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ABSTRACT 

Song, Chen-Lin. M.S., Purdue University, December 2015. Intelligent Sensor System for 
Selected Environmental Safety Applications. Major Professor: Suranjan Panigrahi   
 
 
This study focuses on two objectives. The first objective is to develop an integrated 

sensor system, called electronic nose (E-nose). E-nose has the ability to detect selected 

gases in the air. In this study, the interests of gas are Volatile organic compound (VOC), 

Ammonia and Carbon dioxide. The second object is to evaluate a system that can 

discriminate arsenic contamination levels in water, the researchers call it Electronic 

tongue (E-tongue). The system is based on using interdigitated dielectric sensing mode. 

Finally, demonstrating both systems (E-nose and E-tongue) are capable of detecting the 

specific targets (pollutant/ contaminant) in selected environments (air/water).      
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CHAPTER 1. INTRODUCTION 

In chapter 1, the problem, the scope, and the significance are introduced. Also, the 

technical term used in this study would be defined. Lastly, there are the assumption, 

delimitations and limitations.  

1.1 Statement of Problem 

Nowadays countries have built many industries in order to diversify and 

strengthen their economies. However, those factories emit various toxic gases and 

industrial waste that endanger our environment. Acid rain, eutrophication and global 

climate change are the consequences of air pollution. According to NASA, these 

industrial activities have raised the atmospheric carbon dioxide level from 280 parts per 

million to 379 parts per million in the last 150 years. That’s  also  one  of  the  reasons  why  

the average of the global temperature has been gradually increasing since two to three 

decades ago. On the other hand, United States Environmental Protection Agency (U.S. 

EPA) estimates, 1.2 trillion gallons of untreated sewage and industrial waste is dumped 

into U.S. waters annually. Approximately, 700 million people globally drink 

contaminated water.  

As a result of the pollution, human health begins to drive a huge topic of 

discussion  in  today’s  media.    According  to  the  study,  air/water  pollution  can  cause  

different levels of effects on human health, such as nausea, difficulty in breathing, ski
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irritation and cancer. The World health Organization (WHO) reported that a total of 7 

million people, one-eighth  of  the  world’s  total  population,  died  because  of  air  pollution  

exposure. Out of the 7 million, 6.7 million died of outdoor air pollution and 4.3 million 

died of indoor air pollution.  Furthermore, according to UNICEF more than 3,000 

children die every day all over the world due to consumption of contaminated drinking 

water.   

1.2 Significant 

The world population has increased tremendously over the past decade, and many 

human-made activities resulted in an increase in high demand for ease of living, such as 

increased reliance on automobiles, chemical applications in the household, high-tech 

manufacturing, agricultural products etc. However, these activities cause a large amount 

of chemical pollutants in air and water. Usually, compounds that harm a human’s  health  

are odorless, colorless and tasteless, so it is really hard for human to be aware of them. 

People inhale and drink these contaminants from air and water without a clue. Thesis 

contaminants could potentially lead to Lung disease, allergies, cancer and other illnesses. 

Recently, this has become a serious focus around the globe. 

Human beings have the ability to smell, but cannot quantify odors and 

contaminants in water. Thus, a system to monitor the level of pollution in the air and 

water is needed to prevent people from over inhaling/ injecting harmful contaminants. 

1.3 Research Question  

The research question of this study is:   

Is it possible to detect contaminants in air and water using an intelligent olfactory 

and gustatory system? 
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1.4 Scope 

Today, people are very conscious about life quality and health. People want to 

live in places with uncontaminated air and water but are also conscious about whether or 

not they are exposed to hazardous gases and wastes. However, most detection 

instruments are for laboratory use and not for household use. The prices of these 

instruments are not affordable for the general public. 

The long-term goal of our research group is to develop portable intelligent sensor 

system for selected environmental safety applications. This research (thesis) focuses on 

developing intelligent sensor system for selected air and water contaminants. For air 

pollutants, we will target selected air pollutants: volatile organic compound (VOC), 

carbon dioxide and ammonia. For water contaminants, we will focus on Arsenic, a heavy 

metal with multiple adverse health effects. 

This research  project  was  designed  from  a  system’s  perspective  while  focusing  on  

the usability of the developed system in real-world scenario. This frame work involves 

synergy between multiple domains (i.e. material handling, electronic hardware, 

computational software, user interface design and specific application domain related 

expertise/information) of cross cutting scientific area/disciplines.  

From a practical consideration, it would be very difficult or could take more time 

for a typical student enrolled in a M.S. program. Thus, key and a majority of the concepts 

and techniques conceived by the major professor (Dr. Panigrahi) were communicated to 

the student as a form of training. The student was given opportunity to exercise his skills 

in electrical and computational related hardware and software skills to develop and 
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evaluate the system for specific application. This approach of training has many 

advantages and prepares the student well for solving real world problems.  

Thus, the followings are associated specific objectives: 

1. Develop, adapt and evaluate an integrated electronic sensor system for 

assessment of air quality in selected application domain.  

2. Integrate and evaluate a proof-of-the concept of E-tongue (electronic 

tongue) system for detection of contaminates in liquid. In this study, the 

research used arsenic contamination in water as a specific application.  

1.5 Definitions  

This section defines the key terminology used through this research: 

Arsenic – “Arsenic is a chemical element with symbol “As” and atomic number 

33. Arsenic occurs in many minerals, usually in conjunction with sulfur 

and metals, and also as a pure elemental crystal.” 

Electronic nose -“an instrument which comprises an array of electronic chemical 

sensors with partial specificity and appropriate pattern recognition system, 

capable of recognizing  simple  or  complex  odors” (Gardner & Bartlett, 

1994, p. 115). 

Intelligent sensor system- an intelligent sensor system has the following basic 

characteristics: 

1. It can be adaptive to the environment with high detection performance and 

communication and low power consumption (Swanson, 2000). 

2. It has the ability to acquires raw data and analyze it either pre-

programmed or self-learned (Swanson, 2000). 

http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Atomic_number
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Metal
http://en.wikipedia.org/wiki/Crystal


5 

 

 

3. It has self-awareness ability through calibration, internal process control 

check, and measurements in different operation (Swanson, 2000). 

4. It has re-programmable ability and allows external access all levels of 

processed data (Swanson, 2000). 

5. It not only can do pattern recognition but also perdition of future patterns 

(Swanson, 2000). 

Transducers (sensors) - it is a device provides the information of physical, 

chemical, and biological properties of an object or process.
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CHAPTER 2.  LITERATURE REVIEW 

The goal of building an intelligent olfactory and gustatory sensor system for 

environment is based on safety and sustainability application that requires an 

understanding of the development of an electrical nose and how the technology can best 

be applied in reality. The concept of an electronic nose and tongue has been widely 

adopted in various applications such as industry, healthy, food and safety. In this research, 

the literature review focuses on the system description of an electronic nose and tongue 

for both hardware and software, and the applications that are used with the technology.    

2.1 System Description – Electronic Nose and Tongue 

The  electronic  nose  consists  of  “an  array  of  chemical  gas  sensors  with  a  broad  and  

partly overlapping selectivity for measurement of volatile compounds within the 

headspace over a sample combined with computerized multivariate statistical data 

processing tools”  (Gardner  &  Bartlett,  1994, p. 115). The block diagram of the electronic 

nose is shown in Figure 2.1.  
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Figure 2.1 The block diagram of electronic nose (Arshak, Moore, Lyons, Harris & 
Clifford , 2004)  

2.1.1 Sensor, Data acquisition, related Hardware  

2.1.1.1 Transducer  

There are different kinds of gas/taste sensors that can be implemented into a 

sensor system: metal oxide semiconductors (MOS), metal oxide semiconducting field 

effect transistors (MOSFET), conducting polymer (CP), oscillating sensors, and optical 

sensor.  

A MOSFET sensor operates at certain range of temperature (100~200°C) 

(Lundstrom, Spetz, Winquist, Ackelid, & Sundgren, 1990). The operation of MOSFET 

based  on  “a  change  of  potential  in  the  sensor  due  to  electrical  polarization  when  

molecules react on the catalytic surface”  (Haugen & Kvaal, 1998, p. 234). The other type 

of gas sensor is MOS, the  principle  is  “the  reaction  between  adsorbed  oxygen  on  the  

oxide surface with incoming molecules”  (Haugen & Kvaal, 1998 , p.234) with a specific 

operating temperature (200-500°C) (Gardner, Shurmer, & Corcoran, 1991). For both 

sensors, their selectivity and sensitivity are changed by the temperature and the choice of 

metal used (Haugen & Kvaal, 1998). 

Next, the concept of conducing polymer is depended on the conductivity of the 

polymers when volatiles interface with the polymers. The sensitivity and selectivity are 

relied on the different doping ions and the structure of the polymer. One advantage is that 
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there is no specific temperature range for using this kind of sensor (Haugen & Kvaal, 

1998). 

 The principle of an oscillating  sensor,  then,  is  that  “the  adsorption of molecules 

onto the sensing layer result in a decrease in frequency due to increased mass and 

sometime a changed viscosity of the sensing layer”  (Haugen  &  Kvaal,  1998,  p.  296).  Two 

types of oscillating sensors include quartz crystal microbalance sensor (QCM) and 

surface acoustic wave (SAW) sensor. By changing the composition of the coasted 

sensing layer and the operation frequency, the selectivity and sensitivity can be altered 

(Haugen & Kvaal, 1998).  The operation frequency for a SAW sensor is 50-1000MHz 

and 5-30 MHz for a QCM sensor (Hao, Tang, Ku, Chao, Li, Yang & Yao, 2009). 

Comparing among of the sensors mentioned above, the most common sensor for 

commercial electronic sensor is a metal oxide semiconductor and conducting organic 

polymers due to the simple electrical properties and interface circuit (Pearce, Schiffman, 

Nagle & Gardner, 2003). Moreover, there are more recent instruments that use an 

oscillating sensor due to high sensitivity, fully reversible behavior and high S/N ratio 

(Hao et al., 2009).  

2.1.1.2 Interface circuitry 

Interface circuitry is to generate an electrical signal from the sensor response. 

There are various ways to interface with the sensor. This subsection only focuses on the 

interface circuitry for MOS senor, MOSFT sensor and oscillating sensor. 

For a conductance sensor, the existence of odors changes the sensor resistance. 

Two types of resistance measurements are voltage divider and Wheatstone bridge. The 
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circuit structure of a voltage divider is that the sensor is placed in series with a load 

resistor and a DC voltage source. The load resistor should be selected to maximize the 

sensitivity of the circuit. The equation of voltage divider is shown in equation 2.1, 

(Pearce et al., 2003): 

𝑉௅ = ௏௖௖
ோ௦ାோ௅ × 𝑅𝐿                                                         (Equation. 2.1) 

Based on the equation 2.1, the resistance of the sensor is changed with respect to 

the voltage across the sensor (Pearce et al., 2003). Moreover, the voltage divider is 

popular to use in an analog field due to its simplicity, but there are some disadvantages. 

Firstly, it is not suitable if the relationship between sensor resistance and output voltage is 

nonlinear. Secondly, it is only applicable for a sensor with large among of resistance 

change. In order to solve the limitation, a Wheatstone bridge is one method to measure 

the small resistance change. The principle is to subtract the offset voltage with the sensor 

voltage. Equation 2.2 shows this (Pearce et al., 2003).  

𝑉𝑜𝑢𝑡 = 𝑉𝑐𝑐 ቀ ோ௅
ோ௦ାோ௅ −

ோଶ
ோଵାோଶቁ                                                  (Equation. 2.2) 

The R1, R2 and RL are selected based on the sensor baseline resistance.  

The instrumentation designs for SAW and QCM sensors are oscillator circuits, 

vector voltmeters, and network analyzers. An oscillator circuit consists of a RF amplifier 

and a frequency counter (Pearce et al., 2003). The benefits are low cost, simplicity and 

good frequency stability, but the limitation is that it only provides the frequency velocity 

without amplitude measurement (Pearce et al., 2003). The vector voltmeters, however, 

overcome the problem, and can measure the velocity and amplitude. Nevertheless, the 

disadvantage is that it is expensive and not suitable for portable sensor system. The 
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network analyzer has more detail than the previous two options, but the price is not 

affordable for most applications.  

For the field-effect gas sensor (e.g., MOSFET), the measurement can be achieved 

by using constant-voltage circuits or constant-current (Pearce et al., 2003). Like the 

previous review on the MOSFET sensor, it operates at certain high temperature ranges, 

so it requires the circuit that can efficiently control the temperature.   

2.1.1.3  Processor  

Processor is another indispensable part in an electronic nose and tongue. The 

purpose is to process the signal from the sensor and classify the data to become 

meaningful information to a human. Because there are varieties of processors to choose 

from, the criteria for the selection of a processor are based on the processing time (i.e., 

desired speed), the environment, and the budget of the project. Many researchers used a 

PC as the processor for the electronic nose and tongue because it has the fastest 

processing time, but the disadvantages are extensive power consumption, high expense, 

and the lack of portability (Chiu & Tang , 2013). Microprocessors have been used in an 

electronic nose and tongue for couple of years (Chiu & Tang , 2013). The advantages are 

low cost, compact size, low power consumption, and portability (Chiu & Tang , 2013). 

The drawbacks are the processing time is slower than PC and the designer needs to 

integrate external peripherals (i.e., ADC converter, memory etc.) with the processor to 

become a completed sensor system. 

 Next, some recent researchers have used a microcontroller for electronic nose, 

which provides advantages that are similar to that of a microprocessor except that the 
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designer does not need to integrate external peripherals because most of them already 

have the peripherals built into the system. The disadvantage however results from the 

relatively incompetent speed performance compared to the PC. Moreover, recent research 

has focused on the integration between an array of odor sensors and System on a Chip 

(SoC) technology (Chiu , Wang, Lin, Chang, Chen & Tang, 2012). The definition of SoC 

is an integrated circuit that combines all the components of a computer into a chip. It is 

quite similar to a microcontroller, but the processing speed and physical size is much 

better than a microprocessor or microcontroller. For example, the processor used in a 

smartphone is applied SoC technology.  

2.1.2 Software (Pattern recognition) 

The software of an electronic nose and tongue implies preprocessing and 

multivariate pattern recognition (Pearce et al., 2003). The purpose of preprocessing is to 

take out applicable information from the sensor and make sure that the data is compatible 

for subsequent pattern recognition. Preprocessing is divided into three stages- baseline 

manipulation, compression, and normalization (Pearce et al., 2003). The multivariate 

pattern recognition has two categories. One is statistical methods and the other one is 

biological methods.  

2.1.2.1  Preprocessing 

For artificial nose, the first stage of preprocessing is baseline manipulation. It 

controls the output of the sensor relative to the baseline (Gutierrez-Osuna, 2002). There 

are three common methods to compensate for the baseline (Table 2.1). Fractional change 

has the best performance for pattern recognition for metal oxide sensors and the 
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differential measurement is commonly used by surface acoustic wave and MOSFETS 

sensor (Pearce et al., 2003). 

Table 2.1 Baseline manipulation method (Nord, 2006) 

Method Equation Purpose 

Difference 𝑋௜௝ = 𝑅௦ − 𝑅௢ Remove additive error 

Relative 𝑋௜௝ =
𝑅௦
𝑅௢

 
Remove multiplicative error and dimension number 

Fractional 𝑋௜௝ =
𝑅௦ − 𝑅௢
𝑅௢

 
Overcome restricted concentration range of relative method 

𝑋௜௝ is the 𝑖௧௛ baseline manipulated value in vector j. 

𝑅௦ is the 𝑖௧௛ value in vector j. 

𝑅௢ is the baseline value of vector j.  

Compression is the second stage of preprocessing. Fundamentally, it produces an 

illustrative constant by squeezing the response of sensor. Three algorithms are sub-

sampling, parameter extraction and model fitting. The metal oxide semiconductor and 

conducting polymer are commonly compressed using sub-sampling or model fitting, and 

parameter extraction frequently employs in metal insulated semiconductor field-effect 

transistor (Gutierrez-Osuna, 2002). The compression can improve selectivity, reduce 

acquisition time and increase sensor lifetime (Pearce et al., 2003).     

  The last stage of preprocessing is normalization, an action that prepares the 

processed vector for later pattern analysis (Gutierrez-Osuna, 2002). There are two classes: 

local method and global method. The local method, also called vector normalization, is 

“the  feature  vector  of  each  individual  “sniff”  is  divided  by  its  norm  and  is  forced  to  lie  on  
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a hyper-sphere  of  unit  radius”  (Gutierrez-Osuna, 2002, p. 14). It is used when odors have 

different concentrations, and the judgment is not based on the odor quality but instead 

intensity (Gutierrez-Osuna, 2002). Global methods, on the other hand, are used to protect 

the comparability of the sensor magnitude (Gutierrez-Osuna, 2002). Sensor auto scaling 

and sensor normalization are the most common global methods for an electronic nose 

(Gutierrez-Osuna, 2002). 

 Similar preprocessing techniques are used for the electronic tongue as well.  

2.1.2.2 Multivariate pattern  

Pattern recognition in an electronic nose and tongue is to let users have detailed 

understanding of the relationship between the response from the array of sensors versus 

the odor’s  class  and  concentration (Pearce et al., 2003).   There are two classes: 

parametric and non-parametric. Parametric is commonly referred to as a statistical 

approach. In most cases, the data set is normally distributed with a constant mean and 

variance. These methods include multiple linear regression (MLR), partial least square 

(PLS), principal component analysis (PCA), cluster analysis (CA), discriminant function 

analysis (DFA), linear discriminant analysis (LDA), and principle component regression 

(PCR) (Pearce et al., 2003). Haugen and Kvaal (1998) suggested that starting with PLS 

and PCR is a good way to learn the data structure. Marcelloni (2001) found out that PCA 

can conceivably lower collinearity between volatiles but also increases classification 

error. In essence, both of PLS and fuzzy C-means with KNN can significantly improve 

the accuracy of classification (Marcelloni, 2001; Schiffman et al., 2001).  
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The biological method, also called non-parametric,  doesn’t  require  any  

assumption before use, so it applies more generally (Pearce et al., 2003). The algorithms 

under non-parametric are self-organizing maps (SOM), multi-layer perception (MLP), 

probabilistic neural network (PNN), radial basis function (RBF), learning vector 

quantization (LVQ), fuzzy inference system (FIS), fuzzy neural network (FNN), fuzzy c-

means (FCM), adaptive resonance theory (ART), fuzzy ARTMAP, genetic algorithm 

(GA), neural fuzzy system (NFS), and wave transformations (Pearce et al., 2003).  Hines 

(2003) said that ANN has more advantage than parametric pattern recognition because it 

carries the ability to do parallel signal processing and higher resilience to the shifting and 

unwanted signals. In addition, using fuzzy with NN can enhance the quality of 

classification (Gutierrez-Osuna, 2002; Liu et al., 2001). Lastly, fuzzy ARTMAP can do 

real-time learning without forgetting what has been learned, which is suitable for field 

instruments (Hines et al., 2003). In figure 2.2, during supervised learning, known odors 

are grouped and saved in the knowledge base in the system. After learning is finished, an 

unknown sample would be tested and classified against the knowledge base. 

