
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

��������	
��	���	
���������������������������
���������
�������	�����
�������������� ��

�

������� 	
 �	�� 	
 ���������� ���� ��� ������
�

��� ���
����� �	��� �
 �������������

Susana Muñoz Hernández
Technical University of Madrid

Spain

��
��������

The idea of robot playing soccer has been developed since early 90s Chen et al. (2003). Soc-
cer environment is a dynamically changing environment which requires individual skill as
well as team skill and therefore is an interesting research field on Artificial Intelligence and
robotics. Prolog is a programming language that represent logic reasoning. Is is a perfect tool
to represent human reasoning, so it seems to be a good choice for implementing the cognitive
layer of soccer players that is a simulation of human behaviour related to this game. For exam-
ple, applying the rule “if the goal keeper is not at the goal then kick to ball”. But many of the
most important decisions that are made by soccer players deal with non-crisp issues. They are
related to fuzziness (e.g. “if other player of my team is FAR from me then don’t pass him/her
the ball”), uncertainty (e.g. “if I CAN get the goal then kick the ball”), or incompleteness (e.g.
“if I cannot see the position of a player, by default I’m not going to pass him the ball”).
In this work we are going to provide a programming framework to Robot Soccer programmers
to model robot control in an expressive but simple way. We propose the possibility of using
fuzzy concepts for this modelization and we are going to provide some conclusions about this
tool based on a bench of practical experiments that we have done and that we describe here.
In the rest of this section we introduce RoboCupSoccer field (section 1.1) and we discuss some
previous fuzzy approaches in logic programming (sections 1.2 and 1.3. In section 2 we de-
scribe our framework, RFuzzy enumerating the features that characterize its expressivity for
modelling problems in general. From the following section we focus on the Robot Soccer
use of our tool. Section 3 describes the environment for our experimentation (the general ar-
quitecture at section 3.1 and the particular Prolog code arquitecture at section 3.2). We have
described in detail our experiments in section 4. We provide information about the decision
making analysis that we have done (section 4.1.1) and the action execution analysis (section
4.1.2). We finally conclude at section 5.

��� �������������

RoboCup is an international annual event promoting research on Artificial Intelligence,
robotics, and related field. The original motivation of RoboCup is RoboCupSoccer. As the
nature of soccer game, autonomous robots participating in RoboCupSoccer should have indi-
vidual ability such as moving and kicking the ball, cooperative ability such as coordinating
with team mates, and of course, the ability to deal with dynamic environment.

��

www.intechopen.com

��������������$

RoboCupSoccer consists of several leagues, providing test beds for various research scale:
Simulation League, Small Size Robot League (F-180), Middle Size Robot League (f-2000), Four-
Legged Robot League, Humanoid League, E-League and RoboCup Commentator Exhibition.
The first E-League was held at RoboCup 2004.This league is a simplified version of Small Size
Robot League, where vision processing and communications are factored out, thus provided
by the league. Each team in this league consists of four small sized autonomous robots, one
of whom can be a goalkeeper. The match lasts for two equal periods of 10 minutes.
We employ RoboCupSoccer Simulation League for the sake of simplicity because we are just
focused on the robot control layer.

��! ����� $����	���� �
 %���� &����	���
�

Introducing Fuzzy Logic into Logic Programming has provided the development of several
fuzzy systems over Prolog. These systems replace its inference mechanism, SLD-resolution,
with a fuzzy variant that is able to handle partial truth. Most of these systems implement the
fuzzy resolution introduced by Lee in Lee (1972), as the Prolog-Elf system Ishizuka & Kanai
(1985), the FRIL Prolog system Baldwin et al. (1995) and the F-Prolog language Li & Liu (1990).
However, there is no common method for fuzzifying Prolog, as noted in Shen et al. (1989).
Some of these Fuzzy Prolog systems only consider fuzziness on predicates whereas other
systems consider fuzzy facts or fuzzy rules. There is no agreement about which fuzzy logic
should be used. Most of them use min-max logic (for modelling the conjunction and disjunc-
tion operations) but other systems just use Łukasiewicz logic Klawonn & Kruse (1994).
There is also an extension of constraint logic programming Bistarelli et al. (2001), which can
model logics based on semiring structures. This framework can model min-max fuzzy logic,
which is the only logic with semiring structure. Another theoretical model for fuzzy logic
programming without negation has been proposed by Vojtáš in Vojtas (2001), which deals
with many-valued implications.

��' ����� &�����

One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system
Vaucheret et al. (2002); Guadarrama, Munoz-Hernandez & Vaucheret (2004). The most impor-
tant advantages against the other approaches are:

1. A truth value is represented as a finite union of sub-intervals on 0,1 . An interval is a
particular case of union of one element, and a unique truth value (a real number) is a
particular case of having an interval with only one element.

