37,404 research outputs found

    A situation-driven framework for relearning of activities of daily living in smart home environments

    Get PDF
    Activities of Daily Living (ADLs) are sine qua non for self-care and improved quality of life. Self-efficacy is major challenge for seniors with early-stage dementia (ED) when performing daily living activities. ED causes deterioration of cognitive functions and thus impacts aging adults’ functioning initiative and performance of instrumental activities of daily living (IADLs). Generally, IADLs requires certain skills in both planning and execution and may involve sequence of steps for aging adults to accomplish their goals. These intricate procedures in IADLs potentially predispose older adults to safety-critical situations with life-threatening consequences. A safety-critical situation is a state or event that potentially constitutes a risk with life-threatening injuries or accidents. To address this problem, a situation-driven framework for relearning of daily living activities in smart home environment is proposed. The framework is composed of three (3) major units namely: a) goal inference unit – leverages a deep learning model to infer human goal in a smart home, b) situation-context generator – responsible for risk mitigation in IADLs, and c) a recommendation unit – to support decision making of aging adults in safety-critical situations. The proposed framework was validated against IADLs dataset collected from a smart home research prototype and the results obtained are promising

    Discovering human activities from binary data in smart homes

    Get PDF
    With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with difficulties to live independently at home. A primary difficulty that researchers confront is acquiring an adequate amount of labeled data for model training and validation purposes. Therefore, activity discovery handles the problem that activity labels are not available using approaches based on sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering activities from a network of motion detectors in a smart home setting. First, we present an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step, we present an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore, we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track the occurrences of various regular routines to monitor the functional health in an individual’s patterns and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two apartments during seven-month and three-month periods

    Can appliances understand the behavior of elderly via machine learning? A feasibility study

    Get PDF

    HealthXAI: Collaborative and explainable AI for supporting early diagnosis of cognitive decline

    Get PDF
    Our aging society claims for innovative tools to early detect symptoms of cognitive decline. Several research efforts are being made to exploit sensorized smart-homes and artificial intelligence (AI) methods to detect a decline of the cognitive functions of the elderly in order to promptly alert practitioners. Even though those tools may provide accurate predictions, they currently provide limited support to clinicians in making a diagnosis. Indeed, most AI systems do not provide any explanation of the reason why a given prediction was computed. Other systems are based on a set of rules that are easy to interpret by a human. However, those rule-based systems can cope with a limited number of abnormal situations, and are not flexible enough to adapt to different users and contextual situations. In this paper, we tackle this challenging problem by proposing a flexible AI system to recognize early symptoms of cognitive decline in smart-homes, which is able to explain the reason of predictions at a fine-grained level. Our method relies on well known clinical indicators that consider subtle and overt behavioral anomalies, as well as spatial disorientation and wandering behaviors. In order to adapt to different individuals and situations, anomalies are recognized using a collaborative approach. We experimented our approach with a large set of real world subjects, including people with MCI and people with dementia. We also implemented a dashboard to allow clinicians to inspect anomalies together with the explanations of predictions. Results show that our system's predictions are significantly correlated to the person's actual diagnosis. Moreover, a preliminary user study with clinicians suggests that the explanation capabilities of our system are useful to improve the task performance and to increase trust. To the best of our knowledge, this is the first work that explores data-driven explainable AI for supporting the diagnosis of cognitive decline

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring

    Get PDF
    DOI 10.1109/TCSVT.2008.2005612In this work, we study how continuous video monitoring and intelligent video processing can be used in eldercare to assist the independent living of elders and to improve the efficiency of eldercare practice. More specifically, we develop an automated activity analysis and summarization for eldercare video monitoring. At the object level, we construct an advanced silhouette extraction, human detection and tracking algorithm for indoor environments. At the feature level, we develop an adaptive learning method to estimate the physical location and moving speed of a person from a single camera view without calibration. At the action level, we explore hierarchical decision tree and dimension reduction methods for human action recognition. We extract important ADL (activities of daily living) statistics for automated functional assessment. To test and evaluate the proposed algorithms and methods, we deploy the camera system in a real living environment for about a month and have collected more than 200 hours (in excess of 600 G bytes) of activity monitoring videos. Our extensive tests over these massive video datasets demonstrate that the proposed automated activity analysis system is very efficient.This work was supported in part by National Institute of Health under Grant 5R21AG026412

    An Overview of Human Activity Recognition Using Wearable Sensors: Healthcare and Artificial Intelligence

    Full text link
    With the rapid development of the internet of things (IoT) and artificial intelligence (AI) technologies, human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment. Even though a number of surveys and review papers have been published, there is a lack of HAR overview papers focusing on healthcare applications that use wearable sensors. Therefore, we fill in the gap by presenting this overview paper. In particular, we present our projects to illustrate the system design of HAR applications for healthcare. Our projects include early mobility identification of human activities for intensive care unit (ICU) patients and gait analysis of Duchenne muscular dystrophy (DMD) patients. We cover essential components of designing HAR systems including sensor factors (e.g., type, number, and placement location), AI model selection (e.g., classical machine learning models versus deep learning models), and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR systems and propose several research opportunities for both the medical and the computer science community

    An Unsupervised Framework for Online Spatiotemporal Detection of Activities of Daily Living by Hierarchical Activity Models

    Get PDF
    International audienceAutomatic detection and analysis of human activities captured by various sensors (e.g. 1 sequence of images captured by RGB camera) play an essential role in various research fields in order 2 to understand the semantic content of a captured scene. The main focus of the earlier studies has 3 been widely on supervised classification problem, where a label is assigned for a given short clip. 4 Nevertheless, in real-world scenarios, such as in Activities of Daily Living (ADL), the challenge is 5 to automatically browse long-term (days and weeks) stream of videos to identify segments with 6 semantics corresponding to the model activities and their temporal boundaries. This paper proposes 7 an unsupervised solution to address this problem by generating hierarchical models that combine 8 global trajectory information with local dynamics of the human body. Global information helps in 9 modeling the spatiotemporal evolution of long-term activities and hence, their spatial and temporal 10 localization. Moreover, the local dynamic information incorporates complex local motion patterns of 11 daily activities into the models. Our proposed method is evaluated using realistic datasets captured 12 from observation rooms in hospitals and nursing homes. The experimental data on a variety of 13 monitoring scenarios in hospital settings reveals how this framework can be exploited to provide 14 timely diagnose and medical interventions for cognitive disorders such as Alzheimer's disease. The 15 obtained results show that our framework is a promising attempt capable of generating activity 16 models without any supervision. 1
    • …
    corecore