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Abstract—Over the last half decade, fast development of the
Internet of Things and machine learning (ML) made it feasible to
leverage the power of artificial intelligence to facilitate a variety
of intelligent systems in smart home. Nevertheless, the studies
on designing specific computing technologies for helping elderly
to enjoy a comfortable, convenient, and independent daily life
are extremely limited. On the one hand, there are increasingly
growing demands from the ageing society to implement the cut-
ting edge technology enabling a better life quality for the elderly.
On the other hand, there is still a lack on fundamental inves-
tigations, applicable infrastructures, and advanced data-driven
frameworks. To this end, we propose a novel machine frame-
work for analyzing the daily life behavior of elderly—all in this
study are living alone—by the data collected from their home
appliances, i.e., television and refrigerator. First, the interevent
intervals for the use of the appliances collected in one month
from 76 elderly are the raw data to describe the behaviors.
Then, three ML paradigms are investigated and compared, which
include “classic” ML methods and the state-of-the-art deep learn-
ing approaches. Finally, we indicate the current findings and
limitations in this feasibility study. Experimental results demon-
strate that, our proposed method can reach performance peak at
an unweighted average recall of 58.7 % (chance level: 50.0 %) in
a subject-independent test for classifying symptom/nonsymptom
days.

Index Terms—Ageing society, context awareness, Internet of
Things (IoT), machine learning (ML), smart appliances.
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I. INTRODUCTION

IN THE beginning of this century, Schmidt and Laerhoven
characterized smart appliances as the devices that are

attentive to their environment [1]. In traditional fields, e.g.,
power consumption, smart appliances can contribute to the
analysis of the consumers’ demand responses via the help of
a series of mathematical models [2]–[6]. On the one hand,
within the fast development of the Internet of Things (IoT)
and artificial intelligence (AI) over the last five years [7],
tremendous work has been successfully applied in the fields,
including industrial environment surveillance [8], home man-
agement [9], smart buildings [10], [11], smart city [12], smart
campus [13], and smart agriculture [14]. These encouraging
achievements make us confident that an era of AIoT (AI plus
IoT) is coming.

On the other hand, the efforts leveraging the power of
AI and IoT toward a ubiquitous and pervasive computing
based on smart appliances for the personalized healthcare are
still under way. In particular, the demand from the group
of elderly has been increasingly raised since the ageing of
the population is evident in all developed and many devel-
oping countries [15], [16]. Taking Japan (the world’s oldest
country [16]) as an example, approximately 27.6 % of the
citizens are already 65 years old or even elder [17]. As a
recent review literature indicated, AI has been found show-
ing promising potential for ageing and longevity research
in terms of biomarker discovery, personalized medicine, tar-
get identification, drug discovery, regenerative medicine, gene
therapy, immuno oncology and immuno senescence, and many
others [18].

Nevertheless, the choice of applicable smart appliances
designed for bettering the life of the elderly is quite limited.
To this end, we propose a novel machine learning (ML) frame-
work for analyzing the behavior of elderly in daily life via their
smart appliances at home. To the best of our knowledge, it is
the first time to investigate the capacity of ML to analyze the
human behavior (specifically for the group of elderly) by using
the data recorded via smart appliances (television and refriger-
ator). The main contributions of this work can be summarized
as: First, we present a novel ML framework for analyzing the
daily behavior of elderly based on the data recorded in smart
appliances, which can be easily implemented at home. Second,
we systematically investigate and compare the ML paradigms,
i.e., the classic ML models (with human handcrafted features
and statistical models) and the state-of-the-art deep learning
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(DL) models (with limited human involvement). Third, we
aim to reveal the underlying mechanism of our proposed mod-
els and point out future directions of this domain, which we
believe to benefit future studies.

The remainder of this article is organized as follows. First,
we introduce the related work and background in Section II.
Second, we describe the database and the methods used in
Section III. Then, the experimental results and discussion are
presented in Sections IV and V, respectively. Finally, we give
the conclusion in Section VI.

II. RELATED WORK AND BACKGROUND

As indicated by Sezer et al., understanding the “context,”
i.e., making sense of the environment, situation, or status from
sensor data, and then acting in an autonomous way, is critical
for intelligent IoT [19]. In particular, understanding, learning,
and reasoning from big data is paramount for the future suc-
cess of IoT [19]. It has been shown that, the advancement
of IoT technologies can benefit smart health monitoring in
many aspects [20]. Among the previous studies, computational
human behavior analysis (CHBA) plays an important role in
developing the AIoT healthcare applications for its context-
aware capacity to reflect the human’s status in daily life. The
relevant studies can be referred to as ambient assisted living
(AAL) technologies and/or context-aware applications, which
are well documented in [21] and [22]. Several review arti-
cles systematically and comprehensively summarized the main
research topics and directions involved for AIoT-based elderly
applications. Debes et al. [21] investigated the state-of-the-art
sensor technologies and computational intelligence approaches
for monitoring the field of activities of daily living (ADLs),
which is a crucial part of AAL. They indicated that, the
hybrid generative/discriminative methods, e.g., Fisher kernel
learning (FKL), relying on kernel metric distances, are supe-
rior over traditional generative methods, e.g., hidden Markov
models (HMMs). Moreover, they pointed out that the main
challenge from a signal processing (SP) and ML side remains
the generalizability over households. Mshali et al. [22] pro-
vided an overview of the most important functions and services
offered by health monitoring systems (HMSs) for monitor-
ing and detecting of human behavior. The authors painted
a consolidated picture of not only the hardware architec-
tures but also the computational algorithms and approaches in
terms of context-aware applications in healthcare. As stated in
their article, context information, refers to extracting high-level
information, such as behavior patterns, or a subject’s activity
from the raw data collected from the sensors. Nathan et al. [23]
further illustrated the data modalities and system paradigms
for smart home applications for the ageing population. More
recently, Deep et al. [24] introduced the concept of a dense
sensing network (DSN), and analyzed its pros and cons for
elderly anomaly behavior detection. They suggest that, when
developing a reliable and robust elderly care system, three
factors should be taken into account.

