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Abstract
In the context of community detection in social networks,
the term community can be grounded in the strict way
that simply everybody should know each other within
the community. We consider the corresponding commu-
nity detection problem. We search for a partitioning of
a network into the minimum number of non-overlapping
cliques, such that the cliques cover all vertices. This prob-
lem is called the clique covering problem (CCP) and is one
of the classical NP-hard problems. For CCP, we propose
a randomized heuristic approach. To construct a high-
quality solution to CCP, we present an iterated greedy
(IG) algorithm. IG can also be combined with a heuristic
used to determine how far the algorithm is from the op-
timum in the worst case. Randomized local search (RLS)
for maximum independent set was proposed to find such
a bound. The experimental results of IG and the bounds
obtained by RLS indicate that IG is a very suitable tech-
nique for solving CCP in real-world graphs. In addition,
we summarize our basic rigorous results, which were de-
veloped for analysis of IG and understanding of its behav-
ior on several relevant graph classes.
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1. Introduction
Many significant real-world problems can be modeled us-
ing networks. For the purpose of this work, a network
will be formalized as a structure consisting of vertices
and undirected edges between pairs of vertices. Thus, a
network will simply be an undirected, unweighted graph
G = [V,E].

The problem we study in this work is the (vertex) clique
covering problem (CCP). In CCP, the aim is to divide the
vertices of a graph into the minimum number of subsets,
in which every pair of vertices has an edge between them.
A subgraph with this property is called clique. For exam-
ple, in the context of social networks, the aim of CCP is
to partition the network into minimum number of groups,
such that everybody knows each other within each group.

One can intuitively see the relation between CCP and
community detection. An interesting fact is that commu-
nity detection is a relatively loosely defined problem [24]
and the properties of communities found by an algorithm
strongly depend on the optimized objective [19]. On the
other hand, CCP has a strict definition. The optimal
number of cliques needed to solve CCP is a specific value
for a network, while there might be more reasonable val-
ues for the number of communities. In community detec-
tion, this is a rather rare but desirable property of CCP.
However, it is NP-hard to solve CCP for an arbitrary
graph [16].

Our work is closely related to two major fields within
computer science. The first field is artificial intelligence,
since we use heuristic algorithms (sometimes also referred
to as heuristics) to solve our problem. Such algorithms
provide a solid solution to a problem but are not designed
directly with respect to a guarantee of solution quality.
Design, analysis and applications of heuristic algorithms
are integral parts of the artificial intelligence field [23].

The second related field is graph mining, which aims at
analysis of large real-world graphs using algorithmic meth-
ods. Emphasis in graph mining is not only on using the
properties of real-world graphs, but also on scalability of
the algorithms, which are used to discover information
from structure of the graphs [3].
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In the following, we present a randomized heuristic ap-
proach to solve CCP. This approach uses our own greedy
clique covering (GCC) algorithm, which receives a permu-
tation of vertices and partitions the vertices into cliques
in the order determined by the permutation. Next, we use
iterated greedy (IG) as a technique to optimize the per-
mutation, thus, optimizing the resulting clique covering.
This approach showed much promise for real-world net-
works. As the last step, we extended IG with a heuristic
to compute a lower bound, since for real-world networks,
we do not know the optimum in advance and have to
bound it. A lower bound based on a heuristic for max-
imum independent set was used. This, in combination
with GCC and IG, allowed us to show that CCP can be
solved near-optimally and often even optimally for many
real-world networks.

The paper is structured as follows. In Section 2, we briefly
provide the background and motivation for our investiga-
tions, as well as a short review of related work. In Section
3, we present our approach to solve CCP. In Section 4, we
provide an overview of experimental results achieved by
our approach. In Section 5, we shortly summarize the
analytical results, which shed light on how our approach
really is able to find solutions to CCP and what are its
disadvantages. Finally, in Section 6, we summarize the
contribution.

2. Background, Motivation and Related Work
We now formulate the studied problem formally. Let den-
sity of a graph G = [V,E] be determined by d(G) =

|E|
|V |(|V |−1)/2

. Furthermore, let G(Vi) denote the subgraph

of G induced by class Vi ⊆ V , i.e. the graph G′ = [Vi, Ei],
where Ei contains only the edges in E between the ver-
tices in Vi. We will simplify the notation of graph’s met-
rics in the way that the number of vertices |V | = n and
the number of edges |E| = m.