Unsupervised learning, alternatively,  doesn’t  have known data to train, and the 

algorithms are able to cluster the data into different classes. 
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Figure 2.2 Pattern recognition paradigm classification (Hines et al., 2003)
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2.1.2.3 Validation  

The purpose of validation is to make sure the PARC models are valid. The 

validation for an electronic nose and tongue has the three methods: Hold out, K-fold 

cross validation and Bootstrapping (Gutierrez-Osuna, 2002). The Hold out method 

divides the data into two sets; one is for training and the other one is for testing. K-fold 

cross validation uses the fraction (1/K) for validation and the fraction (1-1/k) for model 

training (Nord, 2006). The data sets are recalculated every time, so the accuracy is the 

average of K. Bootstrapping is similar to K-fold cross validation; the only differences are 

the data sets are replaced in each cycle.   

2.2 Application  

According to Tang et al., (2010) and Zhang et al., (2007), the electronic nose and 

tongue has been a continuously growing analytical technology in a multiplicity of 

applications (e.g., air quality, health care, safety and security, environment, quality 

control, agriculture etc.) for 15 years. In the following sections, popular applications are 

reviewed based on the types of sensors, processors and pattern recognitions.   

2.2.1 Food industries  

Food safety becomes serious problem for the public. There were 325,000 

instances of hospitalization and 5,000 deaths per year in United States due to the food 

poisoning (Panigrahi, Balasubramanian, Gu, Logue & Marchello, 2006). However, the 

biggest problem with the recent existence of food detections is its time consuming nature 

(Panigrahi et al., 2006). Therefore more researchers have developed detectors with 

different methods.  
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In research from North Dakota State University, Panigrahi et al. (2006) developed 

an intelligent sensor system to evaluate the quality and safety of meat. The system 

consisted of an array of nine MOS sensors that had different odor sensing capabilities and 

a laptop computer for signal processing. LDA and QDA were used to classify models 

from the responses of sensors. Then leave-1-out cross validation and bootstrapping were 

the methods for validating the models. The result showed that the accuracy of the system 

was more than 80 percent (Panigrahi et al., 2006).  

The study from National Tsing Hua University talked about the potential of using 

an electronic nose to discriminate fruits (Tang et al., 2010). The system consisted of an 

array seven MOS sensors with different target gases, a DAQ on a PCB, a 8051 

microprocessor, a keyboard and an LCD display (Tang et al., 2010). Six different 

algorithms were used for classification, including NN, KNN, SVM, PNN, PKNN and 

PSVM (Tang et al., 2010). In the end, the system was able to achieve accuracy above 95 

percent Also, the authors suggested there was a need to have more sensors with different 

varieties in order to improve classification accuracy.  

Moreover, the investigation of fish freshness in real-time was proposed by El 

Barbri et al. (2007). In the system, there were six tin-oxide based Taguchi gas sensors and 

a microcontroller as a data acquisition system (El Barbri, Llobet, El Bari, Correig & 

Bouchikhi, 2007). Moreover, a laptop was the processor for pattern recognition. PCA and 

support vector machines analysis (SVM) were used to analyze the data (El Barbri et al., 

2007). The result, by using SVM method, showed the success rate was 93.75 percent and 

when the fish were stored less than or equal to three days, the success rate was 

100percent for identification (El Barbri et al., 2007).  
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In addition, research from the University of Bologna developed a method that was 

able to classify Pecorino Chesses according to their ripening time and manufacturing 

techniques (Cevoli et al., 2011). The result of the proposed method was compared with 

exiting commercial equipment (GC-MS). The system was based on an array of six MOS 

sensors with ANN method (Cevoli et al., 2011). PCA reduced the dimensionality of data 

set and ANN classified the models from the sensor response.  The authors compared 

between PC score, feature extraction and GC-Ms analysis; the proposed methods had 

higher effective classification than GC-MS analysis (Cevoli et al., 2011).  

2.2.2 Environmental application  

Ninety percent of the cancer risk and lung disease are associated with air pollution. 

Health impact from diesel pollution exposure costs $22 billion statewide in 2004. And, 

the average world temperature is increasing every year. Moreover, the change in food 

chain of aquatic animals and the increment of human sickness are partially because of 

water pollution. Those facts are related to human-made activities such as transportation, 

chemical application in the household, dumping waste in water and land, etc. Various 

proposed projects related to an electronic nose and tongue have targeted the environment, 

such as indoor air quality, health of rice plant, water pollution etc.    

Zampolli et al. (2003) developed a low cost and compact-size electronic nose 

consisting of an array of metal oxide solid state gas sensors and RH sensors (humanity 

measurement) for monitoring pollution levels inside buildings. The device was designed 

to target, identify and qualify carbon monoxide and nitrogen dioxide. The authors used a 

fuzzy- logic system for pattern recognition (Zampolli et al., 2003). The experience 

showed that the device was able to differentiate and classify concentrations as low as 20 
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ppb for nitrogen dioxide and 5 ppm for carbon monoxide (Zampolli et al., 2003). In 

another design by Zhang et al. (2012), the electronic nose consisted of an array of four 

MOS sensors, a module combined with a temperature sensor and humidity sensor, and a 

12-bit analog-digital converter (Zhang et al., 2012) for similar application as Zampolli et 

al. (2003) did. The processor was the Field Programmable Gate Array with a 

synchronous Dynamic Access Memory for storage. On the software side, Zhang et al. 

(2012) used a back-propagation neural network for classification and chaotic sequence 

for optimization. The result was built on the comparison between chaotic sequence and 

standard particle warm (Zhang et al., 2012). The outcome was that both optimizations 

were effective for weights optimization and 26.03percent prediction error decreased after 

applied chaotic sequence (Zhang et al., 2012). 

Furthermore, a portable electronic nose system was able to measure and inspect 

the presence of sulphate-reducing bacteria (SRB) by Tan and Abdul Halim (2011).  The 

rationale for this system was that old methods to detect SPB were inefficient in terms of 

time (Tan & Halim, 2012). They used a metal oxide gas sensor to detect specific gas and 

analyzed the data by applied neural network algorithm on FPGA and statistical method 

(i.e. ANOVA) (Tan & Halim, 2012). The hardware interface consisted of an 8 bit analog-

digital converter and bus transceiver to regulate the voltage (Tan & Halim, 2012). The 

indication of the result was greater than 94percent accuracy and the future work was to 

decrease other parameters affected by the sensor reading such as temperature, humidity 

and pH (Tan & Halim, 2012).  

Moreover, Zhou and Wang (2010) developed an olfactory system for the health of 

rice plants by determining the possibility of detecting Nilaparvata lugens infestation. The 
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device equipped with 10 MOS sensors (Zhou & Wang, 2010). PCA and LDA were used 

for classification and dimension reduction, and SDA and 3-layer BPNN were adopted for 

the data training (Zhou & Wang, 2010). The result showed that the discrimination rates 

were over 92.5percent for BPNN and 70percent for using SDA (Zhou & Wang, 2010).  

2.2.3 Medical application  

It has been found that particular volatile organic compounds within human breath 

are associated with specific human diseases, such as respiratory diseases (Akyar, 2011). 

Some volatile metabolites are often released within a few hours to a few days before the 

appearance of the actual symptom (Akyar, 2011). An electronic nose can be applied to 

health monitoring and molecular marker distinction in the early stages of illnesses.  

Research from Shih, Lin, Lee, Chien and Drake (2009) developed an electronic 

nose based on an array of 24 piezoelectric quartz crystal microbalance sensors with 

different coatings for monitoring the exhaled breath of patients. The main focus was to 

use MDA to detect and classify bacteria inflections for the patients in intensive care units 

(Shih, Lin, Lee, Chien & Drake, 2010). The result showed that six different bacterial 

pathogens were recognized and were classified with 98 percent accuracy. 

Additionally, Tang, Chiu, Chang, Hsieh and Shyu (2011) proposed and built 

personal healthcare application using an electronic nose. The study was the first 

application using SoC technology, which integrated the sensor array and signal 

processing circuit (Tang, Chiu, Chang, Hsieh & Shyu, 2011). There were an array of 

eight conducting polymer materials and an 8051 microprocessor as the processor with 

SRAM for storage in the system (Tang et al., 2011). The algorithm the system used was 

KNN (Tang et al., 2011). In conclusion, the power consumption was 1.05mW at1.8V 
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digital/1V supply voltage and the chip successfully identified four various samples (Tang 

et al., 2011). 

2.2.4 Safety application  

Border safety has been a serious issue for every country; many nations are 

seeking a way to insure public safety and improve the level of security. One of the 

methods is to upgrade the technology. Therefore, the electronic nose may get more and 

more attention in the field such as detection for illicit drug, gas leakage and fire (Zhang et 

al., 2007).  

Sadeghifard, Anjomshoa and Esfandiari (2011) developed a portable electronic 

nose for fire detection. Fire is one of main problem in our life now. It brings the damage 

not only on the property assets but also physical and mental injuries of the people. It is 

significant to improve the reliability of fire alarm system (Sadeghifard at el., 2011). The 

electronic nose consisted of three main components – sample handing, detection and data 

processing system. They used several distinct metal oxide gas sensors to acquire data and 

a microcontroller to analyze the data with neural network (i.e., back propagation 

algorithm) (Sadeghifard at el., 2011). In conclusion, the electronic nose had the ability to 

detect smoke at early stage with greater than 97percent accuracy (Sadeghifard at el., 

2011). In order to improve the accuracy and reliability, the author suggested that adding 

more kinds of sensors to the system (Sadeghifard at el., 2011).      

In 2010, a portable electronic nose detected organic vapor based on a novel 

chemical surface acoustic wave array and readout electronics. It was developed and 

tested by Hao et al. (2010). Humans are not able to sense the organic vapors that might be 

fatal and corrosive if inhaled. Thus, vapor detection is essential for different 
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environments. The authors used a polymer-coat surface acoustic wave (SAW) array to 

acquire data and studied data by using an 89C51 microprocessor (Hao et al. 2010). Hao et 

al. (2010) used Spearman’s  Rank  Correlation coefficient with average-linkage to cluster 

the data and Cluster, “a hierarchical cluster program obtained  from  the  Eisen  Laboratory”  

(Hao et al. 2010), to do the analysis. The total time of one cycle was about 10 minutes 

(Hao et al. 2010). At the end, the system could differentiate vapors by the combination of 

an array of multiple sensors and appropriate recognition algorithm (Hao et al. 2010).   

Wongchoosuk, Lutz and Kerdcharoen (2009) designed an electronic nose that 

could detect and identify the odor of the human armpit. Recently, there had been more 

attention paid to the application of E-nose for human body odor measurement 

(Wongchoosuk, Lutz & Kerdcharoen, 2009).The system included a sensor chamber, 

airflow system data acquisition and measurement circuit measurement (Wongchoosuk et 

al., 2009). The sensors used MOS; the signal from the sensors would send to DAQ-card 

and measurement circuit board (Wongchoosuk et al., 2009). Since this kind of sensor was 

sensitive to humidity, the authors examined the results in different humidity in percentage 

(Wongchoosuk et al., 2009). Wongchoosuk et al. (2009), then, used a t-test and PCA to 

inspect and identify the measurements respectively. In conclusion, the background 

humanity was 75percent for the best sensor performance and the system was able to 

differentiate different human odors (Wongchoosuk et al., 2009).  For the improvement, 

Wongchoosuk et al. (2009) would like to add more different type of sensors for a variety 

of volatile compounds. 

In the study by Haddi et al. (2010), the portable electronic nose system has been 

built and tested for classify different types of drugs. The system consisted of six MOS 
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sensor, a humidity sensor, a temperature sensor, a microcontroller for data acquisition, 

and a laptop for data analysis (Haddi et al., 2010). The pattern recognition methods for 

this system were PCA, multivariate analysis of variance (MANOVA) and SVM (Haddi et 

al., 2010). The PCA and MANOVA successfully classified the different drugs (p<0.0001) 

(Haddi et al., 2010). In addition, when SVM classifier was applied, the accuracy reached 

to 98.5percent (Haddi et al., 2010).  

2.3 Summary  

In this chapter, the system description of electronic nose was reviewed based on the 

perspectives of hardware and software. Also, the applications of electronic nose that have 

been developed were presented in this section. Even though this technology has been 

investigated for many years, there are still few studies that prove the potential of 

improvement in classification accuracy, portability and sustainability.  
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CHAPTER 3. PROCESS AND METHODOLOGY 

3.1 Computational System Development for Sensors  

The purpose of the computational system is to control the gas flow, collect data from 

sensors, and analyze the data in the processor. The overall block diagram consists of an 

electromechanical system, an acquisition interface, a power supply, a signal analysis 

block and a display.  This is illustrated in Figure 3.1 and presented in the next four 

subsections as follows: 

 Electromechanical system 

 Sensor integration  

 Centralized power  

 System integration  

Each of the parts were designed, fabricated, and tested individually. All system 

components were then integrated and preliminary experiments were conducted 
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Figure 3.1 Overall block diagram of the integrated sensor system. 

 

3.1.1 Electromechanical Gas handling System 

The electromechanical gas handling system was used to control the gas flow and 

to safely transfer the gas to the transducer sensor. This design was a modification of a 

similar design conceived by Dr. Suranjan Panigrahi. The system consisted of a sensing 

chamber, two pumps, and a three-way solenoid valve. The block diagram of the 

electromechanical gas handling is presented in Figure 3.2. The chamber was designed 

using SolidWorks- a software program for solid modeling computer-aided design (CAD) 

and computer-aided engineering (CAE) - and fabricated using Teflon material. The 

prototype is presented in Figure 3.3. The holes on the top of the chamber are for the 

sensors and the center holes on both sides of the chamber are for connecting the tubing. 
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The dimensions of the chamber are 107.03mm x 71.88mm x 47mm.  The fabrication of 

the chamber was done at the Artificial and Fabrication Lab (AFL) located in Armstrong 

Hall, Purdue University. An image of the product is presented in Figure 3.4. Furthermore, 

the two pumps and the solenoid valve were purchased from KNF and Parker. The 

specifications of the pump and solenoid valve are presented in Appendix A. The flow rate 

of the pump at atmospheric pressure is 0.4 Liter/min on a 5V DC supply and the type of 

valve the system used was the Diaphragm isolation valve with an operating pressure of 

20 psig. 

The basic operations of the system are displayed in Table 3.1. During T1, the 

system conducts air flushing, which is an operation where the valve changes the source 

from gas sample to air by sucking the air from the chamber using Pump A in order to 

bring in the fresh air to reset the environment. Next, Pump A stops running for a period 

during T2. Finally, the last stage of the system operation involved the valve changing the 

source from air back to the gas sample using Pump B to push the gas sample into the 

chamber for a period during T3.  

In order to control the pumps and the valve following the logic mentioned in 

Table 3.1, drivers for pump and solenoid were incorporated (Jianwen, 2006) and  they are 

shown in Figure 3.5. A low side switch was used to control the “on/off”  operation, and 

the schematic of the two types of drivers are presented in Figure 3.6. In the figure, R1 and 

R3 in the circuits were to improve electrostatic discharge and R2 and R4 were acting as 

pull-down resistors in the circuit (Jianwen, 2006). The transistors for the pumps and the 

solenoid valve are NPN MOSFET and FQR30N06L, and both were purchased from Digi-

Key.   
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Initial test for driver  

The procedure of the test is listed below.  

 Connected the drain of the MOSFET to a power supply (Agilent E3630 A).  

 Adjusted the power supply to specific voltage (Pump driver – 5 volts. 

Solenoid drive – 12 volts) 

 Connected the input of the driver to another power supply (Agilent E3630 

A):simulation the SOC-Beaglebone black 

 Adjusted the voltage to 3.3 volts DC (voltage required by Beaglebone 

Balck) 

 Measured the DC voltage between the power supply and the drain of the 

MOSFET using a multimeter, FLUKE 115 

 

Figure 3.2 Design of the electromechanical gas handlingsystem with flow directions. 
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Figure 3.3 SolidWorks image of the chamber prototype. 

 

 

Figure 3.4 Finished product of the chamber. 
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Table 3.1 Operation table of the system  
Time Pump A 

(5V) 

Pump B 

(5V) 

Solenoid valve* 

(12V) 

Operation 

T1 ON OFF Close Air flushing 

& expelling  

from chamber 

T2 OFF OFF Close  Collecting 

Air reference 

Path (AC) 

T3 OFF ON Open  Gas filling/ 

data collecting 

Path (BC) 

 

 

Figure 3.5 Pump and solenoid valve drivers. (Jianwan, 2006)  
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Figure 3.6 Schematic of driver. (a) for the pump and (b) for the solenoid valve.(Jianwen, 
2006)  

3.1.2 Sensor Integration 

This section covered the specification and the hardware/software interface of each 

sensor. The three sensors that were used in this system are the volatile organic compound 

sensor, ammonia sensor, and Carbon dioxide sensor.   

3.1.2.1 Volatile Organic Compound (VOC) Sensor 

The VOC sensor used was the TGS 2620, a hydrocarbon vapors sensor made by 

Figaro. It has the high sensitivity on alcohol, methane, carbon monoxide and other 

volatile vapors. The sensor must be warmed up for at least 2 minutes in order to get the 

desired accuracy according to the datasheet. Figure 3.7 shows the hardware interface of 

the sensor. This type of sensor is intended to be used as a voltage divider because the goal 

is to get the resistance of the sensor. Pin1 and Pin4 are exchangeable and can be 

connected to either the 5V power or ground. Pin 3 was connected to a 5V power source 
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and Pin 2 was connected to the load, the combination of R3 and R4.  According to the 

datasheet, the R3 resistor was used to ensure the power in the sensor never exceeds the 

maximum rating of 15 milliwatts. The RC circuit shown in Figure 3.7 was used to 

prevent a false high voltage output and also to reduce noise (Beard, 2007). Resistor R4 

was a potentiometer with a maximum value of 50k ohms and was used to adjust the 

sensitivity of the sensor. The relationship between sensor resistance, 𝑅௦,  and the 

load,𝑅௅  (𝑅3 + 𝑅4), is presented in the following equation 

𝑅௦ = ௏௖ି௏೚ೠ೟
௏೚ೠ೟

× 𝑅௅                                                                               (Equation 3.1) 

Where Vc is the power supply (5V).  

