19 research outputs found

    Frequency shift filtering for cyclostationary signals.

    Get PDF
    The frequency-shift (FRESH) filter is a structure which exploits the spectral correlation of cyclostationary signals for removing interference and noise from a wanted signal. As most digital communication signals are cyclostationary, FRESH filtering offers certain advantages for interference rejection in a communications receiver. This thesis explores the operation and application of FRESH filters in practical interference scenarios. The theoretical background to cyclostationarity is clarified with graphical interpretations of what cyclostationarity is, and how a FRESH filter exploits it to remove interference. The effects of implementation in a sampled system are investigated, in filters which use baud rate related cyclostationarity, leading to efficiency improvements. The effects of varying the wanted signal pulse shape to enhance the cyclostationarity available to the FRESH filter are also investigated. A consistent approach to the interpretation of the FRESH filter's operation is used throughout, while evaluating the performance in a wide range of realistic channel conditions. VLF radio communication is proposed as one area where interference conditions are particularly suitable for the use of FRESH filtering. In cases of severe adjacent channel interference it is found that a FRESH filter can almost completely remove the interferer. The effects of its use with an impulse rejection technique are also investigated. Finally, blind adaptation of FRESH filters through exploitation of carrier related cyclostationarity is investigated. It is found that one existing method loses the advantage of FRESH filtering over time invariant linear filtering. An improvement is proposed to the latter which restores its performance to that of a trained FRESH filter, and also reveals that carrier related cyclostationarity can be exploited, in some cases, by a simpler method. J

    Capacity and performance analysis of advanced multiple antenna communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) antenna systems have been shown to be able to substantially increase date rate and improve reliability without extra spectrum and power resources. The increasing popularity and enormous prospect of MIMO technology calls for a better understanding of the performance of MIMO systems operating over practical environments. Motivated by this, this thesis provides an analytical characterization of the capacity and performance of advanced MIMO antenna systems. First, the ergodic capacity of MIMO Nakagami-m fading channels is investigated. A unified way of deriving ergodic capacity bounds is developed under the majorization theory framework. The key idea is to study the ergodic capacity through the distribution of the diagonal elements of the quadratic channel HHy which is relatively easy to handle, avoiding the need of the eigenvalue distribution of the channel matrix which is extremely difficult to obtain. The proposed method is first applied on the conventional point-to-point MIMO systems under Nakagami-m fading, and later extended to the more general distributed MIMO systems. Second, the ergodic capacity of MIMO multi-keyhole and MIMO amplify-and-forward (AF) dual-hop systems is studied. A set of new statistical properties involving product of random complex Gaussian matrix, i.e., probability density function (p.d.f.) of an unordered eigenvalue, p.d.f. of the maximum eigenvalue, expected determinant and log-determinant, is derived. Based on these, analytical closedform expressions for the ergodic capacity of the systems are obtained and the connection between the product channels and conventional point-to-point MIMO channels is also revealed. Finally, the effect of co-channel interference is investigated. First, the performance of optimum combining (OC) systems operating in Rayleigh-product channels is analyzed based on novel closed-form expression of the cumulative distribution function (c.d.f.) of the maximum eigenvalue of the resultant channel matrix. Then, for MIMO Rician channels and MIMO Rayleigh-product channels, the ergodic capacity at low signal-to-noise ratio (SNR) regime is studied, and the impact of various system parameters, such as transmit and receive antenna number, Rician factor, channel mean matrix and interference-tonoise- ratio, is examined

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Impacto do comportamento transitório de sistemas de radiocomunicações na gestão do espectro

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThis PhD Thesis falls within the domain of spectrum engineering and spectrum management, and intends to address current and concrete problems, with which, regulators have to deal. Particularly, the definition of technical conditions to be met by radio systems, which will operate in specific bands, selected to introduce novel concepts such as flexibility and technological neutrality. The Block Edge Mask approach was adopted to define technical conditions of operation, in those bands. However, this model, based on spectral masks, which are defined in the frequency domain, do not take into account the transient behavior or time-varying characteristics of signals used by emerging radio communication systems. Furthermore, measurement methodologies developed for validation of technical parameters associated to these models, which are recommended by international bodies, potentially lead to practical issues that must be scrutinized. Thus, alternative time-frequency mixed domain signal processing techniques are explored, in this thesis, to be used for assessing the compliance of radio systems operating under such constraints.Esta Tese de Doutoramento insere-se nos domínios da engenharia do espectro e da gestão do espectro radioelétrico, e pretende abordar problemas atuais e concretos com que os reguladores se deparam. Em particular, a definição de condições técnicas a serem cumpridas pelos sistemas rádio que irão operar em determinadas faixas de frequências, selecionadas para a introdução de abordagens de gestão do espectro mais flexíveis e tecnologicamente neutras. O modelo de Máscara Delimitadora de Bloco (Block Edge Mask) foi adotado, a nível europeu, como estratégia de definição de condições técnicas de operação, nessas faixas. Contudo, este modelo, que recorre a restrições que são apenas estabelecidas no domínio da frequência, não entra em linha de conta com comportamentos transitórios ou com a variabilidade temporal de sinais inerentes aos sistemas de radiocomunicações atuais. Para além disso, a medição e validação de parâmetros técnicos associados a estes modelos, conforme definidas nas recomendações internacionais aplicáveis, levantam problemas práticos que importa escalpelizar. Nesse sentido, são exploradas, nesta tese, técnicas alternativas de processamento de sinal no domínio misto tempo-frequência, tendo em vista a sua utilização na avaliação de conformidade dos sistemas rádio em face das restrições aplicáveis