2. A truth value is propagated through the rules by means of an aggregation operator. The
definition of this aggregation operator is general and it subsumes conjunctive opera-
tors (triangular norms Klement et al. (n.d.) like min, prod, etc.), disjunctive operators
Trillas et al. (1995) (triangular co-norms, like max, sum, etc.), average operators (aver-
ages as arithmetic average, quasi-linear average, etc) and hybrid operators (combina-
tions of the above operators) Pradera et al. (2002)).

3. Crisp and fuzzy reasoning are consistently combined Munoz-Hernandez et al. (2002).

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP() instead of implement-
ing a new fuzzy resolution method, as other former fuzzy Prologs do. It represents in-
tervals as constraints over real numbers and aggregation operators as operations with these
constraints, so it uses Prolog built-in inference mechanism to handle the concept of par-
tial truth. From the implementation point of view, Fuzzy Prolog is implemented over Ciao

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� ��%

������
��	
��� ��	
���

�����
��	
���
������	�	
������

�����
�
�����	������

�����
�����
�

�����	������

Fig. 1. RFuzzy architecture.

Prolog CLIP Lab (n.d.). The Ciao Prolog System offers a complete Prolog system support-
ing ISO-Prolog. Its modular design allows restriction and extension of the language both
syntactically and semantically. The Ciao Prolog Development System provides many li-
braries including a constraint logic programming system and interfaces to some program-
ming languages. In Ciao Prolog terminology, a library is implemented as either a module
or a package. Fuzzy Prolog described in Guadarrama, S.Muñoz & C.Vaucheret (2004) and
Extending Prolog with Incomplete Fuzzy Information (2005);
Default values to handel Incomplete Fuzzy Information (2006) is implemented as the package
“fuzzy.pl”, a syntactic extension of the CLP() system in the Ciao Prolog System.

!� RFuzzy ���� ����������
���

Besides the advantages of Fuzzy Prolog, it truth value representatio based on constraints is too
general that it is complex to interpret for regular users. That was the reason for implementing
a simpler variant that we called RFuzzy. In RFuzzy the truth value is represented by a simple
real number.
RFuzzy is implemented as a Ciao Prolog CLIP Lab (n.d.) package because Ciao Prolog offers
the possibility of dealing with a higher order compilation through the implementation of Ciao
packages.
The compilation process of a RFuzzy program has two pre-compilation steps: (1) the RFuzzy
program is translated into CLP() constraints by means of the RFuzzy package and (2) the
program with constraints is translated into ISO Prolog by using the CLP() package. Fig. 1
shows the whole process.
As the motivation of RFuzzy was providing a tool for practical application, it was loaded
with many nice features that represent an adventage with respect to previous fuzzy tools to
model real problems. In this section we enumerate and describe some of the most interesting
characteristics of RFuzzy expressiveness through its syntax (to show its simplicity that is the
other advantage of RFuzzy). For the examples we are going to use intuitive concepts related
to soccer vocabulary although many of ther are not use for the simulator because it use just
simple variables of position and speed but they are more ilustrative in the interest of concepts
understanding.

!�� "���� �#
����

Prolog does not have types. The problem of not having types is that it is impossible to return
constructive answers but using constraints. RFuzzy does not use constrains because they are
not friendly to return constructive results and that is the reason for having types instead.
In RFuzzy types are defined according to (1) syntax.

:- set prop pred/ar = type pred 1/1 , type pred n/1 . (1)

where set prop is a reserved word, pred is the name of the typed predicate, ar is its arity and
type pred 1, type pred n (n 2,3, . . . , ar) are predicates used to define types for each argument
of pred. They must have arity 1. The definition is constraining the values of the n th argument

www.intechopen.com

������������� &

�

�������
�
�

��	

����
����������

Fig. 2. Far truth value continuous representation

of pred to the values of the type type pred n. This definition of types ensures that the values
assigned to the arguments of pred are correctly typed.
The example below shows that the arguments of predicates is striker/1 and is faster than/2 have
to be of type player/1. The domain of type player is enumerated.

: set prop is striker/1 player/1.

: set prop is f aster than/2 player/1, player/1.

player robot1 . player robot2 . player robot3 .

player robot4 . player robot5 .

!�! ������ ����� �	��� 	����
��
�

It is possible to assign a truth value to an individual using fuzzy facts. Their syntax, that we
can see in (2), is different than regular Prolog facts syntax.

pred args value truth val. (2)

Arguments, args, should be ground and the truth value, truth val, must be a real number
between 0 and 1. The example below defines that the player robot3 is a fast player with a truth
value 0.9.

f ast player robot3 value 0.9.