1) The system should be robust to environment changes.
2) The system should maintain the user’s privacy.
3) The system should be convenient to use.

Additionally, the authors claim that a multisensor approach
can achieve an impressive result by describing an activity in
a comprehensive way from the sensors deployed in an indoor
environment.

Ravì et al. proposed a method combining the features learnt
from deep neural networks and human handcrafted features
to analyze the human activities recorded via inertial sensors
(e.g., accelerometers and gyroscopes) in [25]. They found that,
a combination of deep learnt features and human handcrafted
features can be better than the performance achieved by only
using one of the aforementioned two. Venkatesh et al. [26]
introduced a context-aware IoT system in smart city environ-
ment, which focused on analyzing the people-centric context
in terms of user presence, user activity, air quality, and loca-
tion data provided from sensors. Bianchi et al. [27] made a
comparative study on different DL architectures for the human
activity recognition task. They found that, a convolutional neu-
ral network (CNN) with four convolutional layers can reach
the highest performance in classifying the human activities
from WiFi wearable sensor data (3-D output from accelerom-
eter, gyroscope, and magnetometer) [27]. Additionally, more
kinds of smart wearable devices, like multichannel surface
electromyography (sEMG) signals [28], skeleton joint sen-
sors [29], or electroencephalography (EEG) [30], were demon-
strated to be efficient to contribute to the AAL applications
by leveraging the power of IoT and ML. More specifically,
some AIoT technologies have been successfully applied for
the ageing society.

In general, these methods can be divided into two cate-
gories: 1) sensor-based or 2) image-based models. For sensor-
based models, we can see wearable sensors or nonwearable
sensors applied to this field. When looking at the wear-
able sensor applications, the characteristics of temporal time
series (TTSs) data have been considered in [31], where a
hybrid architecture of a recurrent neural network (RNN) and
a DNN was used for classifying the inputs, which have been
reduced in dimension from the CNN. Moreover, Xu et al. [32]
found that by introducing the activity similarity, the model’s
performance can be improved in elderly home activity recog-
nition. Furthermore, Awais et al. [33] made a comprehensive
study comparing the sensor locations of the human body for
elderly physical activity classification (PAC). They find that
a two-sensor solution (lower back plus thigh) can achieve the
best classification performance. By surveying the nonwearable
sensor studies, we can see that, Gochoo et al. [34] proposed a
deep CNN (DCNN) for recognizing elderly individuals’ travel
patterns (direct, pacing, lapping, or random) from device-
free nonprivacy invasive binary (passive infrared) sensor data.
Furthermore, their DCNN model was demonstrated to be
efficient in recognizing the activity images generated from
the binary sensory data collected from the elderly subjects’
home [35]. A combination of wearable and nonwearable
sensors was also studied. Tsirmpas et al. [36] proposed a
method for profile generation in an IoT environment, which
can benefit AAL (e.g., for handicapped or elderly individ-
uals living longer in their preferred environment). In their
method, a self-organizing map (SOM) [37] and the fuzzy C-
means (FCMs) [38] algorithm were used to model the users’
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Fig. 1. Overview scheme of the proposed system. The IEI data inherited with the elderly spontaneous activity regulations are recorded via the home appliances,
e.g., TV or refrigerator. By leveraging the power of ML or DL models, the caregiver can understand and make predictions on symptom or nonsymptom
behaviors of the elderly individuals. Then, the elderly user can be supplied with healthcare services.

activities and their correlation with the available sensor. Their
results were encouraging: high-level activities containing con-
textual information can be assembled by low-level activities
recorded by raw sensor data (e.g., accelerometer), whereas,
the underlying mechanism between the models and the human
behavior was not fully discovered [36].

For image-based models, Hbali et al. [39] proposed a
3-D depth sensor (e.g., the Microsoft Kinect)-based low-cost
system for elderly activity recognition. In their study, an
extremely randomized trees (ERT) algorithm [40] was used
for classifying the 3-D skeleton-based features. Furthermore,
Chen et al. [41] introduced an activity encoding method that
can convert skeleton sequence data to spatial-temporal images,
which can be used for CNN-based feature extraction for
elderly activity recognition. They successfully demonstrated
their method in noisy data environment. Daubechies claim that,
the Hilbert–Huang transformation (HHT) [42] can be supe-
rior to wavelet transformation (WT) [43] in providing sharp
frequency resolution from Kinect sensor data [44].

Even though these pioneering work contributions showed
promising results and potential, there are still two main lim-
itations: First, these previous studies were not specifically
designed for the elderly. In real practice, the inconvenience of
elderly to make regular sports or activities as younger people
should be taken into account. Therefore, some kinds of pas-
sive sensors (e.g., smart appliances) could be an alternative
in this case. Second, more attention had been given to mon-
itor the physical status of the subjects rather than the mental
or psychological condition of the individual, which is also an
important issue among elderly that cannot be ignored. A recent
report indicated that, unstable marital status, unemployment,

depressive symptoms, and mental disorder are independent
risk factors for suicide in rural elderly [45]. To this end, we aim
to propose a ML-based framework to detect the symptomatic
days (associated with both their physical and psychological
status) via their usage frequency recorded in smart appliances
(i.e., refrigerator and television). A previous study of our group
showed the statistical association between appliance usage
frequency data and subjective symptoms of the elderly in [46].
We make a further investigation of that study by introducing
the state-of-the-art techniques in SP and ML to the field of
elderly in-home monitoring applications.

III. DATABASE AND METHODS

In this section, we will first introduce the database for this
study. Then, we describe the definition of the task and provide
information of the data partitioning. Afterward, we give details
about the proposed method. Fig. 1 describes the diagram of
the proposed system in this study.

