65 research outputs found

    The Multisensor Array Based on Grown-On-Chip Zinc Oxide Nanorod Network for Selective Discrimination of Alcohol Vapors at Sub-ppm Range

    Get PDF
    We discuss the fabrication of gas-analytical multisensor arrays based on ZnO nanorods grown via a hydrothermal route directly on a multielectrode chip. The protocol to deposit the nanorods over the chip includes the primary formation of ZnO nano-clusters over the surface and secondly the oxide hydrothermal growth in a solution that facilitates the appearance of ZnO nanorods in the high aspect ratio which comprise a network. We have tested the proof-of-concept prototype of the ZnO nanorod network-based chip heated up to 400 °C versus three alcohol vapors, ethanol, isopropanol and butanol, at approx. 0.2–5 ppm concentrations when mixed with dry air. The results indicate that the developed chip is highly sensitive to these analytes with a detection limit down to the sub-ppm range. Due to the pristine differences in ZnO nanorod network density the chip yields a vector signal which enables the discrimination of various alcohols at a reasonable degree via processing by linear discriminant analysis even at a sub-ppm concentration range suitable for practical applications

    The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air

    Get PDF
    Towards the development of low-power miniature gas detectors, there is a high interest in the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT). Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2_{2} substrates equipped by multiple Pt electrodes to serve as on-chip gas monitors and thoroughly estimate its chemiresistive performance upon exposing to two model VOCs, isopropanol and benzene, in a wide operating temperature range, from RT to 350 °C, and LED-powered UV illumination, 380 nm wavelength; the dry air and humid-enriched, 50 rel. %, air are employed as a background. We show that the UV activation allows one to get a distinctive chemiresistive signal of the ZnO sensor to isopropanol at RT regardless of the interfering presence of H2_{2}O vapors. On the contrary, the benzene vapors do not react with UV-illuminated ZnO at RT under dry air while the humidity’s appearance gives an opportunity to detect this gas. Still, both VOCs are well detected by the ZnO sensor under heating at a 200–350 °C range independently on additional UV exciting. We employ quantum chemical calculations to explain the differences between these two VOCs’ interactions with ZnO surface by a remarkable distinction of the binding energies characterizing single molecules, which is −0.44 eV in the case of isopropanol and −3.67 eV in the case of benzene. The full covering of a ZnO supercell by H2_{2}O molecules taken for the effect’s estimation shifts the binding energies to −0.50 eV and −0.72 eV, respectively. This theory insight supports the experimental observation that benzene could not react with ZnO surface at RT under employed LED UV without humidity’s presence, indifference to isopropanol

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS(3)) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS(3) nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS\u3csub\u3e3\u3c/sub\u3e Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 oC, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 oC reduces both the sensitivity and selectivity of the sensor array

    An investigation into spike-based neuromorphic approaches for artificial olfactory systems

    Get PDF
    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses

    On the temporal stability of analyte recognition with an e-nose based on a metal oxide sensor array in practical applications

    Get PDF
    The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing

    Integration of Biomolecular Recognition Elements with Solid-State Devices

    Get PDF
    Continued advances in stand-alone chemical sensors requires the introduction of new materials and transducers, and the seamless integration of the two. Electronic sensors represent one of the most efficient and versatile sensing transducers that offer advantages of high sensitivity, compatibility with multiple types of materials, network connectivity, and capability of miniaturization. With respect to materials to be used on this platform, many classes and subclasses of materials, including polymers, oxides, semiconductors, and composites have been investigated for various sensing environments. Despite numerous commercial products, major challenges remain. These include enhancing materials for selectivity/specificity, and low cost integration/ miniaturization of devices. Breakthroughs in either area would signify a transformative innovation. In this thesis, a combined materials and devices approach has been explored to address the above challenges. Biomolecular recognition elements, exemplified by aptamers, are the most recent addition to the library of tunable materials for specific detection of analytes. At the same time, nanoscale electrical devices based on tunnel junctions offer the potential for simple design, large scale integration, field deployment, network connectivity, and importantly, miniaturization to the molecular scale. To first establish a framework for studying sorption properties of solid oligonucleotides, custom designed aptamers sequences were studied to determine equilibrium partition coefficients. Linear-solvation-energy-relationship (LSER) analysis provides quantifications of non-covalent bonding properties and reveals the dominance of hydrogen bonding basicity in oligonucleotides. We find that DNA-analyte interactions have selective sorption properties similar to synthetic polymers. LSER analysis provides a chemical basis for material-analyte interactions. Oligonucleotide sequences were integrated with gold nanoparticle chemiresistors to transfer the selective sorption properties to microfabricated electrical devices. Responses generated by oligonucleotides under dry conditions were similar to standard organic mediums used as capping agents and suggests that DNA-based chemiresistor sensors operate with a similar mechanism based on sorption induced swelling. The equilibrium mass-sorption behavior of bulk DNA films could be translated to the chemiresistor sensitivity profiles. Our work establishes oligonucleotides, including aptamers, as a class of sorptive materials that can be systematically studied, engineered, and integrated with nanoscale electronic sensor devices. Experiments to investigate secondary structure effects were inconclusive and we conclude that further work should investigate DNA aptamers in buffered, aqueous environments to unequivocally establish the ability of chemiresitors to signal molecular recognition. Concurrent with the above studies, device integration and miniaturization was investigated to combine many sensing materials into a single, compact design. Arrays of nanoscale chemiresistors with critical features on the order of 10 – 100 nm were developed, using dielectrophoretic assembly of gold nanoparticles to control placement of the sensing material with nanometer accuracy. The nanoscale chemiresistors achieved the smallest known gold nanoparticle chemiresistors relying on just 2 – 3 layers of nanoparticles within 50 nm gaps, and were found to be more robust and less dependent on film thickness than previously published designs. Due to shorter diffusion paths, the sensors are also faster in response and recovery. A proof-of-concept, integrated single-chip sensor array was created and it showed similar response patterns as non-integrated sensor arrays. Dielectrophoresis is established as a key enabler for nanoscale, integrated devices. Based on the major findings of the thesis work, additional investigations were initiated to investigate the potential for nanoscale chemiresitor sensors to operate in buffered, aqueous (liquid) flow cells. Preliminary experiments show that chemiresistor sensing is transferable to liquid environments where analyte molecules are observed to partition from the bulk liquid to the sensing materials, leading to a detectable change of the device electrical properties. Comparing micron- and nano-scale devices fabricated using aqueous oligonucleotide-functionalized gold nanoparticles, it was found that nanoscale chemiresistors are more resistant to solvent damage than 5 µm chemiresistors. We conclude that future experiments to investigate aptamer sensing in aqueous solutions is a promising direction. Overall, this thesis is a significant contribution to materials development and device design to attain improved sensor selectivity and higher levels of device integration. First, it offers a scheme for design, selection, and validation of materials that confer analyte-specific interactions. Second, it paves the way for large scale sensor integration and parallel operation on a single chip. Lastly, it offers an approach to combine biomolecular recognition elements with electronic devices into robust, nanoscale detection systems. Based on the major findings of the thesis work, additional investigations were initiated to investigate the potential for nanoscale chemiresitor sensors to operate in buffered, aqueous (liquid) flow cells. Preliminary experiments show that chemiresistor sensing is transferable to liquid environments where analyte molecules are observed to partition from the bulk liquid to the sensing materials, leading to a detectable change of the device electrical properties. Comparing micron- and nano-scale devices fabricated using aqueous oligonucleotide-functionalized gold nanoparticles, it was found that nanoscale chemiresistors are more resistant to solvent damage than 5 µm chemiresistors. We conclude that future experiments to investigate aptamer sensing in aqueous solutions is a promising direction. Overall, this thesis is a significant contribution to materials development and device design to attain improved sensor selectivity and higher levels of device integration. First, it offers a scheme for design, selection, and validation of materials that confer analyte-specific interactions. Second, it paves the way for large scale sensor integration and parallel operation on a single chip. Lastly, it offers an approach to combine biomolecular recognition elements with electronic devices into robust, nanoscale detection systems