Let S = {V1, V2, ..., Vk} be a partitioning of the vertex
set V of an undirected, unweighted graph G into classes
V1, V2, ..., Vk such that

• the classes cover all vertices, i.e. ∪k
i=1Vi = V and

• the classes are non-overlapping, i.e. ∀ i, j such that
i 6= j it holds that Vi ∩ Vj = ∅.

Then, we will call S a (vertex) clique covering of G if
and only if all subgraphs induced by this partitioning are
cliques, i.e. ∀ i = 1, 2, ..., k d(G(Vi)) = 1. We will refer
to the minimum k, for which CCP can be solved, as the
clique covering number of G and denote it by ϑ(G).

We note that CCP is closely related to the graph coloring
problem. Suppose that G is the complementary graph to
G, i.e. a graph containing edges between pairs of vertices,
which were not present in G and vice versa. In a social
network, an edge in G would mean that two persons do
not know each other. Then, a solution to graph coloring
problem for G represents a solution to CCP for G.

The best known approximation algorithm for graph color-
ing (and, thus, also for clique covering) is due to Haldórs-
son [13]. The approximation ratio, i.e. the ratio between
the result of this algorithm and the optimum is at most
n(log log n)2/(log3 n). Such an approximation ratio is not

favorable for real-world applications. Therefore, heuris-
tic algorithms are a suitable choice to solve both graph
coloring and clique covering problems. For graph color-
ing, greedy heuristics are more scalable for large graphs.
For smaller but structurally difficult problem instances,
a large spectrum of local search and evolutionary algo-
rithms is available [11].

It is however known that heuristics tend to perform better
for some instances of a problem, while being less efficient
for other types of instances. Therefore, structure of the
studied graphs plays an important role in design of an
efficient heuristic for CCP.

We have already indicated that CCP is practically inter-
esting for real-world networks. Such networks often have
a non-trivial structure and include social and biological
networks [12], research citation networks, computer net-
works [25] or language networks [20]. Real-world networks
are often sparse, i.e. they may contain a high number of
vertices but the vertices are adjacent only to a limited
number of other vertices. Let m(n) be the number of
edges as a function of the number of vertices of a network.
For real-world networks, it often holds that m(n) ≺ n2 (in
other notation, m(n) = o(n2)), i.e. the number of edges
grows much more slowly than the number of pairs of ver-
tices. However, this means that for the complementary
graph, the number of edges will grow quadratically. To
put it into the context of social networks, a person knows
only a limited number of other people, but the number of
people not known will be much higher.

Even simple graph coloring heuristics have Ω(m) com-
plexity (i.e. a complexity lower bounded by the number
of edges), including greedy graph coloring [26], Brélaz’s
heuristic [2] and Leighton’s recursive largest first heuris-
tic [18]. For a dense graph, these are not well scalable.
Therefore, we proposed our own specialized technique to
solve CCP directly, which is well scalable for large sparse
graphs and gives high-quality results for real-world net-
works.

3. Our Approach to Solve the Clique Covering
Problem (CCP)

In this section, we introduce our original results. We first
describe our greedy clique covering (GCC) algorithm and
an iterated greedy (IG) algorithm used to improve the
results obtained by GCC [4, 5]. Next, we present a tech-
nique to compute a lower bound for the optimal solution
to CCP based on maximum independent set. To compute
this lower bound, we proposed a randomized local search
(RLS) algorithm, conceptually very similar to IG [6].

3.1 Greedy Clique Covering (GCC) and an Order-
based Representation of CCP

GCC is an algorithm, which takes the vertices in a partic-
ular order and labels them. Then, the vertices, which have
the same label, form a clique. The way how GCC chooses
a label for a vertex is illustrated by Figure 1. Let us have
a global information on how many vertices have which la-
bel. This information will be stored in array sizes. Let
Γ(v, c) be the number of vertices, which are neighbors of
v and have label c. Then, vertex v can join the vertices
with label c without violating the clique property, when
Γ(v, c) = sizes(c). When there are more values of c sat-
isfying this condition, the one with the lowest index is
chosen.
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Γ(v,red) = 1 

Γ(v,blue) = 2 

sizes(red) = 3
sizes(blue) = 3

Figure 1: Illustration of the way how GCC chooses
labels. The currently unlabeled vertex will re-
ceive label c if Γ(v, c) = sizes(c). In this case, there
are only 2 blue neighbors and 1 red neighbor of
v. Therefore, the currently unlabeled vertex must
receive its own new label.