!�' ��
��
���� ��
����
 �� �������
� ����� �	����

Facts definition (see subsection 2.2) is worth for a finite (and relative small) number of indi-
viduals. Nevertheless, it is very common to represent fuzzy truth using continuous functions.
Fig. 2 shows an example in which the continuous function assigns the truth value of being far
to a distance.
Functions used to define the truth value of some group of individuals are usually continuous
and linear over intervals. To define those functions there is no necessity to write down the
value assigned to each element in their domains. We have to take into account that the domain
can be infinite.
RFuzzy provides the syntax for defining functions by stretches. This syntax is shown in (3).
External brackets represent the Prolog list symbols and internal brackets represent cardinality
in the formula notation. Predicate pred has arity 1, val1, ..., valN should be ground terms
representing numbers of the domain (they are possible values of the argument of pred) and
truth val1, ..., truth valN should be the truth values associated to these numbers. The truth
value of the rest of the elements is obtained by interpolation.

pred :# val1, truth val1 , val2, truth val2 , valn, truth valn . (3)

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� � '

The RFuzzy syntax for the predicate far/1 (represented in Fig.2) is:

teenager : # 0.5,0 , 10,1 .

!�(���� �#
����
)��� ����� �	���� 	
 ����������

A tool which only allows the user to define truth values through functions and facts lacks on
allowing him to combine those truth values for representing more complex situations. A rule
is the tool to combine the truth values of facts, functions, and other rules.
Rules allow the user to combine truth values in the correct way (by means of aggregation
operators, like minimum, maximum, product, etc.). The aggregation operator combines the truth
values of the subgoals of the body of the rule to obtain the truth value of the head of the rule.
Appart from this, rules are assigned a credibility value to obtain the final truth value for the
head of the clause. Credibility is used to express how much we trust a rule. It is used another
opperator to aggregate the truth value obtained (from the aggregation of the subgoals of the
body) with the rule’s credibility.
RFuzzy offers a simple syntax for representing these rules, defined in (5). There are two ag-
gregation operators, op2 for combining the truth values of the subgoals of the rule body and
op1 for combining the previous result with the rule’s credibility. The user can choose for any
of them an aggregation operator from the list of the available ones1 or define his/her own
aggregation operator.

pred arg1 , argn cred (op1,value1) : op2 (4)

pred1 args pred 1 , predm args pred m .

The following example uses the operator prod for aggregating truth values of the subgoals
of the body and min to aggregate the result with the credibility of the rule (which is 0.8).
“cred (op1,value1)” can only appear 0 or 1 times.

good player J cred min,0.8 : prod swi f t J , agile J , has experience J .

!�* +�
��	� 	
 ��
����
� ,��	��� "���� -	����

Unfortunately, information provided by the user is not complete in general. So there are many
cases in which we have no information about the truth value for a fuzzy predicate of an indi-
vidual or a set of them. This happend many times in Robot soccer (not in the simulator but
in games with real robots) when the camara does not detect correctly any player of the ball
position. Nevertheless, it is interesting not to stop a complex query evaluation just because we
have no information about one or more subgoals if we can use a reasonable approximation. A
solution to this problem is using default truth values for these cases. The RFuzzy extension to
define a default truth value for a predicate when applied to individuals for which the user has
not defined an explicit truth value is named general default truth value. The syntax for defining
a general default truth value is shown in (5).
Conditioned default truth value is used when the default truth value only applies to a subset of
the domain. This subset is defined by a membership predicate which is true only when an
individual belongs to the subset. The membership predicate (membership predicate/ar) and the

1Aggregation operators available are: min for minimum, max for maximum, prod for the product, luka
for the Łukasiewicz operator, dprod for the inverse product, dluka for the inverse Łukasiewicz operator
and complement.

www.intechopen.com

������������� �

predicate to which it is applied (pred/ar) need to have the same arity (ar). The syntax is shown
in (6).

:- default(pred/ar, truth value) . (5)

:- default(pred/ar, truth value) = membership predicate/ar. (6)

pred/ar is in both cases the predicate to which we are defining default values. As expected,
when defining the three cases (explicit, conditioned and default truth value) only one will be
given back when doing a query. The precedence when looking for the truth value goes from
the most concrete to the least one.
The code from the example below joint with the code from examples in subsections 2.1 and
2.2 assigns to the predicate fast player a truth value of 0.8 for robot2 (default truth value), 0.6
when it is robot1 (conditioned default truth value for the goal keeper) and 0.9 when it is robot3
(explicit truth value).

: de f ault f ast player/1,0.6 goal keeper/1.

: de f ault f ast player/1,0.8 .

goal keeper robot1 .

!�0 ��
��������� $
�)���

A very interesting characteristic for a fuzzy tool is being able to provide constructive answers
for queries. The regular (easy) questions ask for the truth value of an element. For example,
how fast is robot3? (See left hand side example below)

? f ast player robot3,V . ? f ast player X,V ,V 0.7.

V 0.9?; V 0.9, X robot3?;

no V 0.8, X robot2?;

V 0.8, X robot4?;

V 0.8, X robot5?;

no

But the really interesting queries are the ones that ask for values that satisfy constraints over
the truth value. For example, which players are very fast? (See right hand side example
above). RFuzzy provides this constructive functionality.

'� /
����
��
�

In this work we have prepared a complete framework with all the interfaces necessary for
someone interested in defining strategies for robot control. In this section we are going to
describe all the components of the environment that we have used for our experiments and
we provide them for their free use.