    INTELLIGENT SENSOR SYSTEM FOR SELECTED ENVIRONMENTAL SAFETY APPLICATION

    Get PDF
    Song, Chen-Lin. M.S., Purdue University, August 2015. Intelligent Sensor System for Selected Environmental Safety Applications. Major Professor: Suranjan Panigrah

    Biochemical sensing based on metal-organic architectures

    Get PDF
    This research work is about the use of metal–organic frameworks (MOFs) as a platform for biochemical sensing purposes. Different metal–organic architectures were used and individual approaches were pursued, such as the synthesis of electrically conductive hybrid MOF structures as chemiresistive sensing material and the integration of MOF particles into a polymer membrane to explore their potential for sweat biomarker detection using Raman spectroscopy. The focus in each project was on the application of our MOF as sensor material and the evaluation of the signal response upon exposure to relevant analytes. The achievements presented in this work emphasize the great potential that metal–organic architectures have as active material for the sensing of biochemical analytes

    Highly-selective Chemiresistive Sensing and Analysis of Vapors Using Functionalized Nanotubes

    Full text link
    Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT\u27s), for use as the main component of sensory units that was used for this study. The basic chemical structure of these functionalized nanotubes; namely: poly(p-phenol)-co-SWNT [1], poly(p-nitrobenzene)-co-SWNT [2], poly(p-fluorobenzene)-co-SWNT [3], poly(p-aniline)-co-SWNT [4], polybromide-SWNT [5] , poly(p-thiophenol-co-SWNT [6] and poly(p-benzonitrile-co-SWNT [7]. The ability to manufacture total organic sensors was demonstrated using carbon nanotube based architectures. These derivatized-nanotube-based materials are designed to serve as chemoreceptors that can facilitate the development of highly selective and sensitive chemical and biological sensor arrays through an electronic nose approach which mimics the mammalian olfactory system. Functionalized SWNTs (f-SWNTs) were dispersed in dimethyl formamide (DMF) and mCresol and spun-applied to the interdigitated regions of micro-lithographically fabricated, pre-cleaned interdigitated microsensor electrodes (IME 1025-M-Pt and Au). Measured changes in the electrical conductivities of an array of gas sensors upon exposure to selected vapors and inert explosive materials were monitored. These changes are transduced into electrical signals, which are preprocessed and conditioned before identification by a pattern recognition system. Preliminary chemisensory was conducted on four signature vapor components of RDX explosive. Sensor data from these individual detection methods was assessed by their own individual merits, after which they were amalgamate and reclassified to present each vapor as a unique data point on a 2-dimensional map and with a minimum loss of information. Extensive characterizations on the properties of these materials were carried out using various spectroscopic and electrical techniques to assess the usefulness of functionalized single-walled carbon nanotubes. It was found that the conductivity of two functionalized materials (poly(p-aniline)-co-SWNT [4] and polybromide-SWNT [5] ) were more conductive than the pristine SWNT. The development of consistent and successful functionalization techniques that allows for the construction of CNTs-based species of great usefulness, reversibility and selectivity for the use as sensing element, can be a challenge. We have demonstrated a proof-of-concept by exploring and using the functionalized carbon nanotubes for use as gas sensors, through the utilization of a stochastic fingerprinting methodology. However, further studies into electronic and electrochemical detection methods will provide more unique systems for R&D on the applicability of these materials to future technology
    • …
    corecore