    A Novel SNR Estimation Technique for OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) systems have received a lot of attention because of their robust performance in frequency dispersive channels. Further performance improvement is achieved by employing more sophisticated receiver techniques that often require the knowledge of signal-to-noise ratio (SNR) - broadly defined as the ratio of the desired signal power to the unwanted noise power. For example, noise variance and, hence, signal to noise ratio (SNR) estimates of the received signal are very important for the channel quality control in communication systems. Similarly, in advanced communication systems, SNR estimation is used for adaptive algorithms for modulation, power control and coding. The objective of the work undertaken in this thesis is to design a front-end noise power estimator and, thence, SNR estimator. The proposed SNR estimator utilizes the OFDM preamble signal - the preamble used for synchronization. The estimation is achieved by auto correlating the preamble and it is deployed right at the front-end of the receiver. Noise power and, hence, signal power is estimated from the correlation results. The technique is also extended to obtaining noise power estimates of colored noise using wavelet-packet based filter bank analysis of the noise. In order to benchmark the proposed noise power and SNR estimation technique, a complete end-to-end fixed-broadband-wireless-access-system (IEEE 802.16d) simulation has been developed and the results are compared with other works reported in the literature. The simulations are conducted in both frequency non-dispersive and dispersive channels with real additive white Gaussian noise (A WGN) and also colored noise. It is observed that the proposed estimator gives better SNR estimates. The proposed estimator is also checked with WiMAX systems (IEEE802.\6d, 2004) using SUI multipath channels and with Wi-Fi systems (IEEE802.11 a) with indoor channel models. The estimator performs SNR estimation at front-end of the receiver unlike all other estimators which perform SNR estimation at back-end of the receiver. Furthermore, the proposed estimator has relatively low computational complexity; for it makes use of only one OFDM preamble signal to find the SNR estimates. The criteria of good SNR estimator are accuracy of estimates, low complexity and easy to implement. The results show that the proposed estimator fulfills these criteria successfully

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Outage probability formulas for cellular networks (contributions for MIMO, CoMP and time reversal features)

    Get PDF
    L étude de dimensionnement d un réseau cellulaire est une phase de conception qui doit permettre de déterminer les performances d un système dans une configuration donnée. Elle inclut l étude de couverture et l analyse de trafic. De complexes simulations sont possibles pour connaître les paramètres de performances d un réseau mais seules les études analytiques fournissent des résultats rapides. Par ailleurs, pour faire face à la demande de hauts débits, à la rareté du spectre fréquentiel et à l impossibilité d émettre à de plus fortes puissances, de nouvelles techniques de transmissions sont apparues. Nous sommes ainsi passés d un système classique à une seule antenne à des systèmes à multiple antennes et même à des scénarios de coopération entre stations de base. Dans cette thèse, nous proposons des modèles analytiques pour l étude des performances, notamment en termes de probabilités de coupure, de ces évolutions des réseaux cellulaires. Dans une première phase, nous considérons des systèmes multicellulaires à une antenne émettrice et une antenne réceptrice (SISO). Nous proposons deux méthodes d étude de l impact conjoint de l affaiblissement de parcours, de l effet de masque et des évanouissements rapides. Nous étudions, par la suite, un système à large bande utilisant le retournement temporel comme technique de transmission. Dans une deuxième phase, nous considérons des systèmes multicellulaires à antennes multiple à l émission ou à la réception (MISO/MIMO) implémentant les schémas de diversité Alamouti et de combinaison par rapport maximal (MRC). Ensuite, nous considérons un système multicellulaire multi-utilisateurs à précodage de forçage à zéro (ZFBF).The implementation of cellular systems have aroused issues related to the design of cellular networks termed to as network dimensioning. It includes the coverage estimation and thetraffic analysis. Simple models and methods are required to reduce the time consumption of these two analysis. At the same time, the growing demand for higher data rates constrained by the scarcity of frequency spectrum, and the requirements in terms of power consumption reduction make the telecommunication community think about new transmission techniques moving from the classical single antenna systems to multiple antenna systems and even the newly envisaged cooperative systems. In this thesis, we provide analytical models to assess the performance of these different cellular network evolutions in terms of outage probabilities. In a first study, we consider multicellular single input single output (SISO) systems. First, we propose two accurate methods to study the joint impact of path-loss, shadowing and fast fading. This system has so far been studied either considering the only impact of path-loss and Rayleigh fading, or considering the same channel model as in our case but providing very complex outage probability expressions. Then, we provide an outage probability expression in a wideband communication context implementing the Time Reversal (TR) transmission technique considering the impact of fast fading. In a second study, we focus on multiple antenna systems. We study the performance of a Multiple Input Multiple Output (MIMO) system implementing a transmit and a receivediversity schemes namely the Alamouti code and the Maximum Ratio Combining (MRC).PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Advanced Signal Processing for MIMO-OFDM Receivers

    Get PDF
    corecore