A. Interevent Interval Database

In this study, we apply the interevent interval (IEI) database
recording the usage of two home appliances, i.e., television
(TV) and refrigerator (REF) by elderly users—all of them are
living alone in this study—in their daily life [46]. The envi-
ronment for data collection is the home where the subjects
stay. For the TV, the data acquisition device was equipped on
the TV that can receive an infrared ray from a remote-control
device, which recorded the time (in seconds) when the subject
pushed any button. For the REF, a magnetic switch recorded
the time when the door was opened or closed by the subject.
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Therefore, these IEIs can describe the behavior patterns of the
usage of the appliances by the elderly in their daily life. For
details of the data collection process, it can be referred to [46].
In the following parts of this article, we name the IEI data for
the TV and the REF as IEI-TV and IEI-REF, respectively.

1) Data Preprocessing: The original IEI data were recorded
over 31 consecutive days per participating subject [46]. Due to
the setup and removing of the devices, the IEI data recorded
in the first and the last day were excluded in our study as the
same in [46]. Furthermore, we excluded the IEI data which
has a limited number (less than 32, see [46]) of the IEIs to
guarantee the ML models can capture the changes over a suf-
ficient number of IEIs. Additionally, to eliminate the effects
by night sleep, the first and the last of the per-day IEI were
excluded. Finally, considering usage in future studies and an
in-depth analysis of the subject behavior, we selected those
subjects who have both qualified IEI-TV and IEI-REF data,
which results in a number of 76 subjects (female: 52, male: 12,
unknown: 12) from the original 100 subjects. The age range
of these selected 76 subjects is from 70 to 98 within a mean
value of 75.4 (±4.9).1

2) Ground Truth Annotation: All the subjects had been
asked to provide a self report, including a series of questions
about their mood, appetite, and sleep quality when getting up
in the morning [46]. In this study, based on initial experiments,
we selected three subjective feelings (appetite, pain, and sleep
quality) as basic measure to match the ground truth of the IEI
data. We can see that, the status we take into account, con-
tains not only the physical health (e.g., appetite) but also the
mental health (e.g., sleep quality). In this study, our task is to
match the behavior of elderly in daily life to their Symptom or
NonSymptom date during a long-term monitoring. Therefore,
we combine the self report and their answers to annotate the
IEI data, which can be found in Table I. Our target is to detect
out of the Symptom instances as many as possible; we define
this kind of instances as: “Bad” for appetite, or “Yes” for pain,
or Bad for sleep quality. Considering future applications in the
real-world, we hope that such an elderly care system can be
sensitive enough for emergency events. Note that the defini-
tions of the Nonsymptom instances are very rigid and coarse:
Only “Good” or “Normal” for appetite, and “No” for pain, and
Good or Normal for sleep quality. Fig. 2 shows the examples
of the IEI data annotated as “Symptom” or “Nonsymptom.”

3) Data Partition: In order to avoid over-optimistic results,
we take subject-independency into account, i.e., the IEI data
for training and testing the ML models are rigidly stemming
from different subjects. All the 76 subjects’ IEI data are split
into three sets, i.e., train (46 subjects, 60 % of overall), devel-
opment (15 subjects, 20 % of overall), and test (15, 20 % of
overall). The hyperparameters of the ML models will be tuned
and optimized on the train and development sets. Then, the test
set (unseen) will be used to validate the final performance by
the ML models trained on the train plus development sets with
the optimized hyperparameters. Table II shows the instance
numbers of each data set in our study.

1Among these statistics, 12 subjects who did not share all information were
not included.

TABLE I
QUESTIONNAIRE-BASED SELF REPORT AND THE GROUND-TRUTH

ANNOTATION. (a) QUESTIONNAIRE. (b) ANNOTATION

(a)

(b)

B. Machine Learning Paradigms

In this study, we mainly focus on investigating and compar-
ing two ML paradigms, i.e., training an ML model with human
handcrafted features, and training a DL model directly using
the raw sensor data without any human expert domain knowl-
edge. For the former paradigm, we use two methods, statistical
functionals (func.) and bag-of-behavioral-words (BoBW). For
the latter one, we use an end-to-end (e2e) deep architecture.

1) Statistical Functionals: The analysis of the change of
the IEI data over a given time period is essential for further
ML model building. In addition, for the static classifiers, e.g., a
support vector machine (SVM) [47], we should extract supera-
segmental features [48] that are independent of the length of
the analysed data. Motivated by our previous work [49], we
applied nine statistical functionals successfully used in human
behavior analysis. These functionals (see Fig. 3) include max-
imum, minimum, mean, range, standard deviation, skewness,
kurtosis, slope, and bias of linear regression approximation,
which are extracted from the IEI data recorded per day. We
found the selected functionals can be efficient and robust for
describing the fluctuations of the time-series signals over a
given time period. For instance, the extreme values (e.g., max-
imum, minimum) can represent the elderly behavior changes
in a time duration. The skewness and kurtosis can be good
indicators to reflect the signal distribution, which may carry
important information about the behavior regulation. The lin-
ear regression estimators (the slope and bias) can describe the
trend of the time-series signals, which may reflect the behavior
changes in a specific duration.

Let y = x(i), i = 1, 2, . . . , N denote a sequence of the
IEI data in a given time period. Then, the maximum (xmax),
minimum (xmin), mean (μx), range (λx), standard deviation
(σx), skewness (ŝ), and kurtosis (k̂) values are defined as

xmax = max{x(1), x(2), . . . , x(N)} (1a)

xmin = min{x(1), x(2), . . . , x(N)} (1b)

λx = xmax − xmin (1c)

μx = 1

N

N∑

i=1

x(i) (1d)

σx =
√√√√ 1

N − 1

N∑

i=1

|x(i) − μx|2 (1e)
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Fig. 2. Examples of IEI data samples (IEI data unit: second). The IEI samples annotated as “Symptom” show more frequent changes in one day than the
“Nonsymptom” samples. (a) IEI-TV Examples (Top: Symptom; Bottom: Nonsymptom). (b) IEI-REF Examples (Top: Symptom; Bottom: Nonsymptom).

TABLE II
NUMBER OF INSTANCES IN EACH DATA SET. THE DATA PARTITION OF

SUBJECTS ARE THE SAME FOR BOTH THE IEI-TV AND THE IEI-REF
DATA WHILE THEY HAVE DIFFERENT INSTANCE NUMBERS. (a) IEI-TV

DATA. (b) IEI-REF DATA

(a)

(b)

Fig. 3. Diagram of the functionals approach. Independent of the length of
the instances, max, min, mean, etc., are extracted from the IEI data.