Algorithm 1: Greedy Clique Covering (GCC)
Greedy Clique Covering (GCC)

Input: graph G = [V,E]
permutation P = [P1, P2, ..., Pn] of vertices in V
Output: clique covering S of G

1 for c = 1..n
2 sizes(c) = 0
3 for i = 1..n
4 j = Pi

5 c = find equal(Γ(vj , c), sizes(c))
6 Vc = Vc ∪ {vj}
7 return S = {V1, V2, ..., Vk}

Algorithm 1 describes how GCC can be implemented.
The input is a permutation P of vertices of our graph
G. In steps 1-2, sizes array is initialized. Then, the ver-
tices are iteratively labeled. In step 4, vertex vj is chosen
for labeling, based on permutation P . In step 5, GCC
finds the label for vj in operation find equal. This can
be done in such a way that neighbors of v are iterated
and values in sizes are decremented, based on which la-
bel each neighbor has. If some value in sizes(c) reaches
0, then apparently, c is a candidate label for vj . The
original values in sizes can then be restored by iterating
the neighbors once again. In step 6, the labeling itself
is performed. The advantage of this strategy is that for
each vertex, we iterate only over its neighbors to choose
a label. Therefore, the time complexity of GCC is O(m),
since

∑
v∈V deg(v) = 2m.

It is important to note that GCC performs differently
for different input permutations. Therefore, GCC can
be viewed as a mapping from the space of permutations
of vertices to the search space of clique coverings. More
formally, GCC is a mapping µ from the space of all per-
mutations of n objects Sn to the space of clique coverings
Φ, i.e. µ : Sn → Φ, as shown by Figure 2. In evolution-
ary computation, such a mapping is often called genotype-
phenotype mapping. The aim is to find a permutation Popt

such that µ(Popt) = Sopt, where Sopt is an optimal clique
covering. It can be shown that for an arbitrary graph,
there always is a permutation Popt with this property.

Theorem 1. For an arbitrary graph G, there is a permu-
tation, for which greedy clique covering will produce the
optimal solution with ϑ(G) cliques.

ΦSn

P
S

Popt Sopt

Figure 2: Illustration of GCC as a mapping. GCC
can be viewed as function which, for a permu-
tation P ∈ Sn, returns a clique covering S ∈ Φ.
Therefore, the problem is solved indirectly. In-
stead of searching for an optimal clique covering
Sopt, one can search for an optimal permutation
Popt, for which GCC constructs Sopt.

Algorithm 2: Iterated Greedy (IG) Algorithm
for CCP

Iterated Greedy (IG) Algorithm
for CCP

Input: graph G = [V,E]
Output: clique covering S of G

1 P = random permutation(1, 2, ..., n)
2 while stopping criterion is not met
3 {V1, V2, ..., Vk} = GCC(G,P )
4 with prev probability
5 P = [Vk, Vk−1, ..., V1]
6 else
7 P = random permutation(V1, V2, ..., Vk)
8 if ϑ(G) is known and k = ϑ(G)
9 return S = {V1, V2, ..., Vk}
10 return S = {V1, V2, ..., Vk}

With GCC, we established an order-based representation
of CCP, i.e. the problem of searching for the optimal
clique covering is now transformed into a problem of sear-
ching for an optimal ordering. As we have already indi-
cated, the key property of our approach is its scalability.
GCC performs in O(m) time, which is favorable for sparse
graphs. This will allow one to use GCC repeatedly many
thousands of times in a stochastic search algorithm and
achieve reasonable results in a reasonable time even for
large graphs.

3.2 Iterated Greedy (IG) Clique Covering
Iterated greedy (IG) is a stochastic local search technique
[14], which combines a greedy algorithm with stochastic
optimization of its component. It was used for the first
time by Chvátal to solve the set covering problem [7],
which suggests that it is suitable for covering problems.

Our main inspiration comes from the iterated greedy al-
gorithm for graph coloring proposed by Culberson and
Luo [9, 10]. This algorithm used block-based properties
of greedy graph coloring algorithm. We now describe a
way how to use such an idea analogically to improve the
results obtained by GCC.