'�� $����������� 	
 ������
�	���
 ,��	���

Based on agent system architecture proposed by Garcı́a et al. (2004), in Hernndez & Wiguna
(2007) we proposed a generic system architecture for RoboCup offering flexibility on choice of
programming language and minimal modification to switch between leagues. This architec-
ture is shown in figure 3. Prolog is proposed for cognitive layer, and in Hernndez & Wiguna
(2007) we use Fuzzy Prolog Guadarrama, Munoz-Hernandez & Vaucheret (2004) for imple-
menting the cognitive layer and we use the Atan library and a RoboCupSoccer Simulator.

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� � (

Fig. 3. Generic System Architecture

'���� %�) %���� �����
��	���
 %	���

As the name suggests, this is the lowest layer of our architecture. This layer includes all hard-
wares and softwares provided by the league. The robots, infrared transmitter, video cam-
era, communication network, and vision systems belong to this layer. Different leagues in
RoboCupSoccer are represented by different Low Level Communication Layer. E-League has
the robots, Doraemon vision package, and communication server as part of this layer, whereas
Simulation League has only The RoboCup Soccer Simulator as part of this layer.

'���! %����	� �����
��	���
 %	���

This layer acts as the interface between low level communication layer and the upper layers.
It is intended to hide physical structure of the environment from the upper layer. As long as
the interface of the services offered by this layer remain unchanged, then the rest of the upper
layer can also remain unchanged Garcı́a et al. (2004). Basic services that should be offered for
E-league are :

Reading the packets generated by video server.

Establishing communication with the communication server.

Continuous sensing for the referee decision.

We have used the Simuro environment FIRA (n.d.). SimuroSot consists of a server which has
the soccer game environments (playground, robots, score board, etc.) and two client programs
with the game strategies. A 3D color graphic screen displays the match. Teams can make their
own strategies and compete with each other without hardware.

'���' ��
����	�./��������	� %	���

This layer serves as a bridging layer between the logical communication layer and the cogni-
tive layer. It translates visual information into the representation needed by cognitive layer,
and also translates output from cognitive layer into basic action to be performed by the robots.
In our implementation for Simulation League which use Prolog programs as cognitive layer

www.intechopen.com

�������������)

Fig. 4. Environment Architecture

and Java library as logical communication layer, this means translating visual information
into prolog predicates and interpreting prolog query result. We use the Rakiduam UNCOMA
(2006) interface with the dll files (“tcpb.dll” and “tcpy.dll”) that are necessary in between the
simulator and the Prolog compiler.

'���(���
����� %	���

Cognitive layer is where the strategy is implemented. It is the highest level layer. Our work
is focused in this layer where we employ The Ciao Prolog System Hermenegildo et al. (1999),
and in particulas the RFuzzy Prolog library, to reason over the provided information. Our
approach is providing the capability of handling fuzzy, uncertain and incomplete information
at the cognitive layer. This information is very close to the human reasoning, so this frame-
work is improving the human-like control of this layer. A strategy can be easily implemented
on this layer without having to put effort on low level technical details more related to the
machine than to the human mind.
In this contribution we have changed (with respect to Hernndez & Wiguna (2007)) the fuzzy
library and the RoboCupSoccer simulator to obtain more precise results related the use of
fuzzy and crisp rules in the control of the robots. The fuzzy library that we use here is RFuzzy
(that is decribed in detail in section 2), and for the simulation we use Rakiduam UNCOMA
(2006). We can see in figure 4 the environment architecture.

'�! &����� ��� $�2���������

For this comparative study we have implemented two main modules and a set of auxiliary
modules. We have also used a couple of communication modules from UNCOMA (2006).
The complete modules arquitecture is represented in figure 5 whose internal running is de-
scribed below.

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� � *

Fig. 5. Prolog code Architecture

'�!�� 1	�
 1�����

The module yellow move isolated X Y.pl starts the comunication in between the inter-
face and the team strategy. After stablishing the connection goes into a loop for deciding
(with the help of module strategy X Y.pl) an action for each robot. These actions should
be transmited to the simulator server as a list of speeds of the set of robots. During the
loop a trace of the game is generated also.

The module strategy X Y.pl provide the strategy information to the above module to
take a decision about the robots action.

'�!�! $�����	�� 1�����

In the module stage management.pl the value of the stage variable (that contains the
data of the environment as for example the position of the players and the ball.

All predicates related with loading stored data from the stage variable and creating new
variables for the strategy are in the module environment.pl. For example getting the
ball position or calculating its speed from its two last positions.

The module crisp conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using crisp
rules) the action to develope by each robot.

The module fuzzy conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using fuzzy
rules) the action to develope by each robot.

The set of high level actions (e.g. shoot, pass, etc.) that the robots can developed are
implemente in the module actions.pl.

www.intechopen.com

������������� �

Fig. 6. Robots positions

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module primitives.pl.

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module navegation.pl.