ŝ = E(x − μx)
3

σ 3
x

(1f)

k̂ = E(x − μx)
4

σ 4
x

(1g)

where E(·) denotes the expected value. For the linear regres-
sion, the target is to approximate a line (ỹ = αi + β) that has
the minimized quadratic error (ê2) between the approximated
line (ỹ) and the actual value series (y). ê2 can be written as

ê2 =
N∑

i=1

(y − ỹ)2 =
N∑

i=1

(x(i) − αi − β)2

=
N∑

i=1

(
x(i)2 − 2αix(i) − 2βx(i) + 2αβi + α2i2 + β2

)
(2)

where α and β represent the slope and the bias, respectively.
To minimize ê2, the following differential equations should be
applied (see [48]):

∂ ê2

∂α
=

N∑

i=1

(
−2ix(i) + 2βi + 2αi2

)
= 0 (3a)

∂ ê2

∂β
=

N∑

i=1

(−2x(i) + 2αi + 2β) = 0 (3b)

which can be rewritten as

−
N∑

i=1

ix(i) + β

N∑

i=1

i + α

N∑

i=1

i2 = 0 (4a)

−
N∑

i=1

x(i) + α

N∑

i=1

i + Nβ = 0. (4b)

Then, the solutions for α and β can be yielded as

α = N
∑N

i=1 ix(i) − ∑N
i=1 i

∑N
i=1 x(i)

N
∑N

i=1 i2 −
(∑N

i=1 i
)2

(5a)

β =
∑N

i=1 x(i)
∑N

i=1 i2 − ∑N
i=1 i

∑N
i=1 ix(i)

N
∑N

i=1 i2 −
(∑N

i=1 i
)2

. (5b)

Fig. 4 shows the 3-D scatter plots of the selected three func-
tionals via ReliefF algorithm [50] for IEI-TV and IEI-REF
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Fig. 4. Visualization of the 3-D scatter of selected IEI functionals in the train plus dev sets. The functionals are top three features (ranked by their contributions
to the binary classification task) selected via the ReliefF algorithm [50]. The top three functionals for IEI-TV are bias, slope, and mean values. The top three
functionals for IEI-REF are min, max, and mean values. (a) 3-D Scatter of selected IEI-TV functionals. (b) 3-D scatter of selected IEI-REF functionals.

Fig. 5. Processing chain of the bag-of-behavior-words (BoBW) approach.

data. We can see that, the 3-D feature map cannot suffi-
ciently distinguish the two groups of IEI for both the TV
and the REF IEI data. More features are needed to train an
efficient classifier. In this study, we investigate and compare
eight ML models using functionals, which include naïve Bayes
(NB) [51], linear discriminant analysis (LDA) [52], k-nearest
neighbor (k-NN) [53], random forest (RF) [54], support vector
machine (SVM) [47], extreme learning machine (ELM) [55],
kernel-based extreme learning machine (KELM) [56], and a
deep neural network (DNN) [57].

2) Bag-of-Behavior-Words: The BoBW approach origi-
nated from the bag-of-words (BoW) principle, which appeared
early in a description written in [58]. In the past decade,
the BoW approach has been successfully applied to the field
of computer vision [59], natural language processing [60],
acoustic event classification [61], speech emotion recogni-
tion [62], and health care [63], among others. Most recently,
we introduced the BoW approach into the analysis of human
behavior, and named it as BoBW [64].

In this study, the IEI data (frames with a window length
of 10 points and an overlap of 5 points) are the inputs of
the BoBW paradigm (see Fig. 5). At first, the IEIs will be
passed through a process called vector quantization (VQ). This
process is completed by using a codebook containing template
IEIs which is previously learnt from a certain amount of the
training data.

For generating the codebook, we use a random sam-
pling strategy [61] of the IEIs that following the initial-
ization step of K-means++ clustering [65] instead of the

Fig. 6. Diagram of the e2e method. In this paradigm, higher representations
can be learnt automatically from a combination of CNNs and/or RNNs (with
LSTM or GRU cells).

Fig. 7. Architectures of the (a) CNN, (b) RNN, and (c) CNN–RNN for
our proposed e2e method. BN: Batch Normalization; FC: Fully Connected;
ReLU: Rectified Linear Unit. The LSTM unit can be replaced by a GRU one
determined by the optimization process on the dev set.

classic K-means clustering [66], [67]. Compared to the classic
K-means clustering, K-means++ clustering allows for a better
initialization step, which is independent of the initial cen-
troid. Then, the Na words (the IEI templates) with the lowest
Euclidean distance will be considered when assigning each
IEI to the generated codebook. Finally, the logarithm (with a
bias of one) is taken from the word frequencies to compress
the range of values.

3) End-to-End Learning: The e2e models utilize the capac-
ity of DL to learn higher representations from the raw data
via a series of nonlinear transformations. In this paradigm
(see Fig. 6), human handcrafted features (e.g., functionals) are
not needed. Previous studies have demonstrated the efficiency
of e2e models among others in music analysis [68], speech
emotion recognition [69], and healthcare [70]. In this study,
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we investigate and compare several topologies of e2e models,
which include not only using CNN [71] or RNN [72] but also
a combination of the two aforementioned typical DL mod-
els. For RNN models, we use both long short-term memory
(LSTM) [73] and gated recurrent unit (GRU) [74] cells to over-
come the vanishing gradient problem in RNN training [75]. In
particular, we also investigate the bidirectional RNNs [76] for
achieving more contextual information (both the previous and
future contextual information) of the sequence of IEI rather
than unidirectional RNNs. The CNN was demonstrated to
extract spatial and temporal features [35] while the RNN was
able to capture the time-series characteristics [31]. A hybrid
architecture composed of CNN and RNN has been demon-
strated to excel in our previous e2e learning work [69]. We
designed the architectures of the CNN and RNN models based
on empirical settings in our initial experiments. Fig. 7 shows
the candidate architectures of our e2e models. In this study,
the binary cross entropy is used as the loss function.