The way how our IG works is given by the pseudocode of
Algorithm 2. In step 1, we generate a permutation of ver-
tices uniformly at random. Next, an iterative procedure
is performed. In step 3, we use GCC with permutation P
to construct a clique covering {V1, V2, ..., Vk}. Then, one
of two possible block-based mutations is performed. The
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first is the reverse mutation, where the blocks V1, V2, ..., Vk

are put into the next permutation in the reverse order.
The second one is the random mutation, by which the
blocks are randomly shuffled. We note that the vertices
within blocks are internally preserved. This is done in
steps 4-7. If we know the optimal value ϑ(G), the im-
provement process is stopped in steps 8-9. Steps 2-9 are
repeated until a stopping criterion is met.

One should note that by preserving the blocks internally,
the number of cliques used to cover the graph can only
become lower. This is because a new block simply can-
not be created this way, because of the greedy nature of
GCC. Therefore, although the random mutation opera-
tor performs at the level of blocks entirely at random,
the search is not blind. The objective function is non-
increasing during the run of IG, which is typical for local
search algorithms.

3.3 Randomized Local Search (RLS) for a Lower
Bound

In our experimental work, we quickly noticed that IG
seems to perform well for real-world networks [4]. How-
ever, one usually does not know the optimal number of
cliques ϑ(G) for a network with an unknown structure.
Therefore, it is practically interesting to bound the opti-
mum from below. This way, we can determine how well
our algorithm performed. It can be easily shown that the
clique covering number is bounded from below and from
above according to Lemma 1.

Lemma 1. Let G be an undirected graph with minimum
degree δmin(G), clique covering number ϑ(G), maximum
independent set size α(G) and maximum clique size ω(G).
Then, ϑ(G) is bounded in the following way:

max

{
α(G),

n

ω(G)

}
≤ ϑ(G) ≤ n− δmin(G). (1)

For real-world networks, the max operation in the lower
bound will almost always evaluate to α(G), i.e. α(G) will
be a tighter bound. The size of maximum independent set
can be easily interpreted in the context of social networks.
It is the maximum size of a group, in which nobody knows
each other. Obviously, if α(G) is the size of such a set, it
takes α(G) cliques to cover its vertices.

The only issue here is that maximum independent set
problem is also NP-hard [16]. Therefore, it is a problem
for heuristic algorithms, too. We designed a randomized
local search algorithm (RLS) to estimate the maximum
independent set. It is specified in pseudocode of Algo-
rithm 3. We note that RLS1

p means that 1 mutation is
performed per iteration and the algorithm searches in the
space of permutations of vertices.

RLS1
p starts with a random permutation of vertices, gen-

erated in step 1. In step 3, greedy independent set pro-
cedure is used. This procedure takes the vertices in order
determined by the current permutation P . For each ver-
tex, we simply determine whether it can be added to the
independent set. This occurs when the vertex is not adja-
cent to any vertex within the independent set. This way,
some independent set is generated. In step 6, we choose a

Algorithm 3: RLS1
p Algorithm for the Maximum

Independent Set Size
RLS1

p Algorithm for the Maximum
Independent Set Size

Input: graph G = [V,E]
Output: the size α(G) of the estimated maximum
independent set

1 P = random permutation(1, 2, ..., n),
P ∗ = P , k∗ = 1

2 while stopping criterion is not met
3 k = |greedy independent set(G,P )|
4 if k ≥ k∗
5 k∗ = k, P ∗ = P
6 j = uniformly random(2, n)
7 P = jump(j, 1, P ∗)
8 return α(G) = k∗

random vertex from the current permutation P and move
it to the first position in the permutation. The other ver-
tices are then shifted to the right. Greedy independent
set procedure is used once again. The new permutation
is accepted if and only if the new independent set is at
least as large as the previous one. This is repeated until
a stopping criterion is met.

4. Overview of Experimental Results
The verification of our approach was conducted using
both experimental and analytical methodologies. Let us
first briefly present the experimental results we obtained
for our approach. These results can be divided into three
main parts:

• a case study of IG on graphs with planted cliques,

• experimental comparison of IG with Brélaz’s heuris-
tic and its modification,

• verification of quality of results obtained by IG and
RLS on real-world networks.

In the first step, we conducted a case study of IG on
graphs with planted cliques. A graph with planted cliques
consists of embedded cliques with some predefined size,
it is a special case of planted partition model of clustered
graphs [8]. Planted cliques are connected uniformly at
random. The main aim of our study was to determine how
well IG is able to restore these planted cliques. On graphs,
which were sparse enough between the planted cliques,
IG performed very efficiently and was able to find the
optimum. Additionally, we discovered that larger planted
cliques took less time to discover than smaller cliques [4].

In the next step, we compared IG to Brélaz’s heuristic (de-
noted by BRE) and its modification we called saturation-
based greedy clique covering (SAT-GCC). Brélaz’s heuris-
tic was chosen because of its good tradeoff between scala-
bility and quality of results, since it works in O(n2) time
[2]. SAT-GCC uses a strategy similar to Brélaz’s heuris-
tic but can be implemented to run faster. In SAT-GCC,
after assignment of a vertex into a clique, for each of its
neighbors, which are adjacent to all of the vertices of the
current clique, its saturation is incremented. Vertices are
ordered primarily based on highest saturation, secondar-
ily based on lowest degree and possible ties are resolved
at random.
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Table 1: The comparison of the quality of re-
sults obtained by the Brélaz’s heuristic (BRE),
saturation-based greedy clique covering (SAT-
GCC) and the iterated greedy (IG) heuristic us-
ing GCC on CCP. The numbers denote the ap-
proximations of the clique covering number ϑ(G)
for each graph and each heuristic. These were
computed for uniform random graphs, Leighton
graphs, which contain embedded cliques of differ-
ent sizes and graphs obtained by crawling a local
social network. The best results are highlighted
in bold.

G BRE SAT-GCC IG

Erdős-Rényi uniform random graphs
unif1000 0.1 302 310 242
unif5000 0.1 1241 1290 1064
unif10000 0.1 2326 2403 2030
unif20000 0.01 7640 7863 6403

Leighton graphs from DIMACS instances
le450 15a 85 89 80
le450 15b 92 90 82
le450 15c 72 76 58
le450 15d 73 73 59
le450 25a 91 94 91
le450 25b 81 83 80
le450 25c 61 62 55
le450 25d 60 59 51

Social graphs
soc1000 759 759 759
soc2000 1471 1475 1471
soc10000 6620 6671 6618
soc20000 12770 12899 12764

Table 1 shows the comparison of the numbers of cliques
found by the three studied algorithms. The columns de-
note the three algorithms, the rows denote the instances
and the values are the numbers of cliques found by a par-
ticular algorithm for the respective test graph. As test
instances, we used Erdős-Rényi uniform random graphs,
in which edges are put between each pair of vertices with
constant probability. Leighton graphs are also pseudoran-
dom and contain embedded cliques with several different
sizes. These graphs were designed to model large schedul-
ing problems [18]. However, searching for the original em-
bedded cliques is also a relevant task. Last but not least,
we used several extracts of a Slovak web-based social net-
work. Table 1 illustrates the clear dominance of our IG
algorithm over these well-scalable techniques. One can
see that the difference in performance of Brélaz’s heuris-
tic and IG is more pronounced in random graphs and
Leighton graphs. However, the most encouraging result
is probably the fact that IG surpassed Brélaz’s heuris-
tic on large social graphs with 10000 and 20000 vertices.
This gives a hint that IG might be a very suitable choice
to solve CCP in large real-world networks.

Finally, we tested IG and RLS on set of real-world net-
works. For this purpose, we used the extracts of a web-
based Slovak social network, denoted by Social network
I, which were already used in experiments summarized in
Table 1. Social network II is a neighborhood of a sin-
gle user from another social network. Network science
instances are taken from other sources. These instances
include a language network describing adjective-noun ad-

jacencies (adjnoun), a collaboration network for the field
of network science (netscience), a network of friendships
in a karate club (zachary), a network describing games in
a season of an American college football league (football)
and a snapshot of Internet on the level of autonomous
systems (as − 22july06)1. The last set of instances in-
cludes coappearance networks for several classical literary
works, which describe whether two characters in a book
encounter each other2.

As we have already mentioned, the aim of using RLS is to
find a lower bound for the clique covering number ϑ(G).
This way, we are able to determine how good solutions
our IG algorithm is in fact able to find. Table 2 summa-
rizes the lower bounds ϑL(G) obtained by RLS and the
numbers of cliques ϑU (G) used by IG to solve CCP for a
particular graph. The table contains names and sources
for the graphs, the values obtained by the algorithms and
the average size of a clique n

ϑU (G)
in the obtained solu-

tions. The cases, for which we obtained ϑL(G) = ϑU (G),
are highlighted in bold. Naturally, for these cases, we can
declare that IG was able to find the optimal solutions.

