2,385 research outputs found

    Construction of near-optimal vertex clique covering for real-world networks

    Get PDF
    We propose a method based on combining a constructive and a bounding heuristic to solve the vertex clique covering problem (CCP), where the aim is to partition the vertices of a graph into the smallest number of classes, which induce cliques. Searching for the solution to CCP is highly motivated by analysis of social and other real-world networks, applications in graph mining, as well as by the fact that CCP is one of the classical NP-hard problems. Combining the construction and the bounding heuristic helped us not only to find high-quality clique coverings but also to determine that in the domain of real-world networks, many of the obtained solutions are optimal, while the rest of them are near-optimal. In addition, the method has a polynomial time complexity and shows much promise for its practical use. Experimental results are presented for a fairly representative benchmark of real-world data. Our test graphs include extracts of web-based social networks, including some very large ones, several well-known graphs from network science, as well as coappearance networks of literary works' characters from the DIMACS graph coloring benchmark. We also present results for synthetic pseudorandom graphs structured according to the Erdös-Renyi model and Leighton's model

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    Searching for partial Hadamard matrices

    Get PDF
    Three algorithms looking for pretty large partial Hadamard ma- trices are described. Here “large” means that hopefully about a third of a Hadamard matrix (which is the best asymptotic result known so far, [8]) is achieved. The first one performs some kind of local exhaustive search, and consequently is expensive from the time consuming point of view. The second one comes from the adaptation of the best genetic algorithm known so far searching for cliques in a graph, due to Singh and Gupta [21]. The last one consists in another heuristic search, which prioritizes the required processing time better than the final size of the partial Hadamard matrix to be obtained. In all cases, the key idea is characterizing the adjacency properties of vertices in a particular subgraph Gt of Ito’s Hadamard Graph (4t) [18], since cliques of order m in Gt can be seen as (m + 3) × 4t partial Hadamard matrices.Ministerio de Ciencia e Innovación MTM2008-06578Junta de Andalucía FQM-016Junta de Andalucía P07-FQM-0298

    A novel evolutionary formulation of the maximum independent set problem

    Full text link
    We introduce a novel evolutionary formulation of the problem of finding a maximum independent set of a graph. The new formulation is based on the relationship that exists between a graph's independence number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The resulting heuristic has been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and has been found to be competitive when compared to several of the other heuristics that have also been tested on those graphs

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Cover-Encodings of Fitness Landscapes

    Full text link
    The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.Comment: 15 pages, 4 figure

    Maximum common subgraph isomorphism algorithms for the matching of chemical structures

    Get PDF
    The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks
    corecore