C. Evaluation Metrics

To evaluate the performance of the proposed methods in this
study, we use unweighted average recall (UAR) as the main
metric together with some other frequently used metrics found
in binary classification tasks.

1) Unweighted Average Recall: Considering the imbal-
anced data distribution given in the data, we choose UAR
as the main metric in this study. Compared to weighted aver-
age recall (WAR, i.e., accuracy), UAR is the averaged recall
achieved for each class [77], [78], which can avoid over-
optimistic results caused by using WAR due to over-training
to one class of the data which has a larger proportion than
others of the overall data set.

2) Complementary Metrics: Additionally, we use accuracy
(Acc.), sensitivity (Sens.), specificity (Spec.), precision (Prec.),
F1-score, and geometric mean (G-mean), as the complemen-
tary metrics.

IV. EXPERIMENTAL RESULTS

We will present the experimental results in this section.
The detailed experimental setup will be given followed by
the results achieved by the methods proposed previously.

A. Setup

All the proposed ML/DL models are optimized (with hyper-
parameters) by a grid-search strategy (see Table III) on the
development set. Then, the optimized models are validated by
applying the optimized hyperparameters on the test set. In the
following experiments, results are shown on the best results
achieved on the development set, and the ones reached by the
optimized models on the test set. The models using function-
als are implemented by MATLAB R2019a (by MathWorks)
except for SVM which are given by the LIBSVM [79] toolkit.
The BoBW approach is provided by the OPENXBOW [80]
toolkit, while the e2e models are developed on Python 3.7.5
and PyTorch 1.3.0. To eliminate the effects by outliers, all the
data are standardized before being fed into the models.

TABLE III
GRID-SEARCH PROCESS FOR OPTIMIZING THE HYPERPARAMETERS OF

THE MODELS. THESE HYPERPARAMETERS ARE OPTIMIZED ON THE

DEVELOPMENT SET, AND APPLIED TO THE TEST SET. RBF: RADIAL

BASIS FUNCTION

TABLE IV
UARS (IN [%]) ACHIEVED BY ML MODELS USING FUNCTIONALS.
THE RESULTS ON THE DEV SET ARE ACHIEVED BY THE OPTIMAL

HYPERPARAMETERS. THE BEST RESULTS ON THE TEST SET ARE

HIGHLIGHTED IN BOLD FACE. CHANCE LEVEL: 50.0 %.
(a) IEI-TV. (b) IEI-REF

(a)

(b)

B. Results

The results (UARs in [%]) of the proposed models are
illustrated in Tables IV–VI, respectively.

For the models trained by functionals, the best performances
on the test set by TV and REF data are reached by LDA (a
UAR of 52.8 %) and the DNN (a UAR of 54.4 %), respectively.
For the models built on BoAW representations and SVM, the
best performances on the test set by the TV and the REF data
obtain a UAR of 54.3 % and 58.7 %, respectively. For the e2e
models, best performances on the test sets of TV and REF
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TABLE V
UARS (IN [%]) ACHIEVED BY A SVM MODEL USING BOBW. THE

RESULTS ON THE DEV SET ARE ACHIEVED BY THE OPTIMAL

HYPERPARAMETERS. THE BEST RESULTS ON THE TEST SET ARE

HIGHLIGHTED IN BOLD FACE. Cs : CODEBOOK SIZE; Na : ASSIGNMENT

NUMBER. CHANCE LEVEL: 50.0 %. (a) IEI-TV. (b) IEI-REF

(a)

(b)

TABLE VI
UARS (IN [%]) ACHIEVED BY E2E MODELS. THE RESULTS ON THE DEV

SET ARE ACHIEVED BY THE OPTIMAL HYPERPARAMETERS. THE BEST

RESULTS ON THE TEST SET ARE HIGHLIGHTED IN BOLD FACE. CHANCE

LEVEL: 50.0 %. (a) IEI-TV. (b) IEI-REF

(a)

(b)

data are 53.3 % and 53.4 % UAR, respectively. Fig. 8 shows
the training and dev losses of the best e2e models.

Fig. 9 shows the complementary metrics (in [%]) as reached
by the best models on the test set. We can see that, both the
functional and BoBW models master a high specificity (more
than 90.0 %) based on the TV data while their sensitivities
are extremely low (lower than 20.0 %). The exception if the
e2e model, which reaches a sensitivity of 79.0 % with a low
specificity of 33.5 %. In contrast, when using REF data, the
sensitivities can be considerably improved whereas a sacrifice
in specificities occurs, and vice versa.

Additionally, when comparing the accuracies and precisions,
the functional and BoBW based models using the TV data are
found to be superior to their counterparts using the REF data,
whereas the contrary phenomenon can be found when evalu-
ating their F1-scores and G-means. For the e2e method, the
TV data based model shows a higher precision, F1-score, and
G-mean, but yields to the REF data based model in accuracy.

Table VII presents the confusion matrices of the best models
on the test set. It can be seen that, most of the best models have

TABLE VII
CONFUSION MATRICES (NORMALIZED: IN [%]) BY THE BEST MODELS

ON THE TEST SET. S: SYMPTOM; N: NONSYMPTOM. THE

HYPERPARAMETERS OF THE MODELS ARE: 1) FUNC. (TV: LDA–
type: “DIAGLINEAR,” g-VALUE: 0; REF: DNN–[256-256-256-256].); 2)

BOBW: (TV: Cs = 500, Na = 1, SVM–kernel: “POLYNOMIAL,”
C-VALUE: 100; REF: Cs = 1 000, Na = 1, SVM–kernel: “SIGMOID,” C-
VALUE: 100.); 3) E2E: (TV: e2e model: “GRU,” hidden layers: 2, hidden

nodes: 50; REF: e2e model: “LSTM,” hidden layers: 1, hidden nodes: 10.).
(a) FUNC.: TV. (b) BOBW: TV. (c) E2E: TV. (d) FUNC.: REF.