Using the bounds obtained by RLS, one can see that IG
was able to solve CCP optimally for 13 out of 17 of these
real-world networks. For the other 4 instances, the op-
timal value ϑ(G) was limited to a small interval. Inter-
estingly, the instances where IG performed optimally, in-
clude instances from all categories. It was able to solve
the problem for social networks, coappearance networks
and a collaboration network. We also note that the re-
sults were performed with high number of successful runs
over 30 independent runs of both IG and RLS.

5. Overview of Analytical Results
In the previous section, we have shown that IG performs
well experimentally. However, this did not give us much
insight into how the approach really works. Especially,
one can wonder how the random decisions by block-based
mutation operators are able to improve solutions. Insight
into this is important to understand what are the advan-
tages and disadvantages of IG. Therefore, we aimed also
to conduct an analytical investigation on the behavior of
IG [5].

At this point, we give an overview of the methods we
used and the analytical results we obtained. As we have
already indicated, IG is a stochastic local search algo-
rithm. Therefore, methods of analysis for evolutionary
algorithms are suitable to analyze its convergence prop-
erties and obtain bounds on its expected runtime [21].

There are two methods we used to analyze the runtime of
IG on several chosen classes of graphs.

1. Fitness levels (fitness-based partitions). This method
is based on partitioning of the search space into sev-
eral levels, based on values of the objective function,
such that an algorithm can only move to a better

1To the best of our knowledge, this Internet snapshot
was not previously published. It is available on this site:
http://www-personal.umich.edu/∼mejn/netdata/.
2All these instances are available or
a link to their source is provided at:
http://www.fiit.stuba.sk/∼chalupa/benchmarks/ccp



6 Chalupa, D.: Partitioning Networks into Cliques: A Randomized Heuristic Approach

Table 2: Summary of the lower bounds ϑL(G) obtained by RLS and the numbers of cliques ϑU (G) used by
IG on complex network instances. The results, for which we obtained that ϑL(G) = ϑU (G), are highlighted
in bold. There are 13 such networks, for which we showed this way that the result obtained by IG is
actually the optimal clique covering [6].

source of G file name ϑL(G) ϑU (G) n
ϑU (G)

Web-based social network extracts [4]
Social network I. soc500 377 377 1.33
Social network I. soc1000 759 759 1.32
Social network I. soc2000 1470 1471 1.36
Social network I. soc10000 6618 6618 1.51
Social network I. soc20000 12764 12764 1.57
Social network II. soc52 15 15 3.47

Network science instances
Adjective-noun adjacencies [22] adjnoun 53 55 2.04
Network science collaborations [22] netscience 690 690 2.30
Les Miserables network [17] lesmis 35 35 2.20
Zachary Karate Club [27] zachary 20 20 1.70
American College Football [12] football 21 22 5.23
Snapshot of the Internet as− 22july06 19660 19661 1.17

Characters’ coappearance networks from DIMACS coloring instances [15]
Anna Karenina anna 80 80 1.73
David Copperfield david 36 36 2.42
Huckleberry Finn huck 27 27 2.74
Iliad and Odyssey homer 341 341 1.65
Jean Valjean jean 38 38 2.11

fitness level or stagnate. If pi is the minimum prob-
ability of improvement from i-th level to a better
fitness level, then the expected waiting time for an
improvement to a better fitness level is 1/pi. Conse-
quently, runtime is determined by the sum of wait-
ing times over all suboptimal fitness levels [21].

2. Cover time of random walks. This method is used
to analyze the runtime of evolutionary algorithms
on plateaus, i.e. areas consisting of solutions with
equal values of objective function. On a plateau, a
search algorithm behaves like a random walk. For a
plateau with |V | solutions and |E| transformations
between them, it holds that the expected time to
visit each solution at least once is 2|E|(|V | − 1) [1].

In runtime analysis of IG, we usually used fitness levels
to upper bound the expected runtime of IG. A particu-
lar fitness level usually consisted of clique coverings with
equal number of cliques. To estimate the expected time to
obtain an improvement to a better fitness level, we used
either the cover time of random walks or some specific
knowledge about the structure of the graph.

Table 3 summarizes the analytical results we proved for
GCC and IG. For the cases, where the algorithms behave
suboptimally, we used metrics of approximation quality.
Let fopt be the optimal value of objective function for
a minimization problem and let f be the worst possible
value obtained by the algorithm. Then, we define approx-
imation ratio as R = f/fopt and maximum discrepancy
as D = f − fopt.

Star graphs consist of one central vertex adjacent to sev-
eral vertices with degree 1. Both GCC and IG behave
optimally in linear time on this class of graphs. This is an
example of a class of graphs, where block-based mutation

is not needed, since GCC gives the optimum for any per-
mutation. On paths (graphs consisting of vertices chained
to a “line”), GCC achieves only 4/3-approximation, while
IG behaves optimally in O(n5) time. On complements of
bipartite graphs, it depends on the number of edges be-
tween the partitions. If the graph is sparse enough, IG
behaves optimally in O(n3) time, while GCC may over-
estimate with high discrepancy. However, there is a com-
plement of a bipartite graph, where IG can get stuck with
probability lower bounded by 1/15. Finally, both GCC
and IG have a similar worst-case result. There is a class
of graphs, where GCC gives a suboptimal solution and
IG is not able to improve it using block-based mutations
with an overwhelming probability.

6. Conclusions
We proposed a new technique to solve the (vertex) clique
covering problem (CCP). The aim of CCP is to parti-
tion the vertices of a network into minimum number of
groups, which induce cliques (subgraphs with all pairs of
vertices being adjacent). In the context of social networks,
CCP can be viewed as a strict variant of community de-
tection, where community is viewed as a group of persons,
in which everybody knows each other.

The main contributions of our work were presented in
three parts. Each part was published in a separate paper
[4, 5, 6].

In the first part, we proposed our greedy clique covering
(GCC) algorithm as a mapping of a permutation of ver-
tices to a clique covering. Next, we extended it to an
iterated greedy (IG) algorithm. The key advantage of
GCC over existing approaches is that it works in O(m)
time, where m is the number of edges of the graph. This
makes GCC well-scalable and useable thousands of times
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Table 3: Overview of the analytical results on GCC and IG on several studied graph classes. Quality of
results and runtime of the algorithms are given, R denotes approximation ratio and D denotes maximum
discrepancy between the found solution and the optimum.

graph class GCC IG
star graphs optimal, O(n) time optimal, O(n) time

paths suboptimal, R = 4/3 optimal, O(n5) time

complements of bipartite graphs: suboptimal, D = n/2− 1 optimal, O(n3) time
partitions of size n/2∗, mout < n/2
complements of bipartite graphs: suboptimal, D = n/2− 1 can be suboptimal with
partitions of size n/2∗, mout ≥ n/2 probability p ≥ 1/15
worst-case result can be suboptimal with can be suboptimal with

probability 1− o(1) probability 1− o(1)

* Here, we assume that n is even, i.e. n/2 is an integer.

in an iterative optimization algorithm. We designed IG
as such an algorithm. First experimental results showed
that IG is able to perform well on graphs with planted
cliques, where the aim was to restore the planted cliques.
Additionally, IG experimentally surpassed the results of
the well-known Brélaz’s graph coloring heuristic applied
to solve CCP.

Secondly, we studied the properties of GCC and IG an-
alytically. We managed to show analytically, when the
block-based mutation operators used by IG are able to im-
prove the solutions and what are their disadvantages. We
formulated a sufficient condition for an improvement by
block-based mutation operator to occur. We have shown
that IG is able to find the optimum in polynomial time on
path graphs (chain graphs) and sparse complements of bi-
partite graphs. On the other hand, we showed that there
is a class of graphs, where IG will tend to get stuck in
a suboptimal solution with an overwhelming probability.
Fortunately, such a class of graphs is highly artificial and
unlikely to appear in real-world applications.

Last but on least, we experimentally demonstrated that
IG is a suitable technique to solve CCP in real-world net-
works. For real-world networks, one usually does not
know the optimal value in advance. Therefore, we pro-
posed another heuristic to determine how far the solu-
tions obtained by IG are from the optimum. We designed
a randomized local search (RLS) algorithm for maximum
independent set to accomplish this goal. IG and RLS
were experimentally tested on social networks, on several
graphs studied in network science, as well as on a set of
coappearance networks for classical literary works. For
13 out of 17 graphs, IG found the optimum, while for the
other 4 graphs, the optimum was bounded inside a very
small interval.
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