is defined as a linear combination, in
which, each weight w; = xgeqi, and xp . = [1 xg]T is the extended version of the input vector x.

qi10 .- qiﬂf’o
q; = : : (10)
ql]"N e qleN (N+1)XN
Therefore, Equation (9) can be written as:
M
fL(Xp) = Zx;j;,ein(Xp7ciaai) :tp; b= 1,"'5P (11)
i=1
A compact representation for Eq. (11) is given by
HQ=T (12)

in which, Q is the matrix of coefficients g;; ;. If a TSK implication is employed, hidden matrix H
is defined by:

H(cy,...,cpna1 ... a0,X1,...,Xp) = [xﬁeG(xp,cl, ai),... ,xg,eG(xp; car,an)] (13)
and Q is the parameter matrix for the TSK model:

a1
Q=1 : (14)
Anm

According to [44], Online Sequential ELM (OS-ELM) for SLENs with additive or hidden neurons can
be linearly extended to the training of TSK FISs. To implement OS-Fuzzy-ELM, first all parameters
c; and a; of each MF are randomly generated. Secondly, OS-Fuzzy-ELM is implemented in two
main phases to the calculation of the consequent part of each fuzzy rule. Therefore, given a number
of MFs p4ik and number of fuzzy rules L, training data D = {(x,,t,)x, € RV, t, € RV p =
1,...}, Py > L arrives sequentially one-by-one or chunk-by-chunk [44].
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e Step 1) Initialisation phase. Initialise the learning using a small chunk of initial training
data Dy = {(Xp,tp)gil from the given training data D = {(x,,t,)|x, € RY,t, € RY p =
1,...},Ph > L.

a) Assign random MF parameters (c;,a;),i =1,..., L.

b) Calculate the initial matrix Hg for the TSK models
H():H(Cl,...,CL,al,...,aL;Xl,...,XNO) (15)

¢) Estimate the initial parameter matrix QY = PngTo where Py = (H%“Ho)_1 and
Ty = [tl, ... ’tNO]T

d) Set s=0

e Step 2) Sequential learning phase. Present the (s + 1)th chunk of new observations

D1 = {(xp,t )}p (Zz PO+17 where Pg,1 is the number of observations in the s 4+ 1 chunk.
0
In this step, compute:

a) The partial matrix Hgyq for the (s 4 1)th chunk of data Dy for the TSK model, where
H is obtained as:

Hop1 =H(er, .. cp,a1,. . ,an X5 sy - - Xsetl p P) (16)

where the matrix H is defined as (13). Set Ts11 =t(ys  pys1,---»t 9+1Pl)

¢) Compute the parameter matrix Q (s+1) as follows:

Poy1 =P, —P.H  (I+H PHg ) "Hy Py

QG*+) = Q® + P, HT,,(Tsy1 — Ho 1 QW) (17)

In general, OS-Fuzzy-ELM involves two main phases, namely, a) a initialisation phase, where TSK
FIS is trained using a batch data set that is discarded once the initialisation phase is finished. In
the second phase,

2.4. Interval Type-2 Fuzzy Extreme Learning Machine (IT2-FELM)

IT2-FELM is a learning algorithm based on ELM theory for the fast training of IT2 FISs either
of Takagi-Sugeno-Kang (TSK) or Mamdani type that are functionally equivalent to SLFNs. Similar
to type-1 FISs, an I'T2 FIS consists of a fuzzifier, a fuzzy rule base and an output processor. The
main difference lies on the output processor of an IT2 FIS, where it includes a type-reduction +
defuzzification process. The type-reducer produces a type-1 fuzzy set output and the defuzzifier
transforms such set into a crisp number. A type-2 FLS is again characterised by IF-THEN rules,
but its antecedent or consequent sets are now type-2. An interval type-2 fuzzy set A (IT2 FS)
is characterised by a three-dimensional MF, or a bivariate function on the Cartesian product,
p s X x[0,1] into [0, 1], where X is the universe of the primary variable x. To illustrate the concept
of an I'T2 FS, in Fig. (1} an I'T2 Gaussian MF is presented, in which the point value representation
of A is defined by:

A={(z,u),pz(z,u) =1Ve € X,Vu € [0,1]} (18)



Fig. 1. Example of an Interval Type-2 Gaussian Membership Function, singleton fuzzification when & = x; (Taken
from [36]).

As illustrated in Fig. |1} the 2-D support of y ; is called Footprint of Uncertainty (FOU - shadowed
area):

FOU(A) = {(z,u) € X x [0,1]|p 5(z,u) > 0} (19)

where FOU (A) is bounded by its lower and upper membership functions [f(x), f(z)] (LMF, UMF)
respectively. For 'P’ distinct training samples (xp, tp), where x, = {zp1,...,TpN} € RY is an input
vector, and t, = [tp1,... it N]T € RY the corresponding target, a mathematical model for the jth
output of a Multiple-Input-Multiple-Output (MIMO) IT2 FIS of TSK type with ‘M’ fuzzy rules
and with a center-of-sets type-reduction is given by [36, [44] [45]:

1 N
yi,zi(y{+y£);y:1,---,N (20)

where N is the number of outputs of an IT2 FIS. In such a scheme, a product inference rule base
for a TSK IT2 FIS is considered, where each rule is given by [37]:

R':TF xp is Ajg AND 0 is Ajp AND ... TF 2z is A;y THEN wj; = gjiia1 +...qjiney  (21)

k=1...,N,i=1,...,M and each Ay, is an IT2 FS of the kth input variable z; [46]. If wj; is a
crisp value, the FIS is of Mamdani type. From Eq. (5), an IT2 FS A uses a primary Gaussian
MF with a variable width [0}, ,0%] and a fixed mean m;;. The Footprint Of Uncertainty (FOU) of
this MF is defined by its lower and upper MF [ﬁ&-k’ﬁ Aik]:

2
1 Tpr—Myk
exp[ 2( T ) ]

[HAik ’ ﬁ;‘zk] = 9 (22)
ow |3 ()]

The firing strength F? of each ith fuzzy rule is then obtained by performing fuzzy meet operation
with the inputs using an algebraic product operation as follows [47]:

F' = [fi(®), fi(@)] (23)
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M B M
Fil@) = paw: Fil@) =]z (24)
=1 i=1

Each consequent of IT2-FELM is a linear model expressed as:

N
Wi = ¢ji0%0 + QinT1 + - GiNTN = D Qi kT (25)
k=1

Therefore, the type-reduced set of the jth output (y‘; ,yZ) can be obtained using the Enhanced
Karnik-Mendel algorithm (EKM) [48]. As indicated in [16], for N > 1, each output 3, of a TSK
IT2-FELM can be associated to a submatrix representation as follows:

) 1 . .
vp=5 (YI+ Y)Wl =1 8 (26)

in which ylj = Y{ W? and yl = Y/ ij and

i _ fPQTET E;Q; + 11 QT ES Es;Q;

YJ hl (27)
l
rf Qif + s/,Q;f
w; = [wj1, ... ,ij}T is the set of original rule-ordered consequent weights, and Yli = (Y11, VM)

and the terms FEyj, Eaj, r;; and s;; are defined as:
Ey; = (eijlejl . . - ler|0]...[0)" L; x M

L. . T
Eyj = (0. J0[e]I€]|. 1€}, ) (M —Lg) x1

rj=(1,1,...,1,0,...,...,007 M x1
N —
Lj
M—L;
’ T
sij=(0,...,...,01,1,..., )" M x1

in which L; is the switching point that corresponds to the jth output, e,, € RF (m =1,...,L;) and
Em € RM=Li ' =1,..., M — L; as the elementary vectors where all the elements are zero except
the mth one that is equal to 1.

Vi — 7' Q] Ef F3Qi + fTQiTjEZ;E@Qi
' rEQif + sEQif

(28)

where Y2 = (i1, -, Uring)
Bs; = (eileai] . .. leri|0]...|10)T Ri x M
Egi = (0]...0/¢xi &l - - |€n—r,)" (M — R;) x 1



166

167

with e, € R (m = 1,...,R;) and &,, € RM~Fi j =1,...,M — R; as the elementary vectors
where all the elements are zero except the mth one that is equal to 1 [49]. f = (f1,...,f ),

f=(f1,.... )T. Using Eq. (27) and (28), Eq. (26) can be expressed as:

M
) 1 . . 1
v =5 (o +v2) weg 2y + i

j=1

M (29)
=3 Z P (Z JUinj,k:> s Tij0 = 0,qij0 = 15
j=1 k=0
Where, hfoj = (Y1ij + ¥rij). Therefore, Eq. (29) can be expressed as:
vy = did (30)

T .
where o = [¢i1 ks -+ Qit s - - - s Gid s - - - Gina k) and ¢ is

1
¢, = 5[(11%,1 + ri 1) Tpls -5 Wi+ i) TN, - -
(rinr + Vri ) Tpts - - inr + Vi) zpn) L, € RN (31)

For P input vectors x,, a submatrix Ha can be written as
HA(x) = (¢ ¢ ... ¢p)" € RVXIV) (32)

According to ELM theory and IT2 Fuzzy Logic, for a multidimensional output T, a linear subsystem
is required to determine each ith output in the OIT2-FELM. As indicated in [16, [50], at the heart
of a TSK FIS, fuzzy modelling can be viewed as a process where the input data space is segmented
into fuzzily defined regions which are parameterised and associated with a linear subsystem. In
other words, a Multi-Input-Multi-Output FIS (MINO FIS) such as an IT2-FELM can be viewed
as a linear combination of a joint block structured pattern that consists of a group of MISO fuzzy
models [50]. Therefore, a linear subsystem can be defined for each ith output, where Ha can be
now called HY .

Hiy (x)w; = t,, w; € RV (33)

Thus, consequent parameters are estimated with a common block structure over all dimensions of
the output variable as:

HEQ, + ...+ HQ, +... + HNQy =T (34)

where H € RPX(WMXN) Q. ¢ RIMXN)XN “and the target T is a matrix defined as follows:

t11 ... th
to1 ... tox
T — 2N
tpr ...ty
in which, T = [ti,...,tg], is the desired output vector, and each t; = [t1;,...,tp;]. To determine

the parameters of an IT2-FELM, a three-step process is implemented as follows:

10



168 e Step 1. Random initialisation of each MI'’s parameter m;; and o,
160 e Step 2. Initialisation of each consequent ¢;; using any of the two following methods:

a) Calculate the initial value of each consequent g;; 1, from the following linear system (N >
1):
Qq =H(T (35)

where Hg = [hy,...,hp]T, p=1,..., P in which

1
hy = S [ +y)aps - W+ )z G+ u Dm0+ g an]T (36)

where h), € RPXMXN) Ty calculate Q 4, the value of ylj and yﬂ is obtained as:

SN~ w_ i
yl:;fiwﬂ’fizzi]\ilfi (37)
N~w fi
yl = ; Fiwii Ji= Sir (38)
Using Eq. (37) and (38), h,, can be now computed as:
by = S+ Pt (4 Tz o (g + Fardpns -, (Far + Far)epn]  (39)

b) Calculate each entry of Hy using a close-form approach such as the Nie-Tan method:

fi+ i
Pri = =T, M = (40)
doica fit iy fi
Therefore, Eq. (39) is defined by
1
h, = 5[%1%1, e PPITPN - - PpMTpM s - - - PpM TpN] (41)

e Step 3. Refinement of each consequent ¢;; ;. Use the initial matrix Q4 to find the
switching points L; and R; by applying the EKM to each jth sublinear system. Use this
information to build each matrix Hf and to refine each consequent matrix Q; by:

Q; = (Hp)'t; (42)

170 Finally, compute the target vector T using Eq. (33).

11



171 Table 1: SC algorithm for computing the end points ylj and yJ for each output of an EIT2-FELM.

172

173

Step Computing y{ Computing yi
1 fi=0,Vi € [1, M], then
yl = min(wj;), i = max(wj;)
Vi € [1, M] with f; # 0, Stop

2 Initialise z; = 1, Awy; = fi — f4,Vi € [1, M]

3 Calculate:
M M

{51 = Zﬁy& = Zfiwji}

i=1 i=1

4 flag=0

5 For i =1 to M, repeat the following operations of this step
Ai = 331'51 - 62

If A; <0 IfA; >0

z,=1,elsez; =0
If 2 # z; then
Ity =1, {109 = 1=t Aw
Zi = Z;, Z2:Z2+ijwi
Else flag :l 1, Z1 =721 — Awl
Zi = 7y, Zo = Z2 — WiAw;
6 If flag # 0 go to step 4; else

ca = 062/01; z1i,5 = % cr = 02/01; Zri; = 2i

2.5. SC type-reduction Algorithm

Because of their iterative nature, the use of KM algorithms in type-reduction may hinder the
deployment of IT2-FLSs to solve certain cost-sensitive real world problems [48]. This additional
computational load in KM algorithms usually results from determining the switching points. Thus,
a number of approaches for reducing the computational cost of IT2 FLSs has been suggested [48].
Such algorithms include three types of categories, namely 1) enhancements of the KM algorithm,
2) close-form type reduction methods and 3) the last category consists of simplified architectures of
IT2 FLSs, which can be combined with any of the two categories mentioned above. In this section,
a simplified version of the Center of Set Type Reducer Without Sorting Requirement Algorithm
(COSTRWSR) [39] that is called SC algorithms is revisited. The SC algorithm is a center of set type
reducer without sorting requirement that finds each [yl] ,y7] based on a property of derivatives. Due
to the functional equivalence between SLFNs and IT2 FISs either of Takagi-SUgeno-Kang (TSK) or
Mandani type, the SC alforithm can be directly applied to determine the type-reduced set [yli, yl].
As pointed out in [39], finding the centroids y; and y, can be seen as a process of determining the
max and min values of Yoog. Thus, Eq. (37) and (38) can be reformulated as [39]:

My = M
j_ i fiwgi = 35 (1 — 2ig) Augiwgi (43)
[ M - M
>t fi = (= zig) Augi

And Mo - Y
zi:f1 fiwji - Zizfl(l - Zri,j)Aujiwji (44)
M, = M
Dot fi = 20 (1 = 2z ) Augg

Yy =

s in which, Auj; = f;— fi,Vi € [1, M] is the difference of the Upper and Lower Membership Functions
s (UMF, LMF). Where terms [2;; j, 2 j] can take the values from the interval [0, 1], and wy; is the

12
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corresponding consequent part (weight). Moreover, if the values for [z ;, 2, ;] are taken either
equal to zero or one, the resulting formula to determine each output y{; in an IT2 FIS (of TSK or
Mamdani type) can be determined using the SC algorithm as shown in Table 1. Thus, Eq. (43) and
(44) are two alternatives to KM algorithms where the need of a sorting process is eliminated. That
means, the computing of terms L; and R; do not exist anymore. The SC type reducer is a simplified
version of the Center of Set Type Reducer Without Sorting Requirement Algorithm (COSTRWSR)
[39]. Hence, as detailed in Table 1, the SC algorithm finds each [y, ;'] based on a property of
derivatives. Compared to COSTRWSR, using the SC algorithm, [y]*,;'] can be obtained without

adding the extra parameters [2; j, 24 ;] [B1].

3. Methods

3.1. Proposed OIT2-FELM for Data Classification

As indicated in [37], the majority of applications of Interval Type-2 Fuzzy Extreme Learning
Machine (IT2-FELM) has been concentrated on the solution of regression problems. Such systems
are usually Multi-Input-Single-Output (MISO) systems with a Karnik-Mendel (KM) type-reduction
where their training is in batch mode. In many real world applications sequential online learning in
IT2 FISs may be preferred over batch learning as they do not require retraining whenever new data
is received [52]. In this study, an Online sequential learning methodology for the training of a class
of Interval Type-2 Fuzzy Inference Systems (IT2 FISss) of Takagi-Sugeno-Kang (TSK) is suggested.
The proposed learning methodology called Online Interval Type-2 Fuzzy Extreme Learning Machine
(OIT2-FELM) extends the concept of Online Sequential ELM (OS-ELM) for type-1 FISs to IT2
FISs where training data can be presented one-by-one or chunk-by-chunk with a fixed or varying
size [44], 53).

To illustrate the proposed OIT2-FELM, a Multiple-Input-Multiple-Output (MIMO) IT2 FIS
with a Gaussian MF [p Al Ajk] having a fixed mean my,, variable standard deviation [ojl-k, U?k], a
predefined number of 'L’ fuzzy rules is used. To eliminate the need of sorting each consequent part
and creating a number of sublinear systems that implies using KM algorithms, a SC type-reduction
is incorporated in the output layer of the IT2 FIS. As described in [54], a FIS is considered of
interval type-2 if only one of its components uses Interval Type-2 Fuzzy Sets (IT2-FSs). Hence,
in this study, each consequent part is defined as w;; = w;; = w;j. Given a number of 'P’ distinct
different training samples (xp, t,), the implementation of OIT2-FELM follows two main phases, i.e.:
1) initialisation and 2) sequential learning phase.

e Step 1 - Initialisation phase: Select an initial chunk of data Dy = {x), tp}gil from a given
training data set D = {(x,,t,)[x, € R",t, € R} where Py > M and its corresponding
target vector t, = [tp1,... ,tpN].

S1.a) Randomly generate the initial values to the MF parameters, for example, if a Gaussian

MF of IT2 is selected, initial values of |07, 02] and my, are randomly generated.

S1.b) For a TSK IT2-FIS, based on the procedure described in Eq. (35), initialise each conse-

quent weight ¢;;; by computing the initial consequent matrix Qf). A similar procedure
can be implemented for a Mamdani fuzzy model. Note, this initialisation process is
performed once.

S1.c) Use the SC algorithm to calculate each term [2j; ;, 2 ;]. Build the matrix HSE?)

Hg)(a%, ... ,0}\/[,0'%, .. .,a?\/l,ml, MG Xp) = [hgo), .. .,hgg)]T (45)
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Subsea Buoyancy Foam :
Y <%} Military Compass (Sparton) Vertical thruster
Y
. 4 2l
A Aaihal

" (Roll-Xb)

(Yaw-Zb)

Tether & Computer
Tether/Ethernet Connection

---< Positive sway direction

BlueROV2

Micro Data Modem/Sonar (Titrech) Horizontall thruster

g Backward
g Forward

(a) Water container used for experiments (b) Remotely Operated Underwater Vehicle (BlueROV2) (c) Thruster Configuration
and its sensory system

Fig. 2. (a) Water container (open-tank) and computer station, and an (b) ROV (BlueROV2) equipped with a
sensory system with four sensors used for all experiments.

(0)

in which, p=1,..., P and each vector hy "’ is defined as:

h(Y = [Gp12p1,- -, Dp1TpNs - -, PpMTpM s - - - s DpM TpN] (46)
where each entry ¢,; is defined as follows:
by = 1 < fi— (1 =z 5) Awj; n Ji— (1= 2 5) Awy; ) (47)
Sy Fi = i (U= i) Awys S0 Fi = S0 (1 = i) Awyi

in which, iji = f@ —fi,Vi S [1,M].
S1.d) Refine each consequent part g; j; using the Equation below:

QY = PoHp T (48)
where Py = (HE’OHBO)’1 and To = [t1,...,tp)7
Sl.e) Set s=0

e Step 2 - Sequential learning phase: Present the (s+1) chunk of new observations Dgy 1, =
s+1
{zp, tp}Z ZlNl Ny)11 Where Pqiq is the number of observations in the (s + 1)th chunk. Thus,
0

the process of finding each consequent vector QSH) is as follows:

S52.b) By using Eq. (33), calculate the partial matrix Q(SjL ) for the (s + 1)th data chunk for
the TSK model in order to initialise each consequent part g;; . Then, apply the SC

algorithm to calculate each term [z j, 2, j]. Build the matrix HSBSH) using Eq. (46-47).
H(S+1) (01,...,a}waa%,...,U?\pmla-"va;X(ZﬁloNz)H""’X ?iolNl> (49)
Set Tsy1 = [t(zfzo P41 o sran PZ]T
S2.¢) Calculate the parameter matrix QS;H) using Eq. (50):
pl+) _ Pg) CPO@EETYT(I 4 M) HETPY)

s s s s s s (50)
Q +1) _ Q + P( (H( +1))T(T(B+1) - H%Jrl)Q(B))
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T
in which M(s+1) = H(35+1)P(35) (H(g—i-l))
52.d) Set S =S+ 1. Then, go to Step 2.

OIT2-FELM is a sequential learning algorithm that consists of two main phases. First, an initial
batch of data is used to train a TSK IT2-FIS, where initialisation data is discarded once the first
phase is completed. Similar to its type-1 counterpart the OS-Fuzzy-ELM, it is recommended that the
number of the initial training data is at least the same to the number of fuzzy rules of the TSK IT2-
FIS. As detailed in the OIT2-FELM algorithm, in the first phase, a direct defuzzification method
can be applied to approximate the value of each consequent weight w;;. After the initialisation
phase, the TSK IT2-FIS will learn new data one-by-one or chunk-by-chunk (with fixed or varying
size). The second step is an iterative phase that involves N calculations (where N > 1).

3.2. Robotic Platform

The ROV used for experiments is a BlueROV2 with a six-thruster vectored configuration as
described in Fig. 2| All experiments were carried out in an indoors water container of 2.5 x 2.5 x 3.5
metres size (Fig. [J[(a)). To reproduce some undersea conditions, salty water with a density of about
1028kg/m? was added to the container.

Four out of the six thrusters are oriented in a vertical direction while the remaining two are
oriented horizontally (Fig. [2(c)). This gives the ROV the ability to move itself up-down as well
as to control its yaw orientation and moves forward and backward (See Fig. [2(b)). The ROV’s
dynamics vehicle are such that the vertical motion is largely decoupled from the lateral motion.