(e) BOBW.: REF. (f) E2E: REF

Fig. 8. Visualization of losses of the best two e2e models in the training
and dev sets. The training losses are converged in 10 epochs. Then, the learnt
weights of the epoch by which the dev loss is the minimized, is applied to
the test set. (a) GRU–RNN for IEI-TV. (b) LSTM–RNN for IEI-REF.

a low recall on detecting the Symptom instances whereas a high
recall on finding Nonsymptom instances. The e2e model using
the TV data can have a high detection rate of the Symptom
instances while it also tends to a high false alarm rate, i.e.,
more than 50 % Nonsymptom instances are incorrectly recog-
nized as Symptom instances. The best model, i.e., the BoBW
method using the REF data has a recall of 53.8 % on Symptom
instances and a recall of 63.6 % on Nonsymptom instances.

V. DISCUSSION

In this section, we analyse and discuss the results achieved
in the current study. Furthermore, we summarize the limita-
tions and provide our perspectives for future work.

A. Current Findings

Even though the current results are limited in their
performance, most of the best models in this study can beat
the chance level (50.0 % in UAR) already given the fairly
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Fig. 9. Complementary evaluation metrics (in [%]) achieved by the best models on the test set. The hyperparameters of the models are: 1) func. (TV: LDA–
type: “diaglinear,” g-value: 0; REF: DNN–[256-256-256-256].); 2) BoBW: (TV: Cs = 500, Na = 1, SVM–kernel: “polynomial,” C-value: 100; REF: Cs =
1 000, Na = 1, SVM–kernel: “sigmoid,” C-value: 100.); 3) e2e: (TV: e2e model: “GRU,” hidden layers: 2, hidden nodes: 50; REF: e2e model: “LSTM,”
hidden layers: 1, hidden nodes: 10.). (a) Acc. (b) Sens. (c) Spec. (d) Prec. (e) F1-score. (f) G-mean.

TABLE VIII
COMPARISON BETWEEN STUDIES IN THE EXISTING LITERATURE ON AIOT FOR ELDERLY BEHAVIOR ANALYSIS. SOMS: SELF ORGANIZING MAPS;

FCM: FUZZY C-MEANS (FCM); ERT: EXTREMELY RANDOMIZED TREES; DCNN: DEEP CONVOLUTIONAL NEURAL NETWORK;
CNN: CONVOLUTIONAL NEURAL NETWORK; DNN: DEEP NEURAL NETWORK; LSTM–RNN: LONG SHORT-TERM MEMORY-BASED RECURRENT

NEURAL NETWORK; IMA: INTERFRAME MATCHING ALGORITHM; RF: RANDOM FOREST; AS: ACTIVITY SIMILARITY; HHT: HILBERT–HUANG

TRANSFORMATION; SVM: SUPPORT VECTOR MACHINE; CFS: CORRELATION-BASED FEATURE SELECTION; FCBF: FAST CORRELATION-BASED

FILTER; PAC: PHYSICAL ACTIVITY CLASSIFICATION. † INDICATES THE WEARABLE SENSORS; ‡ INDICATES THE NONWEARABLE SENSORS

basic approach considered by the technical home setup chosen.
Among the proposed models, the BoBW approach outperforms
the other two methods, i.e., functionals and e2e. We may think
that, the BoBW approach can provide a global view of the
whole training data when extracting statistical information,
which makes it better suited than the functional approach (only
focusing on one instance). This finding is consistent with our
previous study on using BoBW to address the major depressive

disorder detection task [64]. The e2e models are demonstrated
to show their potential in describing elderly behaviors without
any human expert domain knowledge. More specifically, e2e
models can be comparable to functional (depending on human
handcrafted features) models.

For the functional models, there appear no big gaps between
each ML model (see Table IV). For most of the models, there
is a decrease of performance on the test set comparing to the
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development set. This could be due to the overfitting caused
by the limited size of the database. The DNN model, as the
best one using the REF data by functionals, shows the smallest
gap between the development and the test set (54.7 % versus
54.4 %).

For the BoBW (plus SVM) models, we find that Cs and
Na are crucial hyperparameters for final performances. In this
study, the best performances by the TV and the REF data are
all using the smallest number of assignments, i.e., Na = 1.
However, larger number of codebook sizes (e.g., 500, 1000
for TV and REF, respectively) may help reach higher UARs
by using this smallest assignment number (Na = 1). We need
to note that, compared to the functional method, the BoBW
requires considerably less human knowledge. In this study, we
use the raw IEI data as the inputs of the BoBW processing
chain, which can learn higher representations (i.e., histograms)
automatically in an unsupervised scenario.

For the e2e models, the best models based on the TV data
and the REF data are all achieved by the RNN models, namely,
the GRU–RNN and the LSTM–RNN models, respectively.
There are no considerable improvements when combining the
RNN and the CNN models. We think that, the time series of
using the TV and the REF may be sufficient to capture the con-
textual information which can describe the state of an elderly
home appliance user in their daily life. The capacity of CNNs
to extract features from the raw data should be further inves-
tigated in future work. The LSTM–RNN model reaches the
best performance (a UAR of 53.4 %) using the REF data. We
think this may be benefited from a strong relation between the
appetite of a user and the usage of the refrigerator (see Table I).

A comparison between the proposed method and the state-
of-the-art previous works on AIoT for elderly behavior anal-
ysis is shown in Table VIII. Due to the factor that the data
modality, methods, and evaluation metrics are varied among
different studies, we cannot make a direct comparison of the
results. Nevertheless, we may summarize as follows.

1) Most of the existing studies were based on the data col-
lected from a lab environment, which means the subjects
(elderly individuals) may not perform their activities
in a spontaneous scenario. At this point, our proposed
method is validated on the data collected from real-world
spontaneous activities in the elderly participants’ daily
life.

2) Most of these previous studies need to reset the whole
system (including both hardware and software) if the
environment is changed. In contrast, our proposed
method can be adapted easily and flexibly to a new envi-
ronment. In fact, the TV and refrigerator are all prevalent
appliances.

3) Our study takes subject independency into account,
which is ignored by some of the previous studies. This
supports the provision of a reasonable result rather than
an over-optimistic number.

B. Limitations and Outlook

Data scarcity (annotation) is still a serious challenge in
this or other relevant studies. On the one hand, we can

easily collect IEI data with the prevalent smart appliances—
not only the TV or REF types but also some others, such
as based on the usage of lights, the microwave, or the air-
conditioner. On the other hand, accurate annotations are still
lacking, which extremely restrains the current performance
of the models, specifically for the DL models. In addition,
data imbalance characteristics cannot be ignored. In this study,
the Nonsymptom instances have a larger proportion in the
total database than the Symptom instances. In future work, we
should consider data augmentation techniques to overcome the
aforementioned issues. In this study, we tried simple methods
like data upsampling and time shifting. But the improvement is
not considerable or stable. We will investigate more advanced
approaches like generative adversarial networks (GANs) [81].

Moreover, the current annotations are made by participants’
self-reports, which maybe very subjective. In the future, we
can consider using more reasonable and objective annotation
methods as in our previous work on spontaneous physical
analysis [49], [64], [82]. Accurately annotating the status of
the elderly is a difficult, but essential work for ML-based
methods.

In addition, we only studied the two data modalities (i.e.,
IEI-TV and IEI-REF) separately in this work. The reason is
due to the limited condition that, we cannot find sufficiently
overlapped instances (with accurate annotation in each cor-
responding date) of the two modalities. In future work, one
should investigate a combination of the two modalities, which
may improve the final prediction performance of the model.
Also, studying the relationship between the two modalities
may facilitate the fundamental understanding of the IEI data
characteristics and their capacity to reflect the elderly physical
and/or mental status in daily life.

Last but not least, we should execute an in-depth analy-
sis of the methods (features and/or models) for reaching an
explainable AI [83]. In particular, current benchmark works
were focused on the analysis of all day IEI date, not involv-
ing detailed analysis on event happening time throughout the
day, e.g., opening/closing the refrigerator late at night, which
might be related to subjects’ symptoms. Moreover, how to
combine classic ML models and DL models to reach a bet-
ter understanding of the IEI data and building a trustable AI
system will be needed along the future path.

VI. CONCLUSION

In this study, we proposed a novel framework based on ML
for analyzing the behavior of elderly in daily life via their
usage of smart appliances. Three paradigms of ML were inves-
tigated and compared, i.e., functionals, bag-of-behavior-words,
and e2e DL. Experimental results demonstrated the feasibil-
ity of the proposed systems, which achieved a best UAR of
58.7 % by the BoBW approach for a binary classification task
(Symptom or Nonsymptom, chance level: 50 % UAR).

ACKNOWLEDGMENT

The authors would like to thank the colleagues who con-
tributed to collect the IEI data for this study.

                                                                                                                                               



                                                                                     8353

REFERENCES

[1] A. Schmidt and K. Van Laerhoven, “How to build smart appliances?”
IEEE Pers. Commun., vol. 8, no. 4, pp. 66–71, Aug. 2001.

[2] S. Nistor, J. Wu, M. Sooriyabandara, and J. Ekanayake, “Capability of
smart appliances to provide reserve services,” Appl. Energy, vol. 138,
pp. 590–597, Jan. 2015.

[3] C. B. Kobus, E. A. Klaassen, R. Mugge, and J. P. Schoormans, “A real-
life assessment on the effect of smart appliances for shifting households’
electricity demand,” Appl. Energy, vol. 147, pp. 335–343, Jun. 2015.

[4] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “Power demand control
scenarios for smart grid applications with finite number of appliances,”
Appl. Energy, vol. 162, pp. 83–98, Jan. 2016.

[5] K. Paridari, A. Parisio, H. Sandberg, and K. H. Johansson, “Robust
scheduling of smart appliances in active apartments with user behavior
uncertainty,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1, pp. 247–259,
Jan. 2016.

[6] J. Wang, H. Zhang, and Y. Zhou, “Intelligent under frequency and
under voltage load shedding method based on the active participation of
smart appliances,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 353–361,
Jan. 2017.

[7] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in Internet of Things,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4921–4934, Jun. 2019.

[8] I. Ahmed, A. Ahmad, F. Piccialli, A. K. Sangaiah, and G. Jeon, “A
robust features-based person tracker for overhead views in industrial
environment,” IEEE Internet Things J., vol. 5, no. 3, pp. 1598–1605,
Jun. 2018.

[9] W. Li, T. Logenthiran, V.-T. Phan, and W. L. Woo, “Implemented IoT-
based self-learning home management system (SHMS) for Singapore,”
IEEE Internet Things J., vol. 5, no. 3, pp. 2212–2219, Jun. 2018.

[10] W. Hu, Y. Wen, K. Guan, G. Jin, and K. J. Tseng, “iTCM: Toward
learning-based thermal comfort modeling via pervasive sensing for smart
buildings,” IEEE Internet Things J., vol. 5, no. 5, pp. 4164–4177,
Oct. 2018.

[11] W. Zhang, W. Hu, and Y. Wen, “Thermal comfort modeling for smart
buildings: A fine-grained deep learning approach,” IEEE Internet Things
J., vol. 6, no. 2, pp. 2540–2549, Apr. 2019.

[12] W. Peng, W. Gao, and J. Liu, “AI-enabled massive devices multiple
access for smart city,” IEEE Internet Things J., vol. 6, no. 5,
pp. 7623–7634, Oct. 2019.

[13] T. Sutjarittham, H. H. Gharakheili, S. S. Kanhere, and V. Sivaraman,
“Experiences with IoT and AI in a smart campus for optimizing class-
room usage,” IEEE Internet Things J., vol. 6, no. 5, pp. 7595–7607,
Oct. 2019.

[14] W.-L. Chen, Y.-B. Lin, F.-L. Ng, C.-Y. Liu, and Y.-W. Lin, “RiceTalk:
Rice blast detection using Internet of Things and artificial intelligence
technologies,” IEEE Internet Things J., vol. 7, no. 2, pp. 1001–1010,
Feb. 2020.

[15] World Health Organisation (WHO), World Report on Ageing and Health.
Geneva, Switzerland: WHO Press, 2015.

[16] D. M. Wilson, B. Errasti-Ibarrondo, and G. Low, “Where are we now in
relation to determining the prevalence of ageism in this era of escalating
population ageing?” Ageing Res. Rev., vol. 51, pp. 78–84, May 2020.

[17] Statista. (2020). Japan: Age Distribution From 2008 to 2018. [Online].
Available: https://www.statista.com/statistics/270087/age-distribution-
in-japan/

[18] A. Zhavoronkov, P. Mamoshina, Q. Vanhaelen, M. Scheibye-Knudsen,
A. Moskalev, and A. Aliper, “Artificial intelligence for aging and
longevity research: Recent advances and perspectives,” Ageing Res. Rev.,
vol. 49, pp. 49–66, Jan. 2019.

[19] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware com-
puting, learning, and big data in Internet of Things: A survey,” IEEE
Internet Things J., vol. 5, no. 1, pp. 1–27, Feb. 2018.

[20] S. Gahlot, S. Reddy, and D. Kumar, “Review of smart health monitor-
ing approaches with survey analysis and proposed framework,” IEEE
Internet Things J., vol. 6, no. 2, pp. 2116–2127, Apr. 2019.

[21] C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis,
and A. Bauer, “Monitoring activities of daily living in smart homes:
Understanding human behavior,” IEEE Signal Process. Mag., vol. 33,
no. 2, pp. 81–94, Mar. 2016.

[22] H. Mshali, T. Lemlouma, M. Moloney, and D. Magoni, “A survey on
health monitoring systems for health smart homes,” Int. J. Ind. Ergon.,
vol. 66, pp. 26–56, Jul. 2018.

[23] V. Nathan et al., “A survey on smart homes for aging in place: Toward
solutions to the specific needs of the elderly,” IEEE Signal Process.
Mag., vol. 35, no. 5, pp. 111–119, Sep. 2018.

[24] S. Deep, X. Zheng, C. Karmakar, D. Yu, L. Hamey, and J. Jin, “A survey
on anomalous behavior detection for elderly care using dense-sensing
networks,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 352–370,
1st Quart., 2020.

[25] D. Ravì, C. Wong, B. Lo, and G.-Z. Yang, “A deep learning approach
to on-node sensor data analytics for mobile or wearable devices,” IEEE
J. Biomed. Health Inform., vol. 21, no. 1, pp. 56–64, Jan. 2017.

[26] J. Venkatesh, B. Aksanli, C. S. Chan, A. S. Akyurek, and T. S. Rosing,
“Modular and personalized smart health application design in a smart
city environment,” IEEE Internet Things J., vol. 5, no. 2, pp. 614–623,
Apr. 2018.

[27] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and
I. De Munari, “IoT wearable sensor and deep learning: An integrated
approach for personalized human activity recognition in a smart home
environment,” IEEE Internet Things J., vol. 6, no. 5, pp. 8553–8562,
Oct. 2019.

[28] G. Yang et al., “An IoT-enabled stroke rehabilitation system based on
smart wearable armband and machine learning,” IEEE J. Transl. Eng.
Health Med., vol. 6, pp. 1–10, 2018.

[29] M. Chen, Y. Li, X. Luo, W. Wang, L. Wang, and W. Zhao, “A novel
human activity recognition scheme for smart health using multilayer
extreme learning machine,” IEEE Internet Things J., vol. 6, no. 2,
pp. 1410–1418, Apr. 2019.

[30] Y. Xiao, Y. Jia, X. Cheng, J. Yu, Z. Liang, and Z. Tian, “I can see your
brain: Investigating home-use electroencephalography system security,”
IEEE Internet Things J., vol. 6, no. 4, pp. 6681–6691, Aug. 2019.

[31] G. Paragliola and A. Coronato, “Gait anomaly detection of subjects
with Parkinson’s disease using a deep time series-based approach,” IEEE
Access, vol. 6, pp. 73280–73292, 2018.

[32] H. Xu, Y. Pan, J. Li, L. Nie, and X. Xu, “Activity recognition method
for home-based elderly care service based on random forest and activity
similarity,” IEEE Access, vol. 7, pp. 16217–16225, 2019.

[33] M. Awais, L. Chiari, E. A. F. Ihlen, J. L. Helbostad, and L. Palmerini,
“Physical activity classification for elderly people in free-living condi-
tions,” IEEE J. Biomed. Health Inform., vol. 23, no. 1, pp. 197–207,
Jan. 2019.

[34] M. Gochoo, T.-H. Tan, V. Velusamy, S.-H. Liu, D. Bayanduuren, and
S.-C. Huang, “Device-free non-privacy invasive classification of elderly
travel patterns in a smart house using PIR sensors and DCNN,” IEEE
Sensors J., vol. 18, no. 1, pp. 390–400, Jan. 2018.

[35] M. Gochoo, T.-H. Tan, S.-H. Liu, F.-R. Jean, F. S. Alnajjar, and
S.-C. Huang, “Unobtrusive activity recognition of elderly people living
alone using anonymous binary sensors and DCNN,” IEEE J. Biomed.
Health Inform., vol. 23, no. 2, pp. 693–702, Mar. 2019.

[36] C. Tsirmpas, A. Anastasiou, P. Bountris, and D. Koutsouris, “A new
method for profile generation in an Internet of Things environment: An
application in ambient-assisted living,” IEEE Internet Things J., vol. 2,
no. 6, pp. 471–478, Dec. 2015.

[37] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982.

[38] M. Roubens, “Fuzzy clustering algorithms and their cluster validity,”
Eur. J. Oper. Res., vol. 10, no. 3, pp. 294–301, 1982.

[39] Y. Hbali, S. Hbali, L. Ballihi, and M. Sadgal, “Skeleton-based human
activity recognition for elderly monitoring systems,” IