124,819 research outputs found

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Misunderstanding of Front-Of-Package Nutrition Information on US Food Products.

    Get PDF
    Front-of-package nutrition symbols (FOPs) are presumably readily noticeable and require minimal prior nutrition knowledge to use. Although there is evidence to support this notion, few studies have focused on Facts Up Front type symbols which are used in the US. Participants with varying levels of prior knowledge were asked to view two products and decide which was more healthful. FOPs on packages were manipulated so that one product was more healthful, allowing us to assess accuracy. Attention to nutrition information was assessed via eye tracking to determine what if any FOP information was used to make their decisions. Results showed that accuracy was below chance on half of the comparisons despite consulting FOPs. Negative correlations between attention to calories, fat, and sodium and accuracy indicated that consumers over-relied on these nutrients. Although relatively little attention was allocated to fiber and sugar, associations between attention and accuracy were positive. Attention to vitamin D showed no association to accuracy, indicating confusion surrounding what constitutes a meaningful change across products. Greater nutrition knowledge was associated with greater accuracy, even when less attention was paid. Individuals, particularly those with less knowledge, are misled by calorie, sodium, and fat information on FOPs

    The Sunrise Mission

    Get PDF
    The first science flight of the balloon-borne \Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is briefly summarized.Comment: 35 pages, 17 figure

    The DELPHI Silicon Tracker in the global pattern recognition

    Full text link
    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.Comment: Talk given at the 8th International Workshop on Vertex Detectors, Vertex'99, Texel, Nederland

    TransparentHMD: Revealing the HMD User's Face to Bystanders

    Get PDF
    While the eyes are very important in human communication, once a user puts on a head mounted display (HMD), the face is obscured from the outside world's perspective. This leads to communication problems when bystanders approach or collaborate with an HMD user. We introduce transparentHMD, which employs a head-coupled perspective technique to produce an illusion of a transparent HMD to bystanders. We created a self contained system, based on a mobile device mounted on the HMD with the screen facing bystanders. By tracking the relative position of the bystander using the smartphone's camera, we render an adapting perspective view in realtime that creates the illusion of a transparent HMD. By revealing the user's face to bystanders, our easy to implement system allows for opportunities to investigate a plethora of research questions particularly related to collaborative VR systems
    • 

    corecore