The module logger.pl provide the trace of the the game

'�!�' �����
��	���
 1�����

The module sim video server tcp.pl abstracts the strategy programming of the com-
munication of the video server. It receives the ambient data from the video server and
it transforms them into logic rules in Prolog.

The module sim command server.pl abstract the logic programming to the communi-
cation with the interface. It maintains the communication with the command server
and decodify the Prolog logic rules for being understandable by the command server.

(� ����	�	���� ����

For testing the use of different logics we have define the structure of the comparative study.
We have design and implement all modules (described in section 3.2) that are necessary to
model the basic strategy of a math, the decission making, the actions execution and the test
cases.
Figure 6 identifies the name of the position of each robot to reference them in the rest of the
paper.
In this section we are going to describe some test cases. Some of them are simple moves and
others are strategies in matches.

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� �

(�� ������ 1�����
��

For a set of simple movements we have study the behavior of the players in two aspects:
decision making and action execution. We compare the control of a player implemented using
crisp rules and the control of a player implemented using fuzzy rules for both aspects:

Decision Making: Which one is the best action to chose. The crisp and the fuzzy vari-
ants will take different decisions sometimes. This is analyzed in the comparative study.
When the decision is the same, the execution of the action will be the same because this
experiments just use basic actions that are not taking into account the environment con-
ditions. The code for this part is in the module conditions X strategy.pl where X can be
crisp or fuzzy.

Action Execution: How the action is executed. We have chosen some actions that de-
pend on some factors as speed or direction of the ball. The execution of the action is
examined but not the previous decision that have taken us to do it. The code for defin-
ing the execution of the basic actions (executed after the decision making process of the
first experiments) and the actions that are programmed using crisp and fuzzy logic (for
their comparison) is in module actions.pl.

The tests are clasified attending to the action that is expected to do the robot (shoot, clear or
pass). We have used for the bench of tests that we have made the same structure for an action
X:

1. Action X: description of the players that participate and showing (through an image)
the initial position of the robots.

2. Analysis of the crisp logic in Action X

3. Analysis of the fuzzy logic in Action C

4. Crisp and Fuzzy logic comparison

(���� ,������
 1	3�
� $
	�����

The action that is made for a robot is chosen attending to a set of variables. These variables
describe the environment of the game. The variables used for decision making using crip logic
are different from the set of variables that are used for decision making through fuzzy logic.
In figure 7 there are some of these variables that are used by module conditions X strategy.pl
to decide which action to perform by the robot.
Close to the definition of values for the variables is the distribution of areas in which we have
divided the game field. It is represented in figure 8.
We are going to provide a brief description of these variables to understand their relevance in
the comparative study:

Relative position is the position of the ball in the field attending to the position of
the players with respect the bal. It is the same in fuzzy and crisp logic. There are five
possible values (ofensive left side area, ofensive right side area, ofensive centre, ofensive
closure, defensive area).

Crisp ball position is the area from 8 where the ball is. It has twelve possible values.

Crisp goal direction is the angle (in grades and always positive) that if defined in be-
tween the trayectory of the ball and the segment that joins the ball with the centre of the
opposite goal area. This variable provides information about the direction of the ball
with respect to the opposite goal area. The possibles values are in the following ranges:
[0o..45o] or [135o ..180o] if it is in the direction of the goal area, and [45o..135o] if it is not.

www.intechopen.com

������������� $

Fig. 7. Decision making variables

Crisp ball speed is the speed of the ball that is calculated as the distance that the ball is
able to cover during a server cycle in the simulator. The possible values are: slow (less
than 0.5), regular (into 0.5 and 1) and fast (greater than 1).

Fuzzy ball position X is the distance from the ball to the back line of the own field. The
values are in the range [0..86].

Fuzzy ball position Yis the distance from the ball to the left line of the own field. The
values are in the range [0..70].

Fuzzy ball direction is the same concept that the crisp goal direction. The values belong
the range [0o..180o]

Fuzzy ball speed is the same concept that crisp ball speed but the domain is continue
(speed R).

For the comparison of the decision making we have considered a set of crisp rules and a set of
fuzzy rules to determine the best action for the robots in each situation. The rules are different
for each robot depending on its position (goal keeper, striker, midfielder, etc.) Let’s see a
couple of examples of rules.
Crisp rules (implemented in Prolog) are of the form:

shoot striker o f ensive area opposite area ball

where it is said that the striker should shoot if it is in the ofensive area and the ball is in the
opposite area.
The list of crisp rules should be ordered according to priority because in each situation it is
executed the first one that is satisfied. If any of them is satisfied, then the robot should mantain
the base position that is calculated as the average point into the position of the ball and the
own goal place. But to observed better the cases in which the player is not deciding to do any
action we have change this base position to the same position. So, the robot that is not making
any action is going to maintain its position.
Fuzzy rules (implemented in RFuzzy) are of the form:
shoot striker V prod relative position good shoot V1 ,ball position X good shoot V2 ,
ball position Y good shoot V3 , ball direction good shoot V4 , ball speed good shoot V5