 
Figure 3.7 Hardware interface of TGS 2620 VOC sensor referred to the datasheet 

(“TGS2620-for  the  detection  of  solvent  vapors”,  2005) 

 

Pin1 

Pin4 

Pin3 

Pin2 
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Initial test for VOC sensor  

The Vout port of the VOC sensor was then connected to an Arduino Uno 

microprocessor for the initial test. Due to lack of information in the datasheet, the test 

was  based  on  the  discovering  the  characteristic  of  the  sensor  that  included  the  sensor’s  

response time, recovered time, and sampling time as well as the Vout voltage range. The 

procedures of the test are listed below: 

1. Conditioned  the  sensor  for  7  days  if  it  wasn’t  started  for  at  least  a  week  

(according to the datasheet). 

2. Powered the sensor and waited for the sensors to reach equilibrium stage 

(response to air).   

3. Recorded Vout for air (reference) for 20 seconds.   

4. Dipped a cotton ball with Alcohol liquid.   

5. Placed cotton ball near the sensor head until the signal got equilibrium. 

6. Removed the cotton ball and kept recording Vout until the reading were back to 

the reference (air value). 

Each sensor was tested once and the voltage respected to the time was plotted by 

using Excel. Finally, the response time, recovered time and the Vout range were 

determined from the plot.  

3.1.2.2 Ammonia Sensor 

The TGS 2444 ammonia sensor made by Figaro USA, INC was the other sensor 

implemented in the system. Its fundamental operation was similar to the TGS 2620 VOC 

sensor presented in section 3.1.1.1. However, there are specific heating cycle (VH) and 
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control cycle (VC) due to the possibility of migration within the sensor. Figure 3.8 

presents the overall timing char for the heater and the circuit voltage. The period of both 

was 250 milliseconds and the pulse widths of heater and control cycle were 14 

milliseconds and 5 milliseconds respectively. In addition, there was a 2 milliseconds 

delay for the VC after triggering the VH. More detail on the timing of VH and VC can be 

referred to in Figure 3.9.   

 

Figure 3.8 Timing chart of the heating cycle (VH) and the control cycle (VC). 
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Figure 3.9 Detail timing diagram for 14ms of one cycle 

In Figure 3.10, the hardware interface for operating the sensor is displayed. The 

circuit inside the dashes box is referred to the datasheet in Appendix A. To control the 

heater’s  on/off,  the  high  side  compound  pair  switch  was used because initally the 

microprocessor for the intial sensor test was Beaglebone black which generates 0 to 3.3V 

signal. Due to the difficulty of hardware issue, the research substituted Beaglebone black 

to Arduino Uno for this specfic sensor. The values of resitors R1, R2, R3 and R4 were 

calculated based on changing the transistor into switch mode. On the other hand, a low 

side switch controls the control voltage VC, and the resistor placed between 

microcontroller and the transistor  was used to limit the current  going into the transistor. 

Moverover, in order to get the information of the sensor resistance (Rs), the resistance of 

resistor RL (R6 and R7) was measrued. Like the TGS2620 VOC sensor circuit, the 
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resistor R7 in the ammonia sensor circuit  was the power limiting resisor used to ensure 

that the power never exceeded the maximum rating. The user can change the sensitivity 

of the sensor by modefying the resistance of potentimeter R6 (325-50k ohms). The 

relationship between Rs and RL (R6 + R7) is 

 𝑅௦ =    ௏೎×ோ௅௏೚ೠ೟
− 𝑅𝐿                                                                               (Equation 3.2) 

 

Figure 3.10 Instrumentation interface for TGS 2444 ammonia sensor with Arduino Uno. 
The  circuit  inside  dash  box  was  referred  to  the  datasheet.  (“TGS2420- for the detection of 

Ammonia”,  2011) 

Determination of measurement window (timing)  

According to the the ideal timing diagram in Figure 3.9 and the specifcations 

listed in the application note in Appendix A, the data sampling window should be greater 

than 4.5ms and smaller than 7ms. Also, it is deliberated that the sampling window should 

VH 

VC 
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stays away from the edge where the transection of VC from 5V to 0V .Thus, it was 

decided to keep 0.5 ms timing distance from the edge. Therefore, the researcher acquired 

the data for both ammonia sensors at 5ms and 6 ms of one cycle. In other words, both 

sensors acquired data within a window of 2ms (between 4.5 and 6.5 ms). 

Procedure for prelimitary test 

The timing cycles to the ammonia sensor was generated by the Arduino timer 

interrupt. The interrupt service routine ran every millisecond to update the signals. The 

sampling rate of the Arduino is 10ksps (i.e. 0.001sec/reading). Therefore, in 2 

millseconds, 20 sample(data) are collected for each cycle.  This  tranlsates  to  the  sensor’s  

sampling rate of 80 samples per second.  

 The procedure of testing ammonia senosr is really simliar to the test for ammonia 

sensor. The procedures are shown below:  

1. Conditioned the  sensor  for  48  hours  if  it  wasn’t  started  for  at  least  a  week  

(according to the datasheet). 

2. Powered the sensor and waited for the sensors to reach equilibrium stage 

(response to air).   

3. Recorded Vout for air (reference) for 20 seconds.   

4. Dipped a cotton ball with ammonia liquid.   

5. Placed cotton ball near the sensor head until the signal got equilibrium. 

6. Removed the cotton ball and kept recording Vout until the reading were back to 

the reference (air value). 

Each sensor was tested once and , and the Vout was plotted with respect to the time. The 

response time, recovered time and the vout range were determined. 
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3.1.2.3 Carbon Dioxide Sensor  

The Carbon dioxide sensor manufactured by TELAIRE (Pennsylvania, USA)   

was purchased from Digi-key. The measurement range of the sensor was from 0 to 5000 

ppm with an accuracy of ±3%.  There are different ways to obtain the 𝐶𝑂ଶ concentrations 

from this sensor (e.g. I2C, PWM and USART). The I2C was chosen for its easy 

implementation and simple wiring configuration. Figure 3.11 illustrates the I2C wiring 

setup. Pin1 and Pin2 were, respectively, SDA and SCL, which connected to the master. 

Pin 3 and Pin 4 were the power and ground pins. Pin 6 was connected to ground in order 

to configure the sensor to I2C communication referred to datasheet specifications in 

Appendix A. The master in the communication was Bealgebone Black, a low cost 

embedded system developed by Texas Instruments. Details on Bealgebone Black are 

discussed in a later section. Moreover, a level shifter, converts one digital signal from one 

logic standard to another, was theoretically needed in the both the SDA and SCL lines 

because of the voltage limitation (3.3V) of GPIO (General purpose of input/output) on 

the Beaglebone Black system, but this specific 𝐶𝑂ଶ sensor was compatible for both 3.3 

volts logic level and 5 volts logic level so the level shifter was not required.   

𝑪𝑶𝟐 Program class and initial test   

The 𝐶𝑂ଶ class was developed and displayed in the Figure 3.12. In this class, there 

are three main methods, “readRegister”, “gas_reading”, and “gas_reading_in_a_loop”.  

“readResgiter” was used to display the firmware version of the sensor as well as the 

status of the sensor. The “gas_reading” was used to read the register that stores the data 

of 𝐶𝑂ଶ concentration.  Lastly, the “gas_reading_in_a_loop” has similar functionality as 

“gas_reading”. The main difference between the two was that the user can use the 



38 

  

 

“gas_reading_in_a_loop” class to define how many loops (5 seconds interval) the 

program going to run.  After the 𝐶𝑂ଶ class was developed, the testing for the main coding 

was written with the integration of the 𝐶𝑂ଶ class. In Figure 3.13, the test main program 

defined an object of class and checked the status and displayed the 𝐶𝑂ଶ concentration in 

ppm on PC screen.  

 

Figure 3.11 Wiring between the 𝐶𝑂ଶ sensor and a host 
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Figure 3.12 Class diagram of 𝐶𝑂ଶ sensor   
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Figure 3.13 Flow chart of test main file   
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3.1.2.4 Temperature and Humidity Sensor 

The temperature and humidity sensors, from Adafruit, of the system used were an 

assembled breakout board called Adafruit HTU21D-F Temperature & Humidity Sensor 

Breakout Board. The sensor was based on HTU21D-F with humidity accuracy of ± 2% 

and temperature accuracy of ± 1° C. The dimensions of the board were 18mm x 16mm x 

2mm. In addition, a 3.3 volts regulator and I2C shifting circuit are included on the board 

to enable the developer to easily connect to either a 3.3 volts or a 5.5volts microcontroller. 

As shown in Figure 3.14, the hardware configuration of the temperature and humidity 

sensor was similar to the configuration of the 𝐶𝑂ଶ sensor. The VIN pin was connected to 

a 3.3 volts power supply. The SDA and SCL pins were directly connected to the host, the 

Beaglebone Black. The host and slave were connected to a common ground.  

Temperature and humidity program class and initial test  

 Figure 3.15 illustrates the class chart for the temperature & humidity sensor. The 

class has three methods: begin(), readTemp(), and readHumidity(). The begin() method 

was used to reset the system and wait for 150 milliseconds. In the readTemp() and 

readHumidity() method, the sensor received the specific commands from the host and 

sent a 16 bits of data (8 bits temperature + 8 bits humidity) that did not include CRC, an 

error-detecting code, back to the master. The temperature and humidity values were 

calculated using the equations referred to the datasheet in Appendix A below: 

𝑇𝑒𝑚𝑝(𝑖𝑛  𝐶𝑒𝑙𝑠𝑖𝑢𝑠) = −48.65 + (175.72   × ௧
ଶభల)     (Equation 3.3) 

Where t is the binary temperature data from the sensor.   

𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =   −6 + (125 × ௛
ଶభల)      (Equation 3.4) 
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Where h is the binary humidity data from the sensor.  

The testing flow chart for the temperature and humidity sensor is shown in Figure 

3.16. The program first declared the object of the class and then started the begin method. 

After return0, the program was set in a loop that sequentially called readTem() and 

readHumidity() to get and display the data for every second.    

 

Figure 3.14 Hardware configuration of temperature and humidity sensor 

 

Figure 3.15 Class diagram of temperature and humidity sensor 
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Figure 3.16 Flow chat of temperature and humidity sensor testing program  
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3.1.3 Centralized Power System 

The goal of this section was to develop a power system. Due to the complexity of 

the loads in the system, the power system was designed based on power centralization. 

The benefit of having such a power system in the application was for convenient 

debugging and maintenance. Also, the power system designed this way can avoid 

electrical interference to other hardware circuits (i.e. sensor interface, communication 

bus).  The next two subsections focused on the classification of the loads and the design 

of power blocks corresponding to the voltages.  

3.1.3.1 Loads 

Before designing the power system, the required current and voltage of each 

component in the system must be known. Therefore, the first step was to find the sinking 

current of each load. Table 3.2 lists the required voltages of different components. The 

required voltages for E-nose system were 12 volts, 5 volts and 3.3 volts. The 12 volts and 

3.3 volts settings required only one load, and the number of load required for the 5 volts 

setting was nine. A 20% safety factor was applied to current (load). The final sinking 

currents (amperage) was 253.2 milliamps for 12 volts, 1,383.84 milliamps for 5 volts, and 

36 milliamps for 3.3volts As a result, the total sinking current (amperage) of the full 

system was 1673.04 milliamps.  

3.1.3.2 Design 

Regarding the chip selection for the central power system, the POWER 

WEBENCH by Texas Instrument was used. The user-interface of WEBENCH is shown 

in Figure 3.17. After entering the required output voltage, 5 volts with a current of1.4 
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amp, the Texas Instruments TPS562209-5 and Texas Instruments LM2678-5.0 were 

chosen as the 5 volts switch regulator due to the minimized footprint and affordable price. 

These two chips are able to give fixed 5V output with maximum current at 1.5 amps. The 

schematics of TPS562209 and LM2678 are shown in Figures 3.18 and 3.19. For the 3.3 

volts chip selections, a Texas Instruments LP2950-3.3 a linear regulator was selected for 

its ease of assembling and extremely low quiescent current.  Figure 3.20 shows the 

schematic of LP2950. 

The block diagram of the centralized power system was designed and this is 

shown in Figure 3.21. The 12 volts was the power source of the central power system 

because it was the highest required voltage among the loads and also the chip selection 

for step-down IC was wider than the boot IC. The corresponding load current for each 

voltage was referred from Table 3.2.  The power source for the system was an AC/AC 

wall plug. As mentioned before, 12 volts was the voltage that was applied to the power 

systems, therefore a 12 volts AC to DC adapter was implemented to convert 120 volts 

AC 60 Hz from the wall to a fixed 12 volts DC voltage. 

3.1.3.3 Centralized Power System Test Procedure  

The test conducted was to examine the current limitation of the chip and the 

consistency of the output voltage. The expectation was that the voltage output for both of 

the LM2678 and the TPS562209 was 5 volts with maximum sourcing current of 1.5 amps. 

The expectation for the LP2950-3.3 was 3.3 volts with current limitation of 100mA. For 

each regulator, the current and voltage were measured with respect to different loads and 
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recorded. Then the LM2678 and TPS562209 were compared based on the performance, 

footprint size, and the cost of the two ICs.  

Table 3.2 Design of power supply for integrated sensor system   
Specification Factor safety (spec*20%) 

Voltage (V) Component Current (mA) Current (mA) 

12 solenoid Valve 211 253.2 

5 BBB 500 600 

5 Pump A 250 300 

5 Pump B 250 300 

5 VOC-1 sensor 46 55.2 

5 VOC-2sensor 46 55.2 

5 Ammonia-1 sensor 10.6 12.72 

5 Ammonia -2sensor  10.6 12.72 

5 CO2 A 20 24 

5 CO2 B 20 24 

3.3 LCD  30 36 

  

Total Design  Load    

Voltage   Current (mA) Current (mA) 

12   211 253.2 

5   1153.2 1383.84 

3.3   30 36 

Total   1394.2 1673.04 
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Figure 3.17 User-interface of WEBENCH by Texas Instrument
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Figure 3.18 Schematic of TPS562209 LM2678-5.0(referred to Power WEBENCH by 
Texas Instruments) 

 

 

 
Figure 3.19 Schematic of LM2678-5.0(referred to Power WEBENCH by Texas 

Instruments) 
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Figure 3.20 Schematic of LP2950-3.3(referred to Power WEBENCH by Texas 

Instruments) 

 

 

Figure 3.21 Block diagram of centralized power system (referred to Power WEBENCH 
by Texas Instruments)  

3.1.4 System Integration  

The last step of developing the E-nose system involved integrating the systems 

mentioned in the previous sections (i.e. electromechanical system, sensor system and 

centralized power system) with the computing platform. This section was broken down 

into four subsections: comparison of the computing platform, peripheral integration, 

hardware integration, and software integration.  

ETSA12050 
TPS56220 or 

LM2678  

LP2950-3.3 
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3.1.4.1 Computing Platform Comparison 

In order to select the most suitable computing platform for the system, a comparison 

of the most popular computing platforms was necessary. After recent products on the 

market  were  surveyed  and  the  products’  reviews  were  checked,  the  latest  and  most  used  

single board computers were selected. The selected single board computers were the 

Beaglebone Black Rev. C, Raspberry Pi Generation 2 Model B, and Intel Galileo. The 

parameters that were compared among these three platforms are shown as following:  

a. CPU 

b. Memory type/ size  

c. Debug support  

d. Power consumption  

e. Dimension of the board  

f. Number of GPIO pin 

g. Peripherals 

h. SD card compatibility 

i. ADC configuration  

j. Number of timers/PWM   

 

Beaglebone Black Rev. C 

Beaglebone black was a low-cost, community-supported development platform 

that can be adapted to many electronic applications such as robot control, real time 

application, and  environmental  sensing  (“beagleboard.org”,  2015).  The  processor  used 

was a 1GHz ARM Cortex with 512MB RAM, 4GB on-board flash storage and NEON 
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floating-point accelerator. The power consumption was 210-460 mA at 5V. Additionally, 

the Beablebone Black contained 65 GPIO pins with high logic level of 3.3 volts. There 

are also seven 12 bits ADC pins, and the maximum accepted voltage was 1.8 volt. 

Moreover, the Beaglebone Black has the standard communication peripherals such as I2C, 

SPI, UART, UBS and CAN. The physical size of the board was 86.36mm x 53.35mm. 

Software wise, the Debian Linux distro has been installed before the product was shipped, 

and the user can install a wide variety of other systems, such as Android or other real 

time operation systems. The information above was referred to from begleboard.org. 

(www.beagleboard.org)  

Raspberry Pi Model B+  

The following information is according to the official website of Raspberry Pi, the 

Raspberry Pi was a compact size single board computer that was developed by the 

Raspberry Pi foundation in UK. It was based on Broadcom BCM 2835 system on a chip, 

which used an ARM11 family 700M Hz ARM1176JZF-S microprocessor. Additionally, 

the Raspbetrry Pi contained its own graphic processing unit (GPU). The memory size was 

512 Megabytes. For the peripherals, I2C, SPI, UART, USB and 8 GPIO pins were 

included with the platform. The board’s power consumption was 700 mA with 5V power 

Supply. The dimensions of the board were 85.60mm x 53.98mm. Software wise, an 

operating system was not preinstalled. The developers must prepare their own SD card 

that contains an operating system (OS). The most popular OS for the Raspberry Pi was 

Raspbian, which was based on Debian, one of Linux distribution. (www.raspberrypi.org) 
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Intel Gallieo  

The Intel Gallieo was a microcontroller board based on the Intel Quark SoC 

X1000, 400M Hz. The memory size was 256MB. The board’s power dissipation was in 

the range of 80mA to 800mA with a 5V DC power source. The peripherals of the Intel 

Gallieo were I2C, SPI, UART, six 12-bit ADC pins, and 14 GPIO pins with high logic 

level at 3.3V DC.   The physical size of the board was 100mm x 70mm. The software that 

the Intel Gallieo was able to run was Microsoft Windows, Mac OS, and Linux OS. The 

board also brought the simplicity of the Arudino integration development Environment 

Software on board. This information above is referred to the office website of Intel. 

(www.intel.com) 

The result of comparison  

As shown in Table 3.3, the Bealgebone Black was more suitable in this specific 

application due to several reasons. First, it contained the fastest processor speed among 

these three computing platforms. Second, it contained the largest on-board memory 

(4GB). Third, the Bealgebone Black contained more GPIO pins (65) than the Raspberry 

Pi (40) and the Intel Gallieo (14). Fourth, the amount of peripherals (i.e. Serial 

communication ports, timers, pwm) on the Bealgebone black was more abundant. 

However, the drawback of the Beaglebone black was the board’s resources, which were 

limited to sources on Internet. But several guide books have been published recently. The 

Raspberry Pi had the largest community support among the three platforms.  

 

 



53 
 

  

 

Table 3.3 Comparison of Computing platform  
Parameters Beaglebone Black Rev. C Raspberry Pi Mode B+  Intel galileo 

Processor  Sitara AM3358BZCZ100 

1GHz,2000 MIPS 

700 MHz ARM1176JZF-S 

core  

X1000 (16K Cache, 

400MHz) 

DRAM 512MB DDR3L 800MHZ 512MB 256MB DDR3-800MHZ 

FLASH  2GB, 8bit Embedded MMC      

SRAM     512KB  

Debug Support Onboard 20-pin CTI JTAG 

(OPTIONS), Serial Header   

  

POWER 210-460mA @5V = 2.3W  700 mA (3.5 W)@ 5V 80mA -800mA@5V = 4W 

PCB SIZE 86.36mm x 53.34mm 85.60 × 53.98 mm  100mm x 70mm 

I/O pin 65(3.3V) 

8 GPIO(3.3V) 

14(3.3V or 5V) Providing 

10mA(Max), receiving 

25mA(MAX), Internal 

Pull-up resistor of 5.6k to 

10k 

USB USB2.0 Client Port - Aceess to 

USB0, Client mode via 

miniUSB  Host port- Aceess to 

USB1, Type A socket, 500mA 

LS/FS/HS 2 USB2.0 PORTs  

3 USB PORTS ( USB 2.0) 
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Table 3.3 continued  
PCI express   

  

a mPCIe(e.g. wifi, 

bluetooth or cellular 

connectivity) 

Serial Port  UART0 ACCESS via 6 pin 

3.3V TTL    

UART1 RS-232 XCVR  

Ethernet  10/100, RJ45 10/100 Ethernet (RJ45) 10/100, RJ45 

WIFI VIA USB (may need extension 

cable to move away from the 

PCB)    

Via PCI express 

SD microSD, 3.3V,32Gbyte  

microSD, 3.3V,32Gbyte  

microSD,32Gbyte , SD 

Library  

User Input  Reset, Boot, Power    Reboot,reset  

Video Out  HDMI 1280X1024(MAX)  Composite RCA, HDMI   

Audio  Stereo, Via HIDM 3.5 mm jack, HDMI   

Communications  4xUART,2x SPI,2x I2C, 

2xCAN, UART, I C bus, SPI bus 

I2C,TWI, SPI 

ADC  7 AIN (1.8V MAX) 12 bits   6x -12 bits 

TIMER  4x 

1x 

Not able to find the 

information  

PWM 8x 1x 6x 

weight  1.4 oz(39.69 g)     

Support Interface  LCD, GPMC, MMC     

Others  Broadcom VideoCore IV, 

OpenGL ES 2.0, 1080p30 

h.264/MPEG-4 AVC high-

profile decoder 

RTC, lots of peripherial 

libraries 
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3.1.4.2 Peripheral component Integration  

After the platform was decided on, the next stage involved integration of all the 

components. This subsection was targeted on the peripheral integration. An external 

ADC, digital potentiometer, OLED (organic LED) display, and communication 

transmission buses are discussed in this section. 

External Analog to Digital Converter (ADC)  

An external ADC will be useful for E-nose expansion of sensor in E-nose system. 

Also, due to the limited available ADC channels (7) on the Beaglebone Black board and 

the  board’s  voltage range being 0 volts to 1.8 volts, an external 12 bits ADC was used. 

The external 12 bits ADC was the TLV2543IN from Texas Instrument that contained 11 

channels with a sample rate of 66kS/s. The communication protocol used was SPI with a 

transmission speed rate at 4MHz. The hardware configuration is shown in Figure 3.22.  

As previously mentioned, the Beaglebone Black was only capable of 3.3V logic level. 

The external ADC accepted both 3.3V and 5V logic level.  Figure 3.22 indicated that the 

signal direction of the signal on CK (clock), MOSI(Master out slave in) and CS (chip 

select) were directly from the Beaglebone black to the external ADC. On the other hand, 

the signal direction of EOC and MISO (Master in slave out) were from the external ADC 

to the Beaglebone black, which required the implementation of a level shifter for these 

two signals. A level shifter are used to convert digital signals from one voltage domain to 

another. In this case, the level shifter transformed the signals of EOC and MISO from 5V 

logic standard to 3.3V logic standard.    
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ADC Program class  

For the ADC software interface, an ADC class was written and the class diagram 

is shown in Figure 3.23. There are three main public methods in the class: (1)  “read_one”, 

(2)  “read_one_with_sample_size”, and (3)  “read_mutiple_with_sample_size”. The 

function of “read_one” was to return a voltage reading on a chosen channel. The 

“read_one_with_sample_size”  method was similar to the previous method but here the 

user can define the sample size. The returned value was the mean of the samples recorded. 

The last method in the class was the “ read_mutiple_with_sample_size”. This method 

allowed the user to select the number of channels used. The starting channel was always 

starting from channel 0. Also, similar to the previous method, the 

“read_multiple_with_sample_size” also allowed the user to define the sample size. 

Testing of the functionality of ADC 

The test program defined the object of the program and called the 

“read_mutiple_with_sampel_size (a, b)”,  where  ‘a’ is the channel number to which the 

function stop reading (start at Channel0). ‘b’  is  number  of  sample.  In  the testing program, 

‘a’  is  13  and  ‘b’  is  10 (random choice). The program reads 11 channels (0-10) and other 

reference channels (+ref,-ref and median of ref) for ten times and calculated the average 

of each channel.  The flowchart of the program is shown in Figure 3.24. The program ran 

in a continuous loop until the CTL + c command was detected. 

The hardware setup for the test is shown in Figure 3.22. Channels 0 to channel 4 

were connected to power supplies with random voltages of 1 volt, 2.5 volts, 5 volts, 3.3 

volts and 4 volts respectively. The rest of channels were connected to ground. The 
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positive reference was connected to 5 volts and the negative reference was connected to 

ground. 
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Figure 3.22 Hardware configuration of external ADC (referred to the TLV2533IN datasheet) 
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Figure 3.22 The class chart of external ADC
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Figure 3.23 Flow chart of ADC testing program 
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Digital Potentiometer 

 As mentioned in the previous sections on the VOC and ammonia sensors, a 

potentiometer was used to adjust for sensor sensitivity. Two MCP4205 programmable 

potentiometer chip with a range of 3.3 ohms to 50k ohms by Microchip were 

implemented in the circuit. The resistances changed inversely proportional to the value 

from 0 to 255. Two potentiometers in each chip and the communication protocol used 

was 3-wire SPI.  

 The hardware configuration for the digital potentiometer was shown in Figure 

3.25. POT1 and POT2 represent the potentiometer chips. As mentioned above, the chip 

has two potentiometers. POT1 was adjusting the sensitivities of two VOC sensors in the 

system. POT2 was used to change the sensitivity for the other two ammonia sensors.  

From the datasheet, MCP42050 has Daisy-Chain configuration, which meant that the SO 

pin from one device (POT1) connected to the SI pin on the next device (POT2). The data 

on the SO pin was the output of the 16-bit shift register. This configuration allowed the 

host to connect to multiple devices without using a separate CS line for each device.     



62 
 

  

59 

 

Figure 3.24 Hardware configuration of programmable potentiometer for VOC and 
ammonia sensors 

POT Class and initial test procedures  

The POT class was one of the child classes from the SPI class. Two main methods 

of the POT class were named “TWO_POTs” and “FOUR_POTS”. “TWO_POT” 

function was used to change the value of potentiometers on one device, and the 

“FOUR_POTS” function simultaneously modified the value of potentiometers on both 

devices. The class diagram was shown in Figure 3.26.  The test was established by first 

changing the value of potentiometer and then using a multimeter to measure the 

resistance of each potentiometer. The measured values were compared with the expected 

values. 
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Figure 3.25 Class chart of POT class 

Display- Monochrome 0.96" 128x64 OLED graphic display 

 The display monitor, UG-2864HSWEG01 made by Univision Technology Inc. in 

Taiwan, employed a small  1”  diagonal  OLED  with  high  contrast.  The  screen  has 128x32 

individual white pixels, and does not have a backlight that would need more power. This 

specific display used 3- wire SPI plus two GPIO pins as a communication protocol.  

 Figure 3.27 showed the hardware configuration for the OLED. The power for the 

OLED was supplied from the 3.3 volts regulator on the Bealgebone Black. DATA, CLK 

and CS were part of the SPI specification. RST was the reset signal and the D/C was the 

DATA /Command switch. According to the datasheet, when D/C was pulled HIGH, the 
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DATA signal was treated as data. On the other hand, when D/C is pulled LOW, the 

DATA signal was transferred as command to the command register.     

The display program was written using python script and used an embedded 

python library to eexculte the program within C++ environment. Figure 3.28 shows the 

flow chart on how the python script was ran using the c++ program. The figure 3.29 was 

the python script for controlling the OLED display.   

 

Figure 3.26 Hardware configuration of OLED display 
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Figure 3.27 Flow chart of executing python script in C++ environment  
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Figure 3.28 Flow chart of OLED interface using python  
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Transmission Buses for device communication  

The integrated sensor system contained three SPI devices and two I2C devices, 

but the serial communications on the Bealgebone Black were limited-(two SPI buses and 

two I2C buses). Therefore, the circuit was modified to let multiple devices operate under 

the same bus lines. Figure 3.30 shows the logic circuit for interfacing the ADC and the 

programmable potentiometers using gates (Molloy, 2015). In most of the circuit 

configurations were same. The only difference was the configuration of the CS signal and 

an addition of a GPIO pin (P9.16). The first slave device, ADC, got the CS signal from 

output of the OR gate (U1) where one input was connected to the CS and the other input 

was connect to a GPIO pin on Beaglebone Black. The second device, the potentiometers, 

received the CS signal from the other output of the OR gate (U2) where one input was 

connected to the CS and the other input was connect to the GPIO that was inverted using 

U3 gate. This configuration ensured that only one slave device is active during 

communication. Figures 3.31 and 3.32 illustrate the logic of in circuity OR gate and NOT 

gate, in high and low condition respectively.  
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Figure 3.29 Circuit diagram for interfacing ADC & potentiometer with SPI (Molly, 2015)  

 

Figure 3.30 Communicating between BBB and ADC when P9.16 is HIGH 
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Figure 3.31 Communicating between BBB and potentiometer when P9.16 is LOW  

3.1.4.3 Hardware Integration  

PCBs 

 All the acquisition circuitries of the sensors, the external ADC circuitry, the 

centralized power system, and the pump/solenoid drivers were transferred to PCB using 

EAGLE software by CADSOFT. The design file was sent to a commercial PCB 

manufacturing facility, Advance Circuits. Two PCBs (Central power and sensor 

acquisition) were designed. The pump driver and solenoid driver were included on the 

centralized power system PCB. This is shown in Figures B.1 and B.2. The second PCB 

contained the acquisition interface and external ADC circuit. This is displayed in Figures 

B.3, B.4, and B.5. Figure 3.33 shows the schematic of the PCBs for the integrated system. 

The dimensions of the PCB were 105.41mm x 55.88mm. The bottom left of the figure is 

the combination of the 𝐶𝑂ଶ hardware interface and the ADC components. At the top left 

1 

1 

1 

0 

0 0 
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of figure, the ammonia interface is located and the VOC sensor circuit is located at 

middle of the figure.  

System layout  

 The enclosure for the integrated sensor system was designed and built using the 

3D printers in the Boilermaker lab located in Knoy hall. The enclosure consists of three 

layers. The bottom layer contained the power system PCB and the transmission bus point 

to point board. The acquisition interface PCB was in the middle layer, and the top layer 

was for the Beaglebone Black. Those three layers were interconnected via the holes on 

the two sides of the enclosure. The layout of the integrated system is shown in Figure 

3.34. Lastly, the whole system was mounted on a wooden plate, shown in Figure 3.35 and 

3.36.



71 
 

   

71 

 

Figure 3.32 Schematic of all PCBs
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Figure 3.33 Layer layout of the integrated sensor system. Dashed arrow is the air 
direction.  

CO2, VOC and NH3 
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Figure 3.34 Top view of the integrated Sensor System  

 

Figure 3.35 Side view of the integrated sensor system   
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3.1.4.4 Software Integration  

The last section of the integration was the software integration. This subsection 

explained the programs included the operation of the system, the data acquisition, and the 

signal processing.  

Operation of the system 

 There are five stages in the program. The flow chart for the main program is 

shown in Figure 3.37(a) and its source code is in Appendix E. This main program 

incorporates several external library/classes – Python.h, SPI-ADC.h, PWM.h, GPIO.h, 

I2C_CO2.h, and I2C_Temp_Humidity.h. GPIO class is to easily export, convert and 

modify the GPIO pins on Beaglebone Black. PWM class makes PWM pins to run, stop 

and adjust the PWM characteristics (i.e. period, polarity, duty cycle, and frequency) 

efficiently. These two classes were written in “Exploring  Beaglebone”  by  Molly  (2014).  

The functionality of SPI-ADC, I2C_CO2 and I2C_Temp_Humidity are described in 

previous sections of the thesis.  

The five stages were (1) initialization, (2) air flush, (3) reference collecting, (4) 

gas injection, and (5) data collection. The first step in the program was to initialize all the 

objects of the classes as well as the necessary parameters on the Bealgebone black (i.e. 

pin configuration, serial communication enable, PWM enable). Next, the system went 

into the air flush stage. The time of air flushing was determined by the equations below:  

𝑇௙ = ௏ೌ
ொ೘   × 1.2    (Equation 3.5) 

𝑉௔ = 𝑠𝑒𝑚𝑖  𝑐𝑖𝑟𝑐𝑙𝑒  𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 + 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟  𝑝𝑟𝑖𝑠𝑚         (Equation 3.6) 

𝑄௠ = 400   ௖௠
య

௠௜௡   𝑎𝑡  5  𝑣𝑜𝑙𝑡𝑠  𝐷𝐶  𝑟𝑎𝑡𝑒          (Equation 3.7) 
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  𝑤ℎ𝑒𝑟𝑒  𝑉௔  𝑖𝑠  𝑡ℎ𝑒  𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑐ℎ𝑎𝑚𝑏𝑒𝑟  𝑡ℎ𝑎𝑡  𝑎𝑖𝑟  𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  𝑎𝑛𝑑   

𝑄௠𝑖𝑠  𝑡ℎ𝑒  𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦  𝑟𝑎𝑡𝑒  𝑜𝑓  𝑚𝑜𝑡𝑜𝑟  𝑖𝑛  𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟  𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. 

After the calculations were made using the above equations, the resulting 𝑉௔ value 

was 152.34 𝑐𝑚ଷ and the approximated time was 28 seconds. During this period, the air 

was sucked by the pump, and fresh air got into the chamber. The next stage was to store 

the reference (air) data for T, a changeable time variable in seconds. In this time the data 

from each sensor (alcohol, ammonia, 𝐶𝑂ଶ, humidity and temperature) were collected by 

the Bealgebone Black with different time intervals. The timing flow chart for collected 

data from each sensor is shown in Figure 3.37(b). In Figure 3.38, the timing was control 

by the combination of thread, a smallest unit of processing that can be executed 

asynchronously, and timer. The time between sample collections for the alcohol sensor 

was 50 milliseconds. For the ammonia sensor, the time interval between sample 

collections was 500 milliseconds. The data from the temperature and humidity sensor and 

the 𝐶𝑂ଶ sensor were collected every 5 seconds.  Right after T, the interest of gas was 

injected and the processor was kept collecting data from the sensors for another T. Once 

the time was up, a signal was sent to all the thread functions to ask for exit. Next, all the 

data files were saved and closed. Lastly, the pump and the valve operations were stopped.  

Signal processing  

 The signal processing was based on using MATLAB. The following are the 

procedure for signal processing: 

1. Sent the collected data to the host PC 

2. Stored the data into the cell. (The functionality of cell is similar to array in 

MATLAB) 
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3. For VOC sensor and ammonia sensor, converting the voltage to sensor resistance 

by using  the equations that described in the sensor sections   

4. For VOC sensor and ammonia sensor, normalization was implemented using the 

equation below: 

𝑅௡ =
ோೞିோ೑
ோ೑

                                                                         (Equation 3.8) 

Where 𝑅௦ is the resistance of the sample and 𝑅௙ is the resistance of the 

reference.  

5. For VOC sensor and ammonia sensor, the normalized values of each observation 

and the mean of normalized values for all observations were plotted with respect 

to time.  

6. For 𝐶𝑂ଶ  sensor and Temperature and Humidity sensor, the data was plotted along 

with the time in seconds. 
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Figure 3.36 (a) Flow chart of the operation program, hosted on Beaglebone black.  
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Figure 3.37 (b) The timing chart for collecting data from the sensors. (Beaglebone Black 
gets data from VOC sensors for every 50ms, from NH3 sensors for every 250ms, from 
Temp/RH sensors for every 1 second, and from CO2 sensor for every 5 seconds.) 
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*Ammonia data format -“x.xxx.xxx.xxx.xx”(  “x.xx”  is  the  structure  of  one data at either 
5ms or 6ms, the first 6 numbers represents the data at 5ms and 6ms from first ammonia 
sensor and the rest are from second ammonia sensor.) The number of the characters is 17.  

**𝐶𝑂ଶ-5s 1data.NH3-250ms-2 data. Temperature-5s-1data. Humidity-5s-1data 

Figure 3.37 Flow chart of the sensor (thread) functions. *  
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3.1.4.5 Preliminary test 

Due to the time constraint and the difficulty of obtain the gas sample, the 

experiment were conducted under preliminary testing that focused on only the presence 

of the gas of interest and not on the concentration of the gas. The test was separated into 

two parts. The first part was to compare the reference (air) and the interest of gas along 

with the time. Also, the sensor output was compared at between outside and inside of lab 

(Purdue MGL 1236). For sample preparation, 𝐶𝑂ଶ sample was prepared by the 

combination of baking soda and vinegar. The procedures were shown as below: 

1. Took 25 ml of distilled vinegar into 100ml flask.  

2. Added one third of spoon of baking soda into the flask.  

3. Waited for the reaction (30 seconds). 

4. Plugged the stopper with a hole to the flask.  

5. Plug the plastic tube into the flask via the hole. 

6. Ran the program  

For VOC gas and ammonia gas, a bottle of 91% Isopropyl Alcohol was purchased 

from Walmart and household ammonia liquid was purchased from local store. The in-

house built universal sensor gas characterization system controlled by LABVIEW 

(Panigrahi et al., 2008) was used to evaluate this test. The picture of the system is shown 

in Figure 3.39. The system consisted of a testing chamber with a heater surrounding, a 

thermocouple sensor, an Arduino and a laptop installed with LABVIEW. After the 

hardware setup was completed, the following protocol was conducted: 

1. Turned on the heater of the gas characterization system and waited until 

the temperature of inside chamber got expected temperature.  
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2. Injected the Alcohol into the testing chamber  

3. Turned on the blades by using LABVIEW interface  

4. Executed the script in integrated sensor system     

All of the data from the sensor was saved in the Beaglebone Black. The .txt files 

were processed using the procedures described in the section of signal processing.   

The second part of the test was to evaluate the integrated sensor system in the 

field. The test was taken at Purdue poultry farm, located at Animal Sciences Research 

Center and Education Center. Due to the limitation of environmental setup, the 

connection supposed to connect to the gas sample was opened, which made the reference 

entry and the gas sample entry were from the same source. The procedures were listed 

below: 

1. Warned up  the system for 10 minutes  

2. Measured the air in office (confined space) for five observations.  

3. Measured the air at outside of the office (open space) for five 

observations.   

4. Measured the air in the poultry farm (sample) for five observations. 

5. Ran the signal processing that mentioned in previous section. 

6. Plotted the result with respect to time.     
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Figure 3.38 Picture of the in-house built universal sensor gas characterization system 
(Panigrahi et al,. 2008) 

3.2 E-tongue 

E-tongue is otherwise known an electronic tongue. The basic functionality of E-

tongue is to detect or predict the concentration of a given compound in a liquid medium. 

Thus, E-tongue is also otherwise known an artificial tongue or artificial taste sensor. 

Hence, E-tongue is generally considered as a complementary to artificial nose or E-nose. 

In this case, we focused on developing and assessing an E-tongue system for 

detection of contamination in water or liquid medium. In this study, we focused on 

detecting arsenic in water as an example.  

Many reports have described multiple ways to realize the development of an E-

tongue system. In this study, we focused on assessing two methods to develop E-tongue 

system, and they are (1) Quartz crystal microbalance and (2) interdigitated dielectric 

sensing mode.   
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3.2.1 Quartz Crystal Microbalance (QCM) 

 

Figure 3.39 Schematic of a QCM system. 

Figure 3.39 illustrates the system diagram of the QCM envisioning system. The   

principle was to read the frequency of the QCM using a microcontroller. This study 

focused on the development of a frequency counter that converted the frequency of QCM 

to a digitalized numerical number that a microcontroller/microprocessor can acquire and 

process. The stages of the QCM acquisition system procedure is shown in Figure 3.40. 

The QCM sensor was connected to a commercial oscillator, QCM lever oscillator by 

International Crystal Manufacturing CO, INC (ICM). The output was amplified and 

connected to a prescaler (flip flop). The next stage was to convert the raw frequency data 

to digital numbers. There are various ways to do the conversion. The easiest way was to 

directly connect the signal to a microcontroller. However, there were a few problems 

must be considered. First, the input signal must be conditioned so that a signal must 

sweep between the high and low thresholds of the microcontroller. For example, the input 

signal must sweep between 0 to 5 volts for the Arduino Uno. Second, the speed with 

which a microcontroller acquires the signal was critical. Due to these considerations, a 

frequency counter circuit as described in to by Michael et al. (2010) was designed.  In the 
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paper (Michael et al., 2010), a USTI (universal sensors and transducers interface), as an 

alternative to using a high cost commercial frequency counter, was selected. The USTI is 

a 28 pin single programmable chip with two-channel frequency-to-digital converter with 

an operating frequency range of 0.05 Hz to 9 MHz. This range can be extended to 144 

MHz using prescaling method. The accuracy of the frequency converter can be 

programed from 0.001 to 1% accuracy. The output in ASCII format can be sent to 

microcontroller by either UART or I2C protocol.  

According to the datasheet of the lever oscillator we used, the output was 400 

millivolts peak to peak. But the input requirement of USTI was 5 volts peak to peak.  In 

order to amplify the signal from the oscillator to meet the 5 Volts peak to peak 

requirement, an amplifier circuit was designed. Initially, a non-inverting amplifier circuit 

was constructed with an AD817 operational- amplifier. However, the output of the 

amplifier reduced when the frequency was increased to 10 MHz. This indicated that the 

bandwidth of AD817 op-amp was not large enough to amplify a signal at high frequency. 

Therefore, the Analog Device ADA4891 amplifier, a low cost CMOS, high speed, rail-to-

rail signal-supply amplifier was chosen instead. The bandwidth of the ADA4891 

amplifier was 220 MHz with slew rate of 170V/microsecond.  

Presented in Figure 3.41, the amplifier circuit consisted of three cascading stages. 

The gain of each stage was 2.2 with a 2.5 volts DC offset. An offset was added to the 

system because the input of USTI cannot accept negative voltage and also the amplifer 

has a signal power supply. It can cause the negative signal of input to be clipped.   

Additionally, the QCM had a resonant frequency of 10 MHz, which exceeded the 

highest frequency (9 MHz) the USTI can measure. To overcome this problem, a prescaler 
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was implemented between the amplifier and the USTL. A flip-flop was used as prescaler 

in the circuit (Figure 3.42). When the J, K, reset, and preset pins were pulled high, the 

output frequency was scaled to half frequency detected on the clock pin. The signal from 

the amplifier was connected to the clock pin of the flip-flop and the flip-flop’s  output Q 

pin was attached to the USTI.  Using the I2C protocol, the digitalized frequency was sent 

to a device that is able to do serial communications (i.e. UART, I2C, SPI, CAN).  

After designing the circuit shown in Figure 3.41, it was fabricated into a PCB. 

EAGLE by CADSOFT was used to generate the gerber files. Figure 3.42 is shown the 

schematic of frequency counter PCB. In Figure 3.43, BNC connector was used at the 

input of the frequency counter and the size of the board was 70mm x 57mm.  

The frequency counter was tested to measure the frequency three times from 1M 

Hz to 15M Hz in two types of accuracies, accuracy of 1% and accuracy of 0.005%.  The 

input was simulated using a function generator supplying an output signal of 400 

millivolts peak to peak and 0 VDC offset. The Arduino UNO was the microcontroller 

used for this test and it also supplied the power to the frequency counter. The 

measurements were recorded. The schematic of frequency counter test is shown in Figure 

3.44.  The complete Arduino code is attached in Appendix E. 
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Figure 3.40 Stage of QCM acquisition system  
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Figure 3.41 Schematic of frequency counter in QCM 

 

 

 

AD4891-4 Cascading amplifier  Flip flop  Frequency 
counter  

10MHz  

400 mV 

Sinewave  



88 
   

    

59 

 

Figure 3.42 Schematic of frequency counter PCB 

 

 

Figure 3.43 PCB of the frequency counter  
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Figure 3.44 Schematic of frequency counter test 

3.2.2 Interdigitated Capacitance  

Interdigitated capacitance (with dielectric)  

Multiple methods have been used for determination of arsenic in water. There is a 

need of developing a sensor/detection system that will rapid and cost-effective for 

possible used in low resource settings. In this study, a novel concept of adapting the 

interdigitated capacitance method (conceived by Dr. Panigrahi) was evaluated. This 

interdigitated capacitance has been used by Angawisittoan and Manasri (2012) for 

determination of sugar content of sugar solution. The concept was further adapted for 

arsenic application using a different configuration of interdigitated electrode (thin film 

gold electrode 8mm x8mm on silicon substrate) and procured from a commercial source.  

Electrode Cleaning 

 Several preliminary and exploration experiments with different configurations and 

cleaning methods for detection classification of arsenic in water were conducted. In this 

report, the following method that involved cleaning the method with acetone is described. 

The researchers believe that this method is more suitable for this study.     

The protocol of washing the electrode is described below:  
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1. Immersed the electrode into 60 mL acetone liquid and the container was on the 

top of a magnetic stirrer. It was stirred for 3 minutes.   

2. The acetone in the cleaning container was replaced with DI water and again 

stirred for 3 minutes. 

3. The interdigitated electrode was removed and rinsed with DI water for three times 

using a pipette.  

The electrode was washed using the above protocol for testing each category of arsenic 

contaminated water (e.g. 10, 50, and 100ppb)  

Sample preparation  

 All the samples and treatments were prepared in the Freeman Laboratory, 

cooperated partner, in Lilly Hall at Purdue University, West Lafayette.    

Hardware setup  

The measurement circuit consisted of an AC power source, an electrode, and a 

5.1k ohms resistor. This setup is shown in Figure 3.45 and was used in a research study 

by Angkawisittoan (2012). The Vout displayed in the figure 3.45 was the voltage peak-

peak across the 5.1k ohms resistors. The circuit was soldered on a point-to-point board 

with two BNC connectors on both at the AC input end and Vout pin side. A picture of the 

setup is shown in Figure 3.46. From Figure 3.46, the input BNC connector was connected 

to the function generator and the Vout BNC connector was connected to the oscilloscope. 

One end of the customized shield cable was soldered on the point to point board (at the 

source end) and the other end was connected to the interdigitated electrode. Lastly, the 

sensor was tapped on the inside wall of a 100ml container which shown in Figure 3.46. 
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So that the electrode was fixed in a vertical position. It was ensured that the liquid does 

not reach the two pads of the electrode.     

The frequency range of the experiment was set from 10k Hz to 700K Hz because 

the researcher postulated that the sensor output had a significant response in this specific 

range from the initial test. The two pads of the electrode were connected via wire-

bonding method. On each pad, 4 wires were used. The connector leads of the wire bond 

package were connected with shielded cable.   

Experiment protocols  

The protocol of the experiment is represented four observations in Figure 3.47. 

First, the voltages were measured in air four times in a row while tapped on the inside 

wall of the container. Then, 11 to 12 mL of treatment (treatments indicates water with 

arsenic contamination and without arsenic contamination) was filled into the container to 

cover the sensing area of the sensor 

The protocol of measuring the voltage across the 5.1k ohms resistor shown in Figure 3.46 

is listed below.  

1. Connected the input source to the CH.1 of the oscilloscope. 

2. Turned on the function generator and make sure the input signal 

(10VPP, 50K Hz) 

3. Turned off the generator and connect the input source to the circuit  

4. Turned on the function generator  

5. Measured and recorded the results  

6. After done measuring, turned off the function generator  

7. Poured the sample into the waste container  
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 In addition, the electrode was cleaned between the samples of 10ppb, 50ppb and 

100ppb arsenic water. The cleaning protocol is listed below: 

1. Put into 60mL DI water on magnetic stirrer for 3 minutes. 

2. The interdigitated electrode was rinsed with DI water for three times. 

In this experiment, there are four treatments and they are DI water (no Arsenic), 

Water with Arsenic (10ppb), Water with Arsenic (50 ppb) and water with Arsenic (100 

ppb). In addition, four observations per treatment in each experiment. The researcher 

conducted 3 separate experiments. Thus, for each treatment, the researcher obtained 

4x3=12 observation. In total, these 3 experiments have 48 observations (12x4) per each 

frequency value. It is to be noted that the above mentioned observations refer to a single 

frequency value. The researcher collected data for 16 difference frequency over a range 

(10 KHz – 700 KHz) in the experiment. These 16 frequency are 10, 20, 30, 40, 50, 100, 

150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 and 700 KHz. 

Moreover, within the observations, the sample was changed by pouring out the 

old sample and adding new 11 to 12 mL of sample into the container. The order of the 

treatment is displayed below.  

1. DI water  

2. 10ppb arsenic water (11~ 12 mL) 

3. 50ppb arsenic water (11~ 12 mL) 

4. 100ppb arsenic water (11~ 12 mL) 
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Figure 3.45 Schematic of instrumentation circuit  

 

 

 

Figure 3.46 Experiment setup for arsenic detection  
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Figure 3.47 Flow chart of the protocol for arsenic detection experiment
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CHAPTER 4. RESULTS AND DISCUSSION  

Chapter 4 comprises of the results and discussions of E-nose and E-tongue related 

experiments. Under E-nose, the preliminary sensor test results of the integrated system 

are firstly discussed. Second, the electrical test results of external components in the 

system are deliberated. The result and discussion for trail experiments are later presented. 

Finally, the test result of frequency counter and the results of arsenic measurement in 

water are also discussed.     

4.1 E-nose 

E-nose consists of an electromechanical system, six sensors (two VOC sensors, 

two ammonia sensors, one Carbon dioxide sensor and a temperature & humidity sensor), 

a centralized power system and the various peripherals of the system. The entire system 

was tested and its performance was compared between the expected value and measured 

result. Next, the integration test was based on data understanding from two experiments, 

which are the laboratory test and the poultry room experiment.  

4.1.1 Preliminary sensor test results  

The test of VOC sensor, ammonia sensor, 𝐶𝑂ଶ sensor and Temperature and 

Humidity sensor were done as the system was integrated. The sample of gases (Alcohol, 
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ammonia, 𝐶𝑂ଶ) were prepared as the description mentioned in Chapter 3.The individual 

sensor was tested based on the characteristics of the sensor as well as the sensor output 

comparison between observations taken inside and outside of building.   

4.1.1.1 VOC sensor  

The evaluation of two VOC sensors (model number- TGS2620), was established 

by finding out the characteristics of the sensor- the response time and the recovery time. 

The test setup was based on the description mentioned in chapter 3.  Figure 4.1 and 

Figure 4.2 illustrates the characteristics of two sensors. In Both Figure 1 and Figure 2, the 

indicators on the bottom represent the timing for the three stages and the indicators on the 

top express the response time and recovery time. The definition of the response time in 

this test is to measure the time period between the gas injection and the point where the 

signal is in equilibrium with the environment of the gas. As shown in Figure 4.1 and 

Figure 4.2, the response time for VOC-1 and VOC-2 were 20 seconds and 24 seconds 

respectively. The definition of the recovery time in this test is to measure the time period 

after the cotton ball was removed until the response of the sensor was restored to the air 

reference. As shown in Figure 4.1 and Figure 4.2, the recovery times were 219 seconds 

and 180 seconds for VOC-1 and VOC-2 correspondingly. The average of Vout readings 

when Alcohol was injected, are 4.92 volts and 4.73 volts for VOC-1 and VOC-2 

corresponding. The average in air reference for VOC-1 and VOC-2 are 2.74 volts and 

5.74 volts. Those parameters are shown in Table 4.1.   

The second test was conducted by comparing the air reading inside the room 

(Room 1236 in Purdue MGL) and outside of Purdue MGL building, using VOC sensor. 
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The measuring time of the test was 66 seconds which consisted of 1000 data points, thus 

resulting in a sampling rate of 66 milliseconds per sample. Figures 4.3 and 4.4 show the 

results of VOC-1 and VOC-2 inside the room and outside the building. The averages of 

VOC-1 and VOC-2 in outdoor environment were 1.807 volts and 1.836 volts respectively. 

The Vout reading in indoor environment, the average of VOC-1 and VOC-2 were 2.153 

and 2.181 volts respectively. 

 

Figure 4.1 Characteristic test of VOC -1. The response time is 20 seconds and the 
recovery time was 219 seconds 
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Figure 4.2 Characteristic test of VOC -2. The response time is 24 seconds and the 

recovery time was 180s seconds 

 

 

Figure 4.3 Comparison between inside and outside of the building for VOC-1 
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Figure 4.4 Comparison between inside and outside of the building for VOC-2 

4.1.1.2 Ammonia sensor 

Similar to the setup of VOC sensor, the two ammonia sensors (Ammonia-1 and 

Ammonia-2) were testing. The characteristics of the sensors were evaluated as well as the 

reading comparison between inside and outside of building. Due to the timing issue that 

was mentioned in section 3, the data was only collected at 5 milliseconds and 6 

milliseconds of a cycle (250 milliseconds). Figures 4.5 and 4.6 present the characteristic 

of both sensors. The arrows on the bottom of the figures represent the time of the stages, 

which are the same indicators discussed in last section. From Figures 5 and 6, the 

response time and recovery time of Ammonia-1 were found to be 79 seconds and 1624 

seconds correspondingly. For Ammonia-2, the response time was 75 seconds and the 

recovery time was about 1624 seconds. The equilibrium voltage for Vout of for 

Ammonia-1 and Ammonia-2 sensors were 4.29 volts and 4.6 volts respectively. The 
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Like the test for VOC sensor, the air readings inside of the building and outside of 

the building were measured, and the result is shown in Figures 4.7 and 4.8. The response 

in Figure 4.7 and Figure 4.8 were the mean of reading at 5 milliseconds and 6 

milliseconds. Identical performance to the VOC sensor, the reading from outdoor 

environment is higher than the reading inside of the building. The mean reading inside 

the building for Ammonia-1 was 2.153 volts and Ammonia-2 was 2.181 volts. From 

outside of the building the means for Ammonia- 1 and Ammonia-2 were 0.64 volts and 

0.83 volts.  

 
Figure 4.5 Characteristic test of Ammonia-1. The response time was 79 seconds and the 

recovery time was 1624 seconds 
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Figure 4.6 Characteristic test of Ammonia-2. The response time was 75 seconds and the 
recovery time was 1630 seconds 

 

 

Figure 4.7 Comparison between inside and outside of building for Ammonia-1 
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Figure 4.8 Comparison between inside and outside of the building for Ammonia-2 
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Figure 4.10, the mean of 𝐶𝑂ଶ concentration in room was 395 ppm and the mean of 

𝐶𝑂ଶ  (atmosphere) in West Lafayette was 416ppm. The 𝐶𝑂ଶ (atmosphere) level of the day 

(June 3, 2015) was 403.33 ppm according to the CO2now.org. The error percentage 

between the 𝐶𝑂ଶ concentration at outside of the building and that from website is 3.48%, 

which is smaller than 5%.  

   

Figure 4.9 Characteristics test of 𝐶𝑂ଶ sensor. The response time and recovery time were 
140 seconds 
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Figure 4.10 Comparison between room and outside of building for 𝐶𝑂ଶsensor 

4.1.1.4 Temperature and humidity sensor 

The last sensor test was for HTU21D-F, temperature and humidity sensor. The 

inspection was established by comparing the temperature and humidity between inside 

and outside of the building.  

Figure 4.11 illustrates the temperature readings inside and outside of the building. 

The total time of the measurement was 120 seconds and the data was collected every 5 

seconds. The reading from Rosewill REGD-TN439L0 Non-Contact Digital Infrared 

Thermometer was used as reference data. The data sampling rate for the infrared 
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The result for the humidity is shown in Figure 4.12.  The average humidity 

reading in the room was 60.98%. The average humidity at the outside of the numidity on 

specific day (June 4, 2015) was 39.48%. The expected value was acquired from 

Weather.com. The Website showed that humidity level on June 4, 2015 at West Lafayette 

was 48%. The error between the measurement at outside of building and the average of 

the day is 17.75%, shown in Table 2.   

 

Figure 4.11 Comparison of temperature at room and the temperature at outdoor 
environment 
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Figure 4.12 Humidity comparison between inside and outside of building 

Table 4.1 Temperature measurements at both room and outside of the building 
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average 

(Celsius)   
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average 

(Celsius) 

Error 

percentage 

(%)  

Room 21.21 21.42 0.9 

Outside  29.48 30.51 3.4 

Table 4.2 Humidity Comparison  

 Expected average  Measured average Error percentage  

Room N/A 60.98%  

Outside  48% 39.48% 17.75 
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Discussion  

Table 4.3 illustrates the recovery time and response time of VOC sensors and 

ammonia sensors. The average response time of two VOC sensors were 22 seconds and 

the average of two ammonia sensors were 77 seconds. The response time of VOC sensor 

(55 seconds) was faster than that of ammonia sensor. The average recovery time for VOC 

sensors and ammonia sensors were 199.5 seconds and 1627 seconds respectively. The 

recovery time for VOC sensor was 1427.5 seconds quicker than ammonia.  

In addition, the standard deviations for both VOC sensors and ammonia sensors 

were closer to 0 among the sensors in Table 4.4. This indicates the variance was 

significantly smaller than others sensors. Moreover, Figures 4.3, 4.4, 4.7 and 4.8 imply 

that the sensor value for VOC and ammonia in the room were higher than those readings 

outside the building due to the better ventilation at outside of building than at room.     

For 𝐶𝑂ଶ  sensor, the result from the sensor was consistent, which are 416.625ppm 

with standard deviation of 0.711 and 395.333ppm with standard deviation of 0.864 for 

CO2 atmosphere level outside of the building and inside of the building respectively.   

 As shown in Figures 4.11 and 12, the room temperature and humidity and the 

outside temperature were consistent throughout the test. Referred to Table 4.3, the 

standard deviations are 0.19 and 0.0126 for outside temperature and room temperature 

respectively. The standard deviations of humidity for inside and outside of building are 

0.481 and 0.048.  

Furthermore, the room humidity is higher than the humidity at outside 

environment on the specific day according to Figure 4.12. Lastly, greater than 5% error 

between expected humidity and measured humidity is reasonable. The expected value 
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from the Weather.com is the average of the day and the measured humidity was only 

measured at specific time of the day. Also, the location where the sensor tested was 

different.  That’s  why  the  error  was  significantly large between the expected value and 

measured value.   

Table 4.3 Characteristic of VOC sensors and ammonia Sensors  

 Response time  Recovery time  Equilibrium  in 

gas sample   

Equilibrium  in  

Reference (air)  

 Seconds  Seconds  volts Volts  

VOC-1 20 219 4.92 2.74 

VOC-2 24 180 4.73 2.54 

Ammonia-1 79 1624 4.29 1.44 

Ammonia-2 75 1630 4.60 1.93 

Table 4.4 Means and standard deviations of sensors 

 
Mean Standard Deviation 

VOC 1_outside 1.807V 0.008 
VOC 1_room 2.153V 0.024 

VOC 2_outside 1.836V 0.005 
VOC 2_room 2.181V 0.024 

Ammonia 1_outside 0.64V 0.03 
Ammonia 1_room 0.99V 0.01 

Ammonia 2_outside 0.83V 0.05 
Ammonia 2_room 1.44V 0.02 

CO2_outside 416.625ppm 0.711 
CO2_room 395.833ppm 0.868 

Temperature_outside 30.51ºC 0.190 
Temperature_room 21.42 ºC 0.0126 
Humidity_outside 39.43% 0.481 
Humidity_room 60.98% 0.048 
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4.1.2 External components of the system 

In this section, electromechanical system, centralized power supply system and 

Peripherals in the system are discussed. Each system was test as the whole system was 

integrated. The results of the test were then compared with the expected values.  

4.1.2.1 Electromechanical system  

The electromechanical system was tested to analyze the operation of the pump 

including the timing of each mechanical movement as referred in Table 4.5. In addition, 

electrical inspection of the solenoid valve driver and pump driver was done and the 

results have been recorded in Table 4.5  

Technically, when the processor (Begalebone Black) gives logic high signal (3.3 

volts), the drains of the MOSFET for the pump and the solenoid valve are at 5 volts and 

12 volts respectively and thus resulting in energizing them. As shown in Table 4.5, when 

the input (one of GPIOs from the processor) is high (3.3V) the output (the drain of the 

MOSFET) is at ON position (5V for the pump and 12V for the solenoid valve). On the 

other hand, when the input is low (0V), the output (the drain of the MOSFET) is at OFF 

position (0V for the pump and solenoid valve).  

The second measurement of the electromechanical system is to measure the 

elapsed time for each stage. As mentioned earlier in Chapter 3, there are three stages. The 

first stage was air flushing. In reference to the calculation made in section 3, the air 

flushing time was found to be 28 seconds. The next stage was to obtain reference for 

three minutes (180 seconds), where the time was user defined. The last stage was to inject 

the gas to the chamber while the processor was still collecting the data for another three 
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minutes. “time.h”, one of the libraries defined in Linux, was used to measure time by the 

processor. The unit of measuring the time was in seconds. Table 4.6 exhibits the results 

of the measurement. The experiment was run three times. The last column of the table is 

the average of 3 observations. From the Table 4.5 and Table 4.6 in this subsection, the 

mean of measured time and the driver test are the same as expected. 

Table 4.5 Result of drive test  

PUMP Drive test  Solenoid Drive test  

  INPUT OUTPUT INPUT OUTPUT 

ON 3.3V 5V 3.3V 12V 

OFF 0V 0V 0V 0V 

Table 4.6 Time measurements of mechanical operations 

 Expected time in 

second  

The average of measured time in 

second 

Air flushing  28 28 

Reference collection  180 180 

Gas injecting/ data 

collection  

180 180 

4.1.2.2 Centralized power supply  

The next segment is the results of the centralized power system. The setup of the 

test was described in Chapter 3. The first section of the test is to examine the current 

limitation of the chip and the consistency of output voltage. The expectation was that the 

voltage output for both of the LM2678 and the TPS562209 was expected to be 5 volts 
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with maximum sourcing current at 1.8 amps. Also, the LP2950-3.3 is 3.3 volts with 

current limitation at 100mA.  

For LM2678, TPS562209, and LP2950-3.3, the currents and voltages were 

measured with respect to different loads and recorded in Tables 4.7, 4.8 and 4.9 

respectively. The percent error of the voltages and the current from the loads of 14 ohms 

to 131 ohms were less than 5%. Loads of 2 ohms to 6 ohms  were out of 5% error range 

because the resistance value of the load box used in test was not exact the same as the 

expected resistance value. Even though they had significant current differences, the 

voltage was around 5 volts. It implies the regulator was still in operation. The load of 2 

ohms was to test the shutdown functionality. The chip was shut down when the current 

was over the current limitation- 1.8 amps for LM2678 and TPS562209. Similarly, Table 

4.9 illustrates the LP2950-3.3 had about 3.3 volts output with respect to different loads. 

However, the output voltage at 16 ohms load was 2.707 volts because the current was 

over the limit of the chip- 0.110 amps. 

  The performance comparison between LM2678 and TPS562209, both chips met 

the requirements, which were approximately 5 volts at output with the maximum 

sourcing current at 1.8 amps. Tables 4.7 and 4.8 emphasize the sum of TPS562209 

voltage errors for the loads were smaller than the sum of LM2678 voltage errors. That 

explains all the outputs corresponding to different loads on TPS562209 were closer to 5 

volts comparing to the outputs on LM2678. The same comparison can be applied to the 

error in current between Tables 4.7 and 4.8. The sum of current error percentage in Table 

4.7 is larger than the sum in Table 4.8. Size perspective, after populating the components 

on PCB, the footprint of TPS562209 is more compact than the size of LM2678. Because 
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of those factors mentioned above, the TPS562209-5 was a switch regulator for the power 

system.  

 Due to lack of output pin on PCB, the second version of PCB was fabricated. The 

same power measurement was run again, and the measurements are shown in Tables 4.10 

and 4.11. All the voltage outputs were similar to the previous test. The TPS562209 shut 

down when the current is beyond the limitation, and the 3.3 volts linear regulator 

(LP2950) was not functional once the current was larger than 0.139 amps. 

 

 

Table 4.7 Measurement result of LM2678 
Power measurement for LM2678 

 Load  

(ohms) 

Expected 

Current (A)  

Measured 

Current (A)  

Expect 

Voltage (v) 

Measured 

voltage (V) 

% Error in 

voltage  

% Error in 

current  

131  0.038 0.038 5.000 4.939 1.220 0.419 

63  0.079 0.078 5.000 4.938 1.240 1.714 

30  0.167 0.169 5.000 4.937 1.260 1.441 

14  0.350 0.354 5.000 4.933 1.340 1.143 

6  0.830 0.768 5.000 4.922 1.560 7.470 

4  1.250 1.072 5.000 4.911 1.780 14.240 

2  2.500  0.2  Shut down 0.56  N/A  N/A 

Total     8.400 26.427 

\ 
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Table 4.8 Measurement result of TPS562209 (Ver.1) 
Power measurement for TPS562209 

  Load  

(ohms) 

Expected 

Current (A)  

Measured 

Current (A)  

Expect 

Voltage (v) 

Measured 

voltage (V) 

% Error in 

voltage  

Error in 

current  

131  0.038 0.038 5.000 4.986 0.280 0.419 

63  0.079 0.080 5.000 4.985 0.300 0.806 

30  0.167 0.170 5.000 4.983 0.340 2.041 

14  0.350 0.351 5.000 4.980 0.400 0.286 

6  0.830 0.777 5.000 4.974 0.520 6.386 

4  1.250 1.097 5.000 4.969 0.620 12.240 

2  2.500  0.354 Shut down 0.570  N/A  N/A 

Total     2.460 22.178 

Table 4.9 Measurement for LP2950-3.3 (Ver.1) 
Power measurement for LP2950 -3.3V 

   Load  

(ohms) 

Expected 

Current (A)  

Measured 

Current (A)  

Expect 

Voltage (v) 

Measured 

voltage (V) 

% Error in 

voltage  

Error in 

current  

131  0.025 0.025 3.300 3.288 0.364 0.754 

63  0.052 0.053 3.300 3.287 0.394 1.184 

47  0.070 0.069 3.300 3.286 0.424 1.709 

39  0.085 0.081 3.300 3.286 0.424 4.255 

33  0.100 0.091 3.300 3.285 0.455 9.000 

30  0.110 0.112 3.300 3.291 0.273 1.818 

16  0.200  0.121 Not functional 2.707 N/A N/A  
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Table 4.10 Measurement result of TPS562209 (Ver.2) 
Power measurement for TPS562209 

   Load  

(ohms) 

Expected 

Current (A)  

Measured 

Current (A)  

Expect 

Voltage (v) 

Measured 

voltage (V) 

% Error in 

voltage  

error in 

current  

131  0.038 0.040 5.000 5.035 0.700 2.244 

63  0.079 0.082 5.000 5.032 0.640 1.517 

30  0.167 0.174 5.000 5.026 0.520 2.039 

14  0.350 0.363 5.000 5.007 0.140 1.643 

6  0.830 0.791 5.000 4.972 0.560 3.555 

4  1.250 1.097 5.000 4.950 1.000 71.163 

2  2.500 0.215 Shut down 0.515  N/A  N/A 

Table 4.11 Measurement result of LP2950-3.3 (Ver.2)  
Power measurement for LP2950 -3.3V 

   Load  

(ohms) 

Expected 

Current (A)  

Measured 

Current (A)  

Expect 

Voltage (v) 

Measured 

voltage (V) 

% Error in 

voltage  

error in 

current  

131  0.025 0.026 3.300 3.288 0.364 1.500 

63  0.052 0.054 3.300 3.287 0.394 2.282 

47  0.070 0.071 3.300 3.286 0.424 1.311 

39  0.085 0.061 3.300 3.286 0.424 24.082 

33  0.100 0.098 3.300 3.285 0.455 1.439 

24  0.208 0.139 3.300 3.291 0.273 2.536 

16  0.200 0.163 Not functional 2.707  N/A  N/A 
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4.1.2.3 Peripherals   

In the peripherals test section, two components were tested. They are (1) analog to 

digital converter (ADC) and (2) digital programmable potentiometer.  

The test for ADC was based on connecting the channels to individual power 

supply and comparing the reading values with the expected values. Channels 0, 1, 2, 3 

and 4 were connected to individual power supply of 1, 2.5, 5, 3.3 and 4 volts respectively. 

Channels 5 and 6 were open, and were not connected to anything. The rest of the channel 

was connected to the ground. In this specific IC, the channel 11 represents the positive 

side of reference voltage and channe12 indicates the negative side of reference voltage. 

The last channel represents the result of dividing the sum of positive reference and 

negative reference by two. The software program described in Figure 3.24 was run three 

times, and the data is shown in Table 4.12. 

 Table 4.12 illustrates that the error percentage of each channel for three 

observations are acceptable (< 5%). The minimum error percentage was 0.2 % on 

channel 11 and the maximum error was 2% on channel 1. The readings of channel 5 and 

6 were not stable, due to the open connection. Lastly, the standard deviations of the 

reading from each channel were very low (close to zer0).  

Evaluation of digital programmable potentiometer (POT)   

Two chips that had two potentiometer circuits were tested. The evaluation was 

based on the comparison between the expected resistance and measured resistance. The 

test was conducted using four resistance values. The default value of the POT was 25k 

ohms. The digital values of 0, 55, and 255 which represented 50k ohms, 39.6k ohms and 

370 ohms respectively. The error between expected value and measured value of each 
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potentiometer circuit was acceptable (< 5% error) in Table 4.13. In Table 4.13, POT1-1 

defined the first potentiometer circuit of the first chip, POT1-2 represent the second 

potentiometer circuit of the first chip, and vice versa. The maximum error was 2.8 % on 

POT2-1 when the potentiometer value was 55 (39.6K ohms). The minimum error 

occurred on POT1-2 and POT2-1 when the potentiometer was in default condition.  
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Table 4.12 Result of ADC measurement   

  observation-1   observation-2   observation-3     

  
Expected 

voltage  
Measured 

Voltage  
error 

percentage 
Expected 

voltage  
Measured 

Voltage  
error 

percentage 
Expected 

voltage  
Measured 

Voltage  
error 

percent SD 
Channel 

0 1.000 0.980 2.000 1.000 0.990 1.000 1.000 0.990 1.000 0.005 
Channel 

1 2.500 2.470 1.200 2.500 2.480 0.800 2.500 2.480 0.800 0.005 
Channel 

2 5.000 4.950 1.000 5.000 4.960 0.800 5.000 4.960 0.800 0.005 
Channel 

3 3.300 3.290 0.303 3.300 3.280 0.606 3.300 3.280 0.606 0.005 
Channel 

4 4.000 3.950 1.250 4.000 3.950 1.250 4.000 3.960 1.000 0.005 
Channel 

5 OPEN 0.350    N/A  OPEN 0.320 N/A   OPEN 0.370 N/A   0.021 
Channel 

6 OPEN 0.380   N/A   OPEN 0.340 N/A   OPEN 0.330 N/A   0.022 
Channel 

7 0.000 0.000 N/A   0.000 0.000 N/A   0.000 0.000 N/A   0.000 
Channel 

8 0.000 0.000 N/A   0.000 0.000 N/A   0.000 0.000 N/A   0.000 
Channel 

9 0.000 0.000 N/A   0.000 0.000 N/A   0.000 0.000 N/A   0.000 
Channel 

10 0.000 0.000 N/A   0.000 0.000 N/A   0.000 0.000 N/A   0.000 
V-ref+  5.000 4.990 0.200 5.000 4.990 0.200 5.000 4.990 0.200 0.000 
V-ref- 0.000 0.000 N/A   0.000 0.000  N/A  0.000 0.000 N/A   0.000 
Vref/2 2.500 2.510 0.400 2.500 2.530 1.200 2.500 2.540 1.600 0.012 
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Table 4.13 Result of digital potentiometer test   

 
POT1-1 POT1-2 POT2-1 POT2-2 

value expected measured 
Error 

Percent expected measured 
Error 

Percent expected measured 
Error 

Percent expected measured 
Error 

Percent 

 
K ohms K ohms % K ohms K ohms % K ohms K ohms % K ohms K ohms % 

Defaul
t 25.00 25.02 0.08 25.00 25.02 0.08 25.00 24.98 0.08 25.00 24.95 0.20 
0 50.00 48.92 2.16 50.00 48.73 2.54 50.00 48.60 2.80 50.00 49.52 0.96 

55 39.06 38.44 1.59 39.06 38.40 1.69 39.06 38.55 1.31 39.06 38.46 1.54 
255 370.00 370.40 0.11 370.00 370.20 0.05 370.00 372.80 0.76 370.00 371.09 0.29 
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4.1.3 Evaluation of integrated sensor system 

In this segment, the experiment was divided into two parts. Firstly, a laboratory 

test was conducted to access the performance of the ammonia sensor for specific 

concentrations. The second part was to evaluate the system in Purdue poultry farm. The 

measurement was taken at the outside environment at Purdue farm, the office of Purdue 

poultry farm and one of poultry rooms. The results then were compared among the three 

surroundings.  

4.1.3.1 Laboratory experiment for ammonia 

The first half of the experiment was conducted by testing the system whether or 

not was able  to  detect  25ppm  Arsenic  gas.  According  to  the  “Ammonia  in  poultry houses: 

A  Literature  Review”  (Carlile,  2011),  bird  performance  and  profit  would  be  affected  if  

the level of ammonia exceeds 25ppm. Therefore, the researcher wanted to proof that 

there is evidence to show the E-nose integrated system has ability to detect the level of 

25ppm ammonia gas.  

 The sample was prepared using the equation below: 

𝐶, 𝑝𝑝𝑚 = ଵ଴×஼೗×௣×௏ೡ೚೗×ோ×்
ெ×௉೚×௏೚

  (Nakamoto, 2006; SanKarm, 2009)                    (Equation 4.1) 

Where 𝐶௟ is the concentration of ammonia liquid (wt. %), p is the density of the gas (g 

𝑚𝐿ିଵ), 𝑉௩௢௟ is the volume of ammonia liquid injected (µL), R is the universal gas 

constant (L atm 𝑚𝐿𝐾ିଵ𝑚𝑜𝑙ିଵ), T is the temperature inside the gas preparation chamber 

(K), M is the molecular weight of the analyst (g 𝑚𝑜𝑙ିଵ), 𝑃௢ is the pressure inside the gas 

preparation chamber, 𝑉௢ is the volume of the gas preparation chamber and C is the 

desired concentration of gas (ppm). 
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The procedures are shown below:  

1. Calculated the amount of solution should be inserted into gas preparation chamber. 

2. Inserted the liquid using a micro-pipette.  

3. Run the program and collated data.  

4. Plotted the result using MATLAB script 

The cycle of experiment consisted of reference air (laboratory air) that was taken into the 

system for 3 minutes followed by liquid injection. The holding time of gas vapor was for 

8 minutes. The time for exhaust was 12 minutes.    

By using the equation 4.1, 48µL of 50% ammonia solution was injected to create 

ammonia gas. After the amount of liquid was injected into the gas sampling chamber 

using a micro-pipette, the E-nose integrated system recorded the response.  

During the experiment, the researcher found out that the sensor response (Vout) 

attained 5V soon after the gas was injected (Figure 4.16) This trend indicated the 

concentration might be too high for the sensor. Therefore, the test concentration in the 

flask was reduced to 10ppm of ammonia gas (the lowest concentration level that the 

sensor can detect according to the datasheet). However, the response of sensor (Vout) 

reached the 5V quickly (Figure 4.17) 

 In order to make 25ppm ammonia gas in the E-nose  system’s  test  chamber,  the  

concentration of ammonia in gas preparation test chamber was calculated using Dilution 

equation.  

                          𝐶௣𝑉௣ = 𝐶௧𝑉௧                                                       (Equation 4.2) 
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Where 𝐶௣ is the concentration of the ammonia in gas preparation chamber,  𝑉௣is 

the volume of the gas preparation chamber,  𝐶௧ is the concentration of the ammonia in E-

nose  system’s  testing  chamber,  𝑉௧is the volume of the E-nose  system’s  testing  chamber. 

Therefore, 25 ppm in the flake is equal to 133 ppm ammonia gas in the test 

chamber of E-nose system.  10 ppm in the flake equals 66 ppm ammonia gas in the test 

chamber. 3.8 ppm in the flake is equal to 25 ppm ammonia gas in the test chamber.     

4.1.3.1.1 Raw data of sensors (VOC, NH3, temperature & humidity) 

VOC sensor 

Figures 4.13, 4.14 and 4.15 show the raw data (Vout and sensor resistance (𝑅𝑠)) 

of VOC sensor with respect to time at different concentrations. The relationship of the 

equation between voltage and resistance is inversely proportional (Equation 3.1).  That’s  

why the shapes are upside down for Vout and  𝑅௦. Moreover, both the VOC sensors have 

certain sensitivity for ammonia gas because the sensor response changed while the gas 

sample was being injected.   

Ammonia sensor 

As mentioned before, Figures 4.16 and 4.17 illustrate how fast the sensor 

response reached the maximum level (5V) right after 133 ppm ammonia gas or 66 ppm 

ammonia gas was injected to the test chamber. Moreover, Comparison form Figures 4.16 

to 4.18 indicated that at lower concentration (25ppm), sensor showed more trend 

responses on 5V.  

 

 



122 
   

    

59 

Temperature and Humidity sensor  

The temperature was reported approximately 23°C on the plots. Humidity 

increased while the ammonia gas was injected, and the humidity came back to normal 

when the air flushed the testing chamber. The ammonia solution was the mix between 

ammonia liquid with distilled water, so the humidity went up when the ammonia gas was 

injected.    

4.1.3.1.2 Data processing  

The following equation was implemented in this experiment below: 

𝑅௡௦ = ோೞିோೌ೔ೝ
ோೌ೔ೝ

                                                                                        (Equation 4.3) 

Where 𝑅௡௦ is the normalized value, 𝑅௦ is the resistance of sensor in sample, and 

𝑅௔௜௥ is the resistance of sensor in air.   

From the Equation 4.3, as the normalized value is closer to 1, the difference between 

sample and reference is more significant.  

Figure 4.20 shows the normalization of VOC sensors for 25 ppm in test chamber. 

In the three tests, plots show the pattern was identical to each other. The pattern can be 

explained into three parts. The first part is the air reference, which is the smallest 

normalized value. It happened at the initial 180 seconds. The second part is the response 

time, which was measured from the point where the gas was injected until the response 

approached forwards equilibrium in the gas environment. The sensor response in 

equilibrium stage was shown in the area of red circles (Figure 4.20). The average time for 

reaching the equilibrium was at 486.37 seconds among the three tests. The average 

response time of three tests was 306.36 seconds. The last part was the sensor recovery. 
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The sensor response for the three tests did not fully restore to the reference (air) shown in 

Figure 4.20. That implies that the original exhaust time (12 minutes) was too short for the 

VOC sensor to be fully recovered in farm environment.   

The normalized sensor responses of ammonia sensor are shown in Figure 4.21. In 

the three tests, the trends of the response in each test are similar. The red circles and 

black circles (Figure 4.21) represent the equilibrium point and the point of air flushing 

respectively. Among the three tests, the average response time was 375.83 seconds and 

the average recovery time was 1270 seconds. In addition, Table 4.14 illustrates the 

maximum normalized value of each sensor for each test. The mean normalized response 

of Ammonia -1 is 0.0095 larger than the normalized response of Ammonia-2. Lastly, 

Table 4.15 shows the variation between VOC sensor and ammonia sensor in laboratory 

experiment. From each test, the variation of VOC was closer to 0 than that of ammonia 

sensor. That explains that the sensor response of two VOC sensors were more identical 

than the sensor response of the two ammonia sensors.  
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(a)  

 

(b) 

Figure 4.13 Raw data from VOC sensor (a) voltage response at 132 ppm (b) resistance 
response at 132 ppm 
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(a)  

 

(b) 

Figure 4.14 Raw data from VOC sensor (a) voltage response at 66 ppm (b) resistance 
response at 66 ppm 
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(a)  

 

(b) 

Figure 4.15 Raw data from VOC sensor (a) voltage response at 25 ppm (b) resistance 
response at 25 ppm 
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(a)  

 

(b)  

Figure 4.16 Raw data from ammonia sensor (a) voltage response at 132 ppm (b) 
resistance response at 132 ppm  
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(a)  

 

(b)  

Figure 4.17 Raw data from ammonia sensor (a) voltage response at 66 ppm (b) resistance 
response at 66 ppm 
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(a)  

 

(b)  

Figure 4.18 Raw data from ammonia sensor (a) voltage response at 25 ppm (b) resistance 
response at 25 ppm 
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(a)  

 
 (b)  

 
(c)  

Figure 4.19 Raw data of Temperature and Humidity at (a) 132 ppm (b) 66 ppm (c) 25 
ppm 
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(a)  

 
 (b)  

 
(c)  

Figure 4.20 Normalization of VOC response at 25 ppm (a) Test 1 (b) Test 2 (c) Test 3 
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(a)  

 
(b)  

 
(c)  
Figure 4.21 Normalization for ammonia sensor response at 25 ppm (a) Test 1 (2) Test 2 

(3) Test 3 
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Table 4.14 Maximum normalized sensor response for each test  

 Test 1- maximum  Test 2- maximum Test 2- maximum 

Ammonia-1 0.9678 0.9538 0.9256 

Ammonia-2 0.9658 0.9477 0.9043 

 

 

Table 4.15 Variation of response of two VOC & ammonia sensors 

 Test 1 Test 2 Test 3 

VOC 0.0137 0.0130 0.0116 

Ammonia 0.0459 0.0452 0.0418 

 

4.1.3.2 Air quality assessment in poultry farm  

Integrated E-nose system was evaluated to assess the air quality of a typical 

poultry house with respect to outside air and office room air. Hence, the goal was not to 

determine the concentration of specific gases (NH3 or VOC). Rather, the goal was to 

document the change of specific patterns of selected sensors in a typical poultry (caged-

chicken) house with respect to the outside air (office air or farm yard). This would allow 

a user to compare the air quality in a poultry house at a given time with respect to that of 

a standard farm house office or that of a typical farm yard. Thus, this experiment was 

designed with a clear practical application and use in mind. Farm yard is labelled as 

Refout. Poultry house is labelled as Poultry. Farm house office is labelled as Refin. 

The integrated E-nose  system’s  each  sensor  is  programmed by default to run for 6 

minute cycle (3 minutes reference air sampling and 3 minutes of target gas sampling). 
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For this experiment, the system was programed to use 6 minutes cycle for sampling only 

in the concerned environmental air (i.e. farm yard, poultry house, or farm house office). 

Thus, for each experiment, each observation consists of 6 minutes cycle for each sensor 

(Ammonia, carbon dioxide, VOC and temp/humidity). We conducted three experiments 

on three separate days at the Animal Science farm of Purdue University, West Lafayette. 

During each experiment, 5 trials were made. Thus, for three experiments, 5x3 =15 trails 

were conducted. It is to be noted that the integrated E-nose system contains two sensors 

for gas type (Ammonia and VOC). 

  

4.1.3.2.1 Raw data of carbon dioxide, ammonia, volatile organic compound, and 

temperature and humidity   

VOC sensor 

 Figures 4.22 show the sensor response for VOC-1 and VOC-2 were steady and 

identical in poultry room. The signal range for both sensors was about from 2.5 to 3 volts. 

Figure 4.23 illustrates the signal range of VOC-1 was similar to the range of VOC-2 but 

was shifted up 0.15 volts. The range of VOC-1 was about from 2.2 to 2.4 volts and the 

signal range for VOC-2 in the office was from 2.35 to 2.55 volts. In addition, the trends 

of two sensors were analogous in Figures 4.23. The signal was steady for 180 seconds 

and they went up 0.2 volts when the solenoid valve changed the direction. In Figure 4.24, 

the measurement was taken in the farm yard of Purdue farm. The responses of both 

sensors were constant except for trial 11. The signal shows there was VOC response at 



135 
   

    

59 

beginning of the measurement.  Figures 4.22, 4.23, and 4.24 also show that there were 

small variations among consecutive data points that projected a band pattern.   

Figures 4.25, 4.26 and 4.27 show 𝑅௦ for both VOC sensors. These 𝑅௦values were 

calculated from Vout shown in Equation 3.1.The 𝑅௦varied from 20k to 30k ohms 

depending on the location (Refout, Refin, Poultry). The trend of the sensor response was 

similar to the trend of Vout but in an inverse manner 

Ammonia sensor  

For ammonia sensor, Figures 4.28, 4.29 and 4.30 show the result of ammonia 

sensor with respect to time in the poultry room, from office and from yard respectively.  

Figure 4.28 illustrates the trends of Vout from both the ammonia sensors 

increased during the experiment for each of 6 minute or 360 second cycle, so it was 

postulated that the sensors might not be reaching its equilibrium. Therefore, for ammonia 

sensors, 1800 seconds or 30 minutes was taken as each experiment/observation cycle. As 

shown in Figure 4.29, the signal responses in the farm office decreased with the time. In 

Figures 4.30, the sensor response from the first trial was steady but it increased at 1100 

second. Then it decreased back to the initial measurement. The sensor responses for other 

trials were decreasing throughout the measurement (Figure 4.30).  Figures 4.31, 4.32 and 

4.33 show the resistance of ammonia sensors. Similar to VOC sensor, the trend of the 

signal in resistance was inversely proportional to the trend of the signal in voltage.  

Carbon dioxide sensor  

The readings were taken in the office (Refin) and the farm yard (Refout). There 

were 5 observations for each experiment. From Figure 4.34, the Refin and Refout were 

consistent during the measurement. The means of Refin and Refout are shown in Figure 
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4.35. The average 𝐶𝑂ଶ level of 5 observations for Refin was 531.01 ppm and the average 

in Refout was 375.02ppm.  

Temperature and Humidity sensor  

Temperature and humidity measurement were recorded in all three locations. The 

result is shown in Figure 4.36. The upper part of data points are the humidity values. The 

data points at lower part of the plot represent the temperature. Figure 4.36 (a) shows the 

temperature and humidity in poultry room. The humidity varied from 55% to 78% and 

the temperature varied from 27°C to 32°C. For the farm office (Figure 4.36 (b)), the 

humidity varied from 68% and 72%.  The temperature reading was consistent around 

23°C. As shown in Figure 4.37 (c), the humidity reading taken in outside environment of 

Purdue farm was varying from 57% to 81%, and the temperature was different from 25°C 

to 31°C. The variation within the trails is significant large because the trails was test in 

different days. Thus, the humidity and temperature was distinct in daily basis.  

 

4.1.3.2.2 Data processing  

The data from VOC sensor and ammonia sensor were further analyzed using the 

following steps:  

1. Applied moving average smoothing using 10 data point as a window size for 

reducing the variation in raw data in VOC sensors.   

2. Converted the Vout to resistance using the equations that mentioned in Equation 

3.1 and Equation 3.2  
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3. Find normalized sensor response : 

                                                      𝑅௡௦ = ฬோೞିோೝ೐೑೚ೠ೟ோೝ೐೑೚ೠ೟
ฬ                                      (Equation 4.4) 

Where 𝑅௦ is the sensor resistance in poultry room and 𝑅௥௘௙௢௨௧ is the sensor reading in 

farm yard. 

VOC sensor 

Figures 4.38 through 4.43 show the normalized sensor response of samples 1, 3, 5 

for VOC-1 and VOC-2 sensors. Comparing among the three tests, the trend of each test is 

difference. However, if the two VOC sensors were compared in the same test, the trends 

of VOC-1 and VOC-2 for individual test are similar (Figures 4.38, 4.39, 4.40, 4.41, 4.42 

and 4.3). In the three tests measured from VOC-1, the normalized values were under 0.3. 

The maximum value among three tests for VOC-1 was 0.2786 in sample 3 under first test 

and the minimum value among three tests for VOC-1 was 0.0672 in sample 1 under third 

test. The maximum normalized sensor response for VOC-2 was 0.2889 in sample 3 under 

second test and the minimum for VOC-2 was 0.0681 in sample 1 under third test.  

Figure 4.44 compared the variation for VOC-1 and VOC-2. Among the tests, the 

smallest variation was in second test. The standard deviation was 0.001. 

Ammonia sensor  

Figure 4.45 shows the normalization of ammonia with respect to time. Those 

three plots show the normalized sensor response was increasing along with the time. 

Figure 4.45(a) shows the signal was in equilibrium stage after 1600 seconds. However, 

Figure 4.45 (b) and (c) illustrate both sensors approached equilibrium stage in 1800 

seconds. In addition, the mean response for Ammonia-1 sensor was higher than that of 
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Ammonia-2 among the three tests. Table 4.16 shows the variation of ammonia sensor and 

VOC sensor with respect to different tests. 

 
(a)  
 

 
(b)  

Figure 4.22 Response of VOC sensor (voltage) (a) VOC-1 at Poultry room (b) VOC-2 at 
Poultry room. 
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(a)  

 

(b)  

Figure 4.23 Response of VOC sensor (voltage) (a) VOC-1 at Refin (b) VOC-2 at Refin. 
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(a)  

 

(b)  

Figure 4.24  Response of VOC sensor (voltage)(a) VOC-1 at Refout (b) VOC-2 at Refout   
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(a)  

 

(b)  

Figure 4.25 Response of VOC sensor (resistance). (a) VOC-1 at Poultry room (b) VOC-2 
at Poultry room 
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(a)  

 

(b)  

Figure 4.26 Response of VOC sensor (resistance). (a) VOC-1 at Refin (b) VOC-2 at 
Refin  
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(a)  

 

(b)  

Figure 4.27 Response of VOC sensor (resistance). (a) VOC-1 at Refout (b) VOC-2 at 
Refout 
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(a)  

 

(b)  

Figure 4.28 Response of ammonia sensor (voltage). (a) Ammonia-1 at Poultry room (b) 
Ammonia -2 at Poultry room 
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(a)  

 

(b)  

Figure 4.29 Response of ammonia sensor (voltage). (a) Ammonia -1 at Refin (b) 
Ammonia -2 at Refin 
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(a)  

 

(b)  

Figure 4.30 Response of ammonia sensor (resistance). (a) Ammonia -1 at Refout (b) 
Ammonia -2 at Refout 
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(a)  

 

(b)  

Figure 4.31 Response of ammonia sensor (resistance). (a) Ammonia-1 at poultry room (b) 
Ammonia -2 at poultry room 
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(a)  

 
(b)  

Figure 4.32 Response of ammonia sensor (resistance). (a) Ammonia -1 at Refin (b) 
Ammonia -2 at Refin 
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(a)  

 

(b)  

Figure 4.33 Response of ammonia sensor (resistance). (a) Ammonia -1 at Refout (b) 
Ammonia -2 at Refout 

 

 

 

Time (s) 

Time (s) 

R
esistance (ohm

s) 
 

R
esistance (ohm

s) 
 



150 
   

    

59 

 
Figure 4.34 Carbon dioxide at farm office and the farm yard 

 

Figure 4.35 Average carbon dioxide reading at Refin and Refout 
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(a)  

 
(b)  

 
(c)  
Figure 4.36 Temperature and humidity results (a) in poultry room (b) in farm office(c)in 

farm yard 
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(a)  

 
(b)  

 
(c)  
Figure 4.37 Average results of temperature and humidity (a) in poultry room (b) in farm 

office (c)in farm yard 
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Figure 4.38 Normalization value of VOC-1under first test  

 

Figure 4.39 Normalization value of VOC-2under first test 
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Figure 4.40 Normalization value of VOC-1under second test 

 
Figure 4.41 Normalization value of VOC-2 under second test  
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Figure 4.42 Normalization value of VOC-1under third test 

 

  

 
Figure 4.43 Normalization value of VOC-2 under third test  
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(a)  

 
(b)  

 
(c)  
Figure 4.44 Comparison between VOC-1 and VOC-2 among tests (a) Test 1 (b) Test 2 (c) 
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(a)  

 
(b)  

 
(c)  
Figure 4.45 Comparison of Ammonia-1 and Ammonia-2 within tests (a) Test 1 (b) Test 2 

(c) Test 3  
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Table 4.16 Variation among responses of two sensors (ammonia and VOC) for poultry 
room   

 Test 1 Test 2 Test 3 

VOC 0.0032 0.0001 0.0004 

Ammonia 0.0111 0.0487 0.0182 

 

4.2 E-tongue     

There are QCM and arsenic detection using interdigitated electrode belong E-

tongue. The performance of frequency counter system was evaluated to make sure the 

system fulfills the specifications. The result and data analysis of arsenic detection using 

interdigitated electrode is deliberated lastly.       

 

4.2.1 QCM 

The frequency counter of QCM was tested by using the setup described in 

Chapter 3. The experiment was run three times for specific accuracies, 1% and 0.005 %. 

The datasheet specified the amount of converting time for 1% and 0.005% are 100 micro 

seconds and 800 micro seconds. Table 4.17 is the result of selecting accuracy of 1% with 

conversion time of 100 micro-seconds. The first column of the table is the input from the 

function generator and the range was from 1 MHz to 15 MHz. The second column of the 

table is the expected value that should be displayed on microcontroller. Due to the pre-

scaling, a flip flop in the circuit, the expected value was half of the input from first 

column. The same layout was applied to the test of 0.005% accuracy with 800 micro-

seconds (Table 4.18).  
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The largest difference between expected and measured was 1.153% at 11 MHz 

and the smallest difference is 0.002% at 8 MHz for 1% accuracy (Table 4.17). For 0.005% 

accuracy shown Table 4.18, the maximum difference between expected and measured 

was 1.212% at 13 MHz, and the minimum difference was 0.001% at 2 MHz, 4 MHz and 

8 MHz. Lastly, Table 4.19  illustrates the accuracy of 0.005% is more accurate than 1% 

because the mean of error for 0.005% was small than 1%. However, the trade-off of using 

higher accuracy was 700 micro-seconds longer converting time.  
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Table 4.17 Result of frequency counter measurement using 1% accuracy   

Accuracy test when accuracy is 1% 
    Observation 1  Observation 2 Observation 3     

Frequency  expected  Frequency counter  Frequency counter  Frequency counter  Frequency average  error  
15150000 7575000 7555693.069 7555693.069 7555693.069 7555693.069 0.255 
14080000 7040000 7054455.446 7054455.446 7054455.446 7054455.446 0.205 
13160000 6580000 6553217.822 6547029.703 6547029.703 6549092.409 0.470 
12050000 6025000 6045792.079 6045792.079 6045792.079 6045792.079 0.345 
11110000 5555000 5383660.337 5544554.455 5544554.455 5490923.082 1.153 
10000000 5000000 5043316.832 5037128.713 5037128.713 5039191.419 0.784 
9010000 4505000 4535891.089 4529702.970 4529702.970 4531765.677 0.594 
8000000 4000000 4000065.347 4000065.347 4000065.347 4000065.347 0.002 
7040000 3520000 3527227.723 3527227.723 3521039.604 3525165.016 0.147 
6020000 3010000 3025990.099 3019801.980 3019801.980 3021864.686 0.394 
5000000 2500000 2518564.356 2518564.356 2518564.356 2518564.356 0.743 
4020000 2010000 2011138.614 2017326.733 2011138.614 2013201.320 0.159 
3000000 1500000 1516089.109 1516089.109 1509900.990 1514026.403 0.935 
2000000 1000000 1008663.366 1004901.961 1008663.366 1007409.564 0.741 
1000000 500000 502450.980 502450.980 502450.980 502450.980 0.490 
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Table 4.18 Result of frequency counter measurement using 0.005% accuracy   

Accuracy test when accuracy is 0.005% 
    Observation 1  Observation 2 Observation 3     

Frequency    Frequency counter  Frequency counter  Frequency counter  Frequency average  error  
15150000 7575000 7500312.484 7500281.236 7500312.484 7500302.068 0.986 
14080000 7040000 7000081.242 7000112.489 7000112.489 7000102.073 0.567 
13160000 6580000 6500268.737 6500268.737 6500268.737 6500268.737 1.212 
12050000 6025000 6000087.491 6000087.491 6000087.491 6000087.491 0.413 
11110000 5555000 5500224.989 5500224.989 5500193.740 5500214.573 0.986 
10000000 5000000 5000062.494 5000093.741 5000093.741 5000083.325 0.002 
9000000 4500000 4500181.241 4500149.993 4500181.241 4500170.825 0.004 
8000000 4000000 4000037.496 4000068.743 4000037.496 4000047.912 0.001 
7040000 3520000 3500106.245 3500137.493 3500137.493 3500127.077 0.565 
6020000 3010000 3000043.746 3000043.746 3000043.746 3000043.746 0.331 
5000000 2500000 2500093.745 2500093.745 2500093.745 2500093.745 0.004 
4000000 2000000 2000018.748 2000018.748 2000018.748 2000018.748 0.001 
3000000 1500000 1500049.998 1500049.998 1500081.246 1500060.414 0.004 
2000000 1000000 999993.751 999993.751 999993.751 999993.751 0.001 
1000000 500000 500012.499 500012.499 500012.499 500012.499 0.002 
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Table 4.19 Error comparison between 1% accuracy and 0.005% accuracy 
 Mean error  

Accuracy 1% 0.494 

Accuracy 0.005% 0.339 

 

4.2.2 Arsenic detection using interdigitated electrode 

The interdigitated electrode was tested among DI water (no arsenic), 10 ppb 

arsenic water, 50 ppb water arsenic and 100 ppb arsenic water. The voltages (peak-to-

peak) were measured across the frequency range 10K Hz to 700K Hz. After plotting the 

voltages versus frequency, it was found out that there was more sensitive in lower 

frequency (10 KHz to 50 KHz). The result in lower frequency of each observation is 

shown in Figures 4.46 to 4.57 and the mean of treatments is shown in Figure 4.58 with 

respect to frequency.  

 For the analysis, a two sample t-test was implemented to determine whether or not 

to reject null hypothesis at 5% significance level. In this case, the null hypothesis was the 

population mean for sample i equals to the population mean for sample j. On the other 

hand, the alternative hypothesis was the population mean for sample i does not equal to 

the population mean for sample j. The result of the t-test is shown in Table 4.21. The 

number shown in Table 4.21 was the frequency at which there was significant difference 

in 5% confidence interval. Between water and different concentrations of arsenic water, 

the significant differences were observed in lower frequency (10K to 50K Hz). 

 The second comparison was the repeatability test. The plots of each treatment 

were shown in Figures 4.59, 4.60, 4.61, and 4.62. As shown in the Figures, the trend in 



163 
 

    

59 

lower frequencies (10k to 50k Hz) for each observation was identical in the same 

treatments. The means and standard deviations for each treatment are shown in Table 

4.20.  Table 4.21 shows the maximum and minimum standard deviation for each 

treatment. The largest standard deviation among the treatments was 0.170 when 

measuring 10 KHz in 10ppb arsenic water.  

Analysis  

 For further analysis, it was based on running two sample t-test for varies features. 

The chosen features were (1) using raw data to do t-test, (2) using Equation 4.4 with raw 

data and run t-test, (3) using Equation 4.5 with raw data and run t-test, (4) using Equation 

4.6 to calculate standardized value and run t-test, (5) using Equation 4.4 with 

standardized value and run t-test, and (6) using Equation 4.5 with standardized value and 

run t-test. The equations to find the features are shown below. 

𝑅𝑎𝑡𝑖𝑜 =    ௣௣௠
஽ூ  ௪௔௧௘௥    for each frequency                                                             (Equation 4.4) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑎𝑠  𝑤𝑎𝑡𝑒𝑟  𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =    ௣௣௠ି஽ூ  ௪௔௧௘௥
஽ூ  ௪௔௧௘௥  for each frequency        (Equation 4.5) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =   ஽௔௧௔ିெ௜௡
ெ௔௫ିெ௜௡                                                                             (Equation 4.6) 

  Where ppm indicates the voltage reading of 10 ppb, 50 ppb and 100 ppb and DI 

water means the voltage reading in DI water with respect to frequency, Data is the 

voltage across the resistor, Min is the minimum voltage among all observations and Max 

is the maximum voltage among all observations.  

  The program scrip was written in MATLAB and the flow chart of the program is 

shown in Figure 4.63. The first part of the program was transfer the data from excel to 

MATLAB. The data was converted to the features with respect to frequency for 
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individual observation. Last part was calling the t-test against different combinations of 

the treatments.         

  The result of the analysis is shown in Tables 4.20, 4.23, 4.24, 4.25, 4.26 and 4.27.  

In the tables, the frequency number shown in cells represents there is significant 

difference between indicated treatments at the specific frequency. Comparing Tables 4.20, 

4.23, and 4.24, the most appeared frequency was 50K Hz. In water versus 10ppb, water 

versus 50ppb, water versus 100pb and 50ppb versus 100ppb, 50K Hz had significant 

difference by using two sample t-test.  Similarly, 50K Hz was the most frequent 

frequency using standardization comparing in the Tables 4.25, 4.26 and 4.27.   

 Comparing the results from all the features mentioned previously, all the features 

showed significant different for DI water versus 10, 50 and 100 ppb arsenic water for at 

least one frequency. In some case, there is more than one frequency where significant 

difference occurred. However, when the inter group(i.e. 10 ppb versus 50 ppb, 10ppb 

versus 100 ppb and 50 ppb versus 100ppb) was compared, most of features cannot be 

differentiated. Only feature 3 and feature 6 showed the significant difference when 

comparing between 10ppb arsenic water versus 100ppb arsenic water.  
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Raw data  

 

Figure 4.46 Raw data of observation 1  

 

Figure 4.47 Raw data of observation 2 
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Figure 4.48 Raw data of observation 3  

 

Figure 4.49 Raw data of observation 4 
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Figure 4.50 Raw data of observation 5 

 

 

Figure 4.51 Raw data of observation 6 
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Figure 4.52 Raw data of observation 7 

 

 

Figure 4.53 Raw data of observation 8 
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Figure 4.54 Raw data of observation 9 

 

 

Figure 4.55 Raw data of observation 10 
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Figure 4.56 Raw data of observation 11 

 

Figure 4.57 Raw data of observation 12  
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Figure 4.58 Average Vout of twelve observations with respect to frequency 
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Figure 4.59 DI water measurement of 12 observations 

 

Figure 4.60 10 ppb arsenic water measurement of 12 observations 

4.000

4.500

5.000

5.500

6.000

6.500

7.000

7.500

0 10 20 30 40 50 60 70 80

Vo
ut

 (V
) 

Frequency (Hz) 

x 10000 

DI water -1

DI water-2

DI water-3

DI water-4

DI water-5

DI water-6

DI water-7

DI water-8

DI water-9

DI water-10

DI water-11

DI water-12

4.000

4.500

5.000

5.500

6.000

6.500

7.000

7.500

0 10 20 30 40 50 60 70 80

Vo
ut

 (v
) 

Frequency (Hz) 

x 10000 

10ppb-1

10ppb-2

10ppb -3

10ppb -4

10ppb -5

10ppb-6

10ppb-7

10ppb-8

10ppb-9

10ppb-10

10ppb-11

10ppb-12



173 
 

    

59 

 

Figure 4.61 50 ppb arsenic water measurement of 12 observations 

 

 

Figure 4.62 100 ppb arsenic water measurement of 12 observations  
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Figure 4.63 Flow chart of the analysis program 
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Table 4.20 Analysis result using original value  

  water 10ppb 50ppb 100ppb 

water  10k,20k,30k,40k,50k 10k,20k,30,40k,50k,
400k,450k,550k 

10k,20k,30k,40k,50k,10
0k,150k,300k 

10 
ppb 

10k,20k,30,40k,50k  No difference No difference 

50 
ppb 

10k,20k,30,40k,50k
,400k,450k,550k No difference No difference No difference 

100 
ppb 

10k,20k,30k,40k,50
k,100k,150k,300k No difference No difference  

 

Table 4.21 Mean and standard deviation for each treatment (concentration) 

  DI water 10ppb 50ppb 100ppb 

Frequency mean SD mean SD mean SD mean SD 
10000 4.940 0.141 4.690 0.170 4.767 0.167 4.780 0.107 

20000 5.073 0.125 4.833 0.161 4.887 0.155 4.917 0.114 

30000 5.230 0.104 5.017 0.143 5.058 0.127 5.070 0.107 

40000 5.400 0.093 5.213 0.139 5.230 0.122 5.263 0.084 

50000 5.613 0.138 5.373 0.165 5.413 0.167 5.423 0.094 

100000 6.263 0.096 6.180 0.149 6.177 0.132 6.150 0.108 

150000 6.530 0.092 6.467 0.127 6.463 0.110 6.433 0.105 

200000 6.697 0.107 6.643 0.135 6.640 0.116 6.620 0.130 

250000 6.753 0.083 6.700 0.125 6.690 0.098 6.693 0.094 

300000 6.793 0.093 6.750 0.122 6.713 0.108 6.707 0.106 

350000 6.847 0.114 6.827 0.137 6.790 0.136 6.780 0.147 

400000 6.870 0.101 6.827 0.126 6.773 0.112 6.783 0.128 

450000 6.863 0.089 6.813 0.121 6.773 0.101 6.787 0.126 

500000 6.843 0.099 6.800 0.132 6.773 0.106 6.777 0.115 

550000 6.850 0.087 6.800 0.134 6.770 0.101 6.770 0.120 

600000 6.840 0.101 6.780 0.135 6.763 0.110 6.780 0.137 

650000 6.823 0.104 6.787 0.137 6.757 0.112 6.763 0.125 

700000 6.827 0.095 6.780 0.127 6.753 0.109 6.767 0.117 
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Table 4.22 Maximum and minimum standard deviation for each treatment  

  DI water 10ppb 50ppb 100ppb 
max  0.141 0.170 0.167 0.147 
min 0.083 0.122 0.098 0.084 

 

 

 

 

 

Table 4.23 Analysis result using ratio of concentration to DI water   

Ratio (ppm/water) 
  water 10ppb 50ppb 100ppb 

water   10k,20k,50k 50k No difference 

10ppb 10k,20k,50k   No difference 20k 

50ppb 50k No difference   No difference 

100ppb No difference 20k No difference   
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Table 4.24 Analysis result using difference as water reference 

Difference as water reference (ppm-water)/water 
  water 10ppb 50ppb 100ppb 

water   10k,20k,30k,50k 50k 40k 

10ppb 10k,20k,30k,50k   No difference 20k 

50ppb 50k No difference   No difference 

100ppb 40k 20k No difference   
 

 

 

 

Table 4.25 Analysis result using standardization value  

Standardization 
  water 10ppb 50ppb 100ppb 

water  10k,20k,30k,40k,50k 10k,20k,30,40k,50k,4
00k,450k,550k 

10k,20k,30k,40k,50k,10
0k,150k,300k 

10ppb 
10k,20k,30,40k,50k  No difference No difference 

50ppb 
10k,20k,30,40k,50k,

400k,450k,550k No difference No difference No difference 

100ppb 

10k,20k,30k,40k,50
k,100k,150k,300k No difference No difference  
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Table 4.26 Analysis result in ratio using standardization value  

Standardization-Ratio (ppm/water) 
  water 10ppb 50ppb 100ppb 

water   20k,50k No difference No difference 

10ppb 50k   No difference  10k,20k  

50ppb No difference No difference    No difference 

100ppb No difference 10k,20k No difference   
 

 

Table 4.27 Analysis result of difference using standardization value 

Standardization-Difference as water reference (ppm-water)/water 
  water 10ppb 50ppb 100ppb 
water   20k,30k,50k 50k,600k 40k 
10ppb 20k,30k,50k   No difference 10k,20k,300k,350k  
50ppb 50k,600k No difference   No difference 
100ppb 40k No difference  50k   
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK  

5.1 Conclusions 

This study demonstrated the process of design, adaption and development of 

integrated sensor system (E-nose) as well as the possibility to detect arsenic in water 

using interdigitated electrode sensor. 

 Integrated E-nose system can simultaneously sense multiple gases (i.e. NH3, 

VOC, 𝐶𝑂2) along with temperature and humidity. The overall design was an extension 

E-nose  work  of  Dr.  Panigrahi’s  group  at  North  Dakota  State  University.  However,  

several new features have been implemented in this system. The new features include: 

I. The sensing chamber has removable upper cover plate having different 

sensor/detectors.  

II. A centralized power supply system for all the sensors and associated 

peripherals.  

III. The main computational unit used a SOC (i.e. Beaglebone black) instead 

of a microcontroller.  

IV. Dual sensors were used for error detection and future intelligent data 

analysis. 

V. External ADC (Besides the main SOC) for increased flexibility with 

sensor.
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VI. Enhanced on-board store capability (4GB in Beaglebone Black) and this 

can farther be extended via user defined SD card.  

VII.  Flexible and portable platform to be interfaced with mobile phone or 

portable embedded system via USB, BLE or WIFI.  

The E-nose system was found sensitive for 25 ppm of ammonia gas in lab and field. The 

E-nose system, based on the conducted field study, responded to the change of ammonia 

concentration and air quality in a poultry farm and farm safety.  

 For E-tongue, the interdigitated dielectric sensing mode showed its capability to 

discriminate DI water (no arsenic) from DI water with 10, 50 or 100 ppb arsenic at 95% 

confidence interval. All the 6 methods provide a statistical significance for discrimination 

of water versus each of the three arsenic contamination levels. However, All features  

could not provide statistical significant difference for inter group (10ppb versus 50ppb, 

50ppb versus 100ppb, or 100ppb versus 10ppb) discrimination. For the frequency counter 

in QCM system, it was able to measure the frequency from 1 MHz to 15 MHZ within 

accuracy of 0.339%. 

5.2 Future work  

Future work for E-nose is to implement pattern recognition technique and develop 

Android application. By applying pattern recognition, E-nose would be more accurate on 

telling the user what kind of gas is in the air and the system can be fully automatic. By 

developing phone application, a phone can control and monitor the E-nose system. 

Additionally, by implementing Bluetooth ability, the system can communicate any the 

device with Bluetooth enabled such as smartphone.  
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Future work for E-tongue is to improve on the AC source, the function generator. 

The one in the experiment was an old fashion. It changes the frequency by turning the 

knob. It was very hard for the researcher to make the same frequency for every 

observation. In order to solve the question, a digital function generator can work and also 

it can reduce variation of the experiment too.     
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Appendix A Datasheets 

All datasheets can be found from the following websites: 

Amphenol Advanced Sensors, Figaro, KNF, Measurement Specialties INC., Microchip, 
Parker, and Texas Instruments. 

 

Appendix B PCB- E-nose 

 

Figure B.1 PCB schematic of pump and solenoid valve drivers 
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Figure B.2 PCB schematic of Centralized power system 

 

 

 

Figure B.3 PCB schematic of VOC sensor hardware acquisition  
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Figure B.4 PCB schematic of Ammonia sensor hardware acquisition  

 

 

 

 

Figure B.5 PCB schematic of CO2 sensor hardware acquisition and external ADC 
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Appendix C BOM 

Commercial Sensor System 

Part  Quantity  
Unit 
Price 

 Extended 
price  

Beaglebone Black  1 $45.00 $45.00 
PCBs 1 $52.35 $52.35 
Electromechanical System       

Solenoid Valve  1 $131.50 $131.50 
drivers 1 $5.32 $5.32 
Teflon/tubing  1 $200.60 $200.60 

Sensor system        
Ammonia Sensors 2 $61.90 $123.80 
CO2 Sensor 1 $95.00 $95.00 
Temp&Hum Sensor 

(HTU21D-F) 1 $14.95 $14.95 
Power supply system       

TPS562209-5 1 $20.45 $20.45 
LP2950-3.3 1 $14.70 $14.70 
AC to 12VDC adapter 1 $26.18 $26.18 
Components 1 $40.32 $40.32 

Peripherals        
External ADC (TLV2543IN) 1 Sample  Free 
OLED MonoChrome    

128x32 display 1 $17.50 $17.50 
Digital Potentiometer 

(MCP42050) 2 $1.65 $3.30 
Transmission Bus       

point-point board  1 $2.49 $2.49 
OR/NOT gate  1 $1.00 $1.00 

handling & shipping      $76.88 
Total     $871.34 
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Appendix D PCB Board Layouts 

 

Figure D.1 PCB of centralized power supply using TPS562209  

 

Figure D.2 PCB of  centralized power supply using LM2678 
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Figure D.3 PCB of sensor acquisition board    

 

 

Figure D.4 PCB of QCM   



194 
 

    

59 

Appendix E Main program for E-nose 

 

 

 

Figure E. The relationship flow chart for main program in Beaglebone black 
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