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� � %

Fig. 8. Areas of the field

where it is said that it is going to be calculated the truth value for the action of shooting for
a striker. The truth value will be a value in the range [0..1](0 means that it is a bad action for
the player in its situation and 1 means that it is the perfect action for the player). Intermediate
values have intermediate meanings. In this case the truth value of a set of concepts will be
calculated first (if the relative position of the player is good for shooting, if the position of the
ball is good for shooting, if the direcction of the ball is good for shooting and if the speed of
the ball is godd for shooting) and them the truth value for shooting, V, will be calculated as the
aggregation (using product operation in this case) of all the truth values previously calculated
(V1, V2, V3, V4 and V5).
In figure 9 we can see the fuzzy functions that represent the concepts that are involved in the
definition of the rule that we have defined above. They represent the truth value for each
value of the environment.
In the case of fuzzy rules, all rules will be executed and the best action for the player situation
(the one with higher truth value) will be executed. The option by default of keeping the base
position has a default value of 0.2.
In a particular case, we can have all players and the ball in a particular position (as in figure 10)
and then try to find out the best action to perform by a particular robot. For our experiments
we use crisp and fuzzy batery of rules and we compare the results.
For the rest of the study we will analyse always a robot of the left team of the screen, so the
yellow team.
We have studied different starting positions of the game that lead the robots to do the actions
of shooting, passing and clearing. The results of the comparison in between the crisp and the
fuzzy control for these tests are detailed in section 5.

www.intechopen.com

�������������$&

Fig. 9. Fuzzy functions to represent concepts related shooting

Fig. 10. Starting positions for shooting

(���! $����
 /�������
 $
	�����

In the analysis of the action execution we have studied starting situations in which the robot
has already decided to make a particular action. Then we have observed the result when it do
it using crisp and fuzzy execution rules.
The variables that we have used for shooting are listed in figure 11. Ball distance is the same
in the crisp and in the fuzzy logic. The variables that we have used for passing are shown in
figure 12.
The speed and direction variables are the same that the ones used in section 4.1.1 for decision
making analysis. The rest of variables are defined as follow:

Ball distance is the distance in between the robot that is shooting and the ball (distance
R).

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� �$'

Fig. 11. Shoot action variables

Fig. 12. Pass action variables

Crisp centre forward position is the distance from the striker that is passing the ball
and the opposite passing point. It is calculated as the difference (always positive) of the
striker X coordinate and the X coordinate of the opposite passing point (that is aproxi-
mately in the penalty point).

Fuzzy centre forward position is the same concept that the crisp centre forward posi-
tion but the values are in the range [0..75].

We have just study the most representative starting situations that lead the robot to shoot and
pass. In section 5 are discussed the results of the comparison in between the crisp and the
fuzzy control for these actions.

(�! 1	�����

Besides studying single movements we have uses proof tests for complete matches. We have
program in a different way each team. The crisp team uses crisp logic for decision making
and also crips logic for action execution. The fuzzy team uses fuzzy logic for decision making
and also crips logic for action execution. We will use also the Lingo team and the Rakiduam
team. In the tests the yellow team is team 1 and the blue team is team 2.
For each scenario the test is a 30 seconds match where it is compared the number of gols of
each team and the percentage of time that each team control the ball.
We have evaluated the mathes: crisp team vs Lingo team, crisp team vs Lingo team, crisp
logic vs Rakiduam07, fuzzy logic vs Rakiduam07, and crisp team vs fuzzy team.

*� ��
������
�

RFuzzy has many advantages related its expressivity and some advanced characteristics of
RFuzzy are missing in other similar tools as FLOPERMoreno (2006); Morcillo & Moreno (2008).
RFuzzy has been designed with a simple syntax to facilitate programmers from other fields (as

www.intechopen.com

�������������$�

in this case from Robot Soccer programming) to model their problems in a simple way. This
is the reason why RFuzzy is much more convenient that Fuzzy Prolog (that use constrains that
are much more difficult to handle and understand that real numbers that are used in RFuzzy).
Extensions added to Prolog by RFuzzy are: types (subsection 2.1), default truth values condi-
tioned or general (subsection 2.5), assignment of truth values to individuals by means of facts
(subsection 2.2), functions (subsection 2.3) or rules with credibility (subsection 2.4).
One of the most important consequences of these extensions is the constructivity of the an-
swers with the possibility of constraining the truth value in the queries as we describe in
section 2.6.
There are countless applications and research lines which can benefit from the advantages
of using the fuzzy representations offered by RFuzzy. Some examples are: Search Engines,
Knowledge Extraction (from databases, ontologies, etc.), Semantic Web, Business Rules, Cod-
ing Rules, etc.
In particular in this work we have studied the possibilites of this tool for modelling the robot
control in Robot Soccer.
It is well known that logic programming is a perfect environment for dealing with the cog-
nitive layer at RoboCupSoccer league as it is in general to implement cognitive and control
issues in robotics.
Our goal is to provide a programming framework to Robot Soccer programmers to model
robot control in an expressive but simple way.
After some preliminary groundwork Hernndez & Wiguna (2007) we have developed a bet-
ter engine for rules execution (RFuzzy instead of the discrete constraint variant used in
Hernndez & Wiguna (2007), called dfuzzy) and we have designed and provided a set of uni-
tary test to compare the behaviour of a crisp and a fuzzy strategy for simple movements and
for complete matches. Our goal is to provide this framework and some practical results (based
in our experimentation) for its use in the strategy programming at Robot Soccer.
After evaluating some study tests we can provide the following conclusions:

Using fuzzy logic we can model some concepts that are impossible to represent in an
adequate way using crisp logic or other representation (i.e. fast, slow, close, far, etc.)
Due to this the rules to define robot control are much more expressive and alike to
human reasoning.

RFuzzy lets us define continue functions over real numbers using syntactic sugar. Other
tools requires to provide values for all elements of the domain. This is impossible for
an infinite domain (that is the general case). So, a simple syntax is available.

Using fuzzy logic we can distinguish the level of satisfaction of a rule. In crisp logic,
rules can be satified or not. In RFuzzy we can obtain different truth vales of satisfaction
for the set of rules that can be applied in a particular situation. So the robot can choose
at any time the best rule (the one with highest truth value) that is suppose to provide it
the best decision about which action to make.

The tests comparing single movements show similar efectivenes in fuzzy logic and crisp
logic. When both take the same decision, fuzzy logic is faster because it has not to wait
till any limit to asign a truth value while crisp logic depend on when the ball across
limit areas.

Atending to decision making, fuzzy control is much better and the disadvantage comes
from the speed. In this case it does not affect the experiments because it depends on the
cycle and it comes determined by the simulator.

www.intechopen.com

��������	
��	���	
���������������������������
���������
�������	�����
�������������� �$(

The tests comparing complete match strategies show that fuzzy control is much better
in taking decisions. Due to the importance of speed in this kind of game, an ofensive
strategy can obtain better results even if it fails frecuently in the decisions.

Despite the results are good for our experiments in Robot Soccer, they are much better for
scenarios in which it is more important to take the right decision that to decide fast. Do not
fail in the decision is important in some parts of the Robot Soccer strategy but not in all of it
because in much parts the speed is the decisive parameter.

0� ������
���

Baldwin, J. F., Martin, T. P. & Pilsworth, B. W. (1995). Fril: Fuzzy and Evidential Reasoning in
Artificial Intelligence, John Wiley & Sons.

Bistarelli, S., Montanari, U. & Rossi, F. (2001). Semiring-based constraint Logic Programming:
syntax and semantics, ACM TOPLAS, Vol. 23, pp. 1–29.

Chen, M., K.Dorer & E.Foroughi (2003). Users Manual RoboCup Soccer Server.
CLIP Lab (n.d.). The ciao prolog development system www site.

URL: http://www.clip.dia.fi.upm.es/Software/Ciao/
Default values to handel Incomplete Fuzzy Information (2006). Vol. 14 of IEEE Computational Intel-

ligence Society Electronic Letter, ISSN 0-7803-9489-5, IEEE.
Extending Prolog with Incomplete Fuzzy Information (2005). Proceedings of the 15th International

Workshop on Logic Programming Environments.
FIRA (n.d.). Simurosot environment for soccer game.

URL: http://www.fira.net/soccer/simurosot/overview.html
Garcı́a, A., G.I.Simari & T.Delladio (2004). Designing an Agent System for Controlling a

Robotic Soccer Team. Argentine Conference on Computer Science (CACIC 2004).
URL: http://www.cs.umd.edu/ gisimari/publications/cacic2004GarciaSimariDelladio.pdf

Guadarrama, S., Munoz-Hernandez, S. & Vaucheret, C. (2004). Fuzzy Prolog: A new approach
using soft constraints propagation, Fuzzy Sets and Systems 144(1): 127–150. ISSN 0165-
0114.

Guadarrama, S., S.Muñoz & C.Vaucheret (2004). Fuzzy prolog: A new approach using soft
constraints propagation, Fuzzy Sets and Systems 144(1): 127–150.

Hermenegildo, M., Bueno, F., Cabeza, D., Garcı́a de la Banda, M., López, P. & Puebla, G.
(1999). The CIAO Multi-Dialect Compiler and System: An Experimentation Work-
bench for Future (C)LP Systems, Parallelism and Implementation of Logic and Constraint
Logic Programming, Nova Science, Commack, NY, USA.

Hernndez, S. M. & Wiguna, W. S. (2007). Fuzzy cognitive layer in robocupsoccer, Proceedings
of the 12th International Fuzzy Systems Association World Congress (IFSA 2007). Founda-
tions of Fuzzy Logic and Soft Computing, Springer, Cancn, Mxico, pp. 635–645.

Ishizuka, M. & Kanai, N. (1985). Prolog-ELF incorporating fuzzy Logic, International Joint
Conference on Artificial Intelligence, pp. 701–703.

Klawonn, F. & Kruse, R. (1994). A Łukasiewicz logic based Prolog, Mathware & Soft Computing
1(1): 5–29.
URL: citeseer.nj.nec.com/227289.html

Klement, E., Mesiar, R. & Pap, E. (n.d.). Triangular norms, Kluwer Academic Publishers.
Lee, R. C. T. (1972). Fuzzy Logic and the resolution principle, Journal of the Association for

Computing Machinery 19(1): 119–129.
Li, D. & Liu, D. (1990). A Fuzzy Prolog Database System, John Wiley & Sons, New York.

www.intechopen.com

�������������$)

Morcillo, P. & Moreno, G. (2008). Floper, a fuzzy logic programming environment for research,
Proceedings of the Spanish Conference on Programming and Computer Languages, PROLE
2008, Gijón, Spain.

Moreno, G. (2006). Building a fuzzy transformation system., SOFtware SEMinar 2006: Theory
and Practice of Computer Science, pp. 409–418.

Munoz-Hernandez, S., Vaucheret, C. & Guadarrama, S. (2002). Combining crisp and fuzzy
Logic in a prolog compiler, in J. J. Moreno-Navarro & J. Mariño (eds), Joint Conf. on
Declarative Programming: APPIA-GULP-PRODE 2002, Madrid, Spain, pp. 23–38.

Pradera, A., Trillas, E. & Calvo, T. (2002). A general class of triangular norm-based aggregation
operators: quasi-linear t-s operators, International Journal of Approximate Reasoning
30(1): 57–72.

Shen, Z., Ding, L. & Mukaidono, M. (1989). Fuzzy resolution principle, Proc. of 18th Interna-
tional Symposium on Multiple-valued Logic, Vol. 5.

Trillas, E., Cubillo, S. & Castro, J. L. (1995). Conjunction and disjunction on 0,1 , , Fuzzy
Sets and Systems 72: 155–165.

UNCOMA (2006). Diseño e implementación de un sistema multiagente: Un equipo de fútbol
con robots.
URL: http://code.google.com/p/rakiduam

Vaucheret, C., Guadarrama, S. & Munoz-Hernandez, S. (2002). Fuzzy prolog: A simple gen-
eral implementation using clp(r), in M. Baaz & A. Voronkov (eds), Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, number 2514 in LNAI, Springer-
Verlag, Tbilisi, Georgia, pp. 450–463.

Vojtas, P. (2001). Fuzzy logic programming, Fuzzy Sets and Systems 124(1): 361–370.

www.intechopen.com

Robot Soccer

Edited by Vladan Papi

ISBN 978-953-307-036-0

Hard cover, 348 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

The idea of using soccer game for promoting science and technology of artificial intelligence and robotics was

presented in the early 90s of the last century. Researchers in many different scientific fields all over the world

recognized this idea as an inspiring challenge. Robot soccer research is interdisciplinary, complex, demanding

but most of all, fun and motivational. Obtained knowledge and results of research can easily be transferred

and applied to numerous applications and projects dealing with relating fields such as robotics, electronics,

mechanical engineering, artificial intelligence, etc. As a consequence, we are witnesses of rapid advancement

in this field with numerous robot soccer competitions and a vast number of teams and team members. The

best illustration is numbers from the RoboCup 2009 world championship held in Graz, Austria which gathered

around 2300 participants in over 400 teams from 44 nations. Attendance numbers at various robot soccer

events show that interest in robot soccer goes beyond the academic and R&D community. Several experts

have been invited to present state of the art in this growing area. It was impossible to cover all aspects of the

research in detail but through the chapters of this book, various topics were elaborated. Among them are

hardware architecture and controllers, software design, sensor and information fusion, reasoning and control,

development of more robust and intelligent robot soccer strategies, AI-based paradigms, robot communication

and simulations as well as some other issues such as educational aspect. Some strict partition of chapter in

this book hasn’t been done because areas of research are overlapping and interweaving. However, it can be

said that chapters at the beginning are more system-oriented with wider scope of presented research while

later chapters generally deal with some more particular aspects of robot soccer.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Susana Munoz Hernandez (2010). RFuzzy: an Easy and Expressive Tool for Modelling the Cognitive Layer in

RoboCupSoccer, Robot Soccer, Vladan Papi (Ed.), ISBN: 978-953-307-036-0, InTech, Available from:

http://www.intechopen.com/books/robot-soccer/rfuzzy-an-easy-and-expressive-tool-for-modelling-the-

cognitive-layer-in-robocupsoccer

www.intechopen.com

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

Phone: +86-21-62489820

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under

the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0

License, which permits use, distribution and reproduction for non-commercial

purposes, provided the original is properly cited and derivative works building

on this content are distributed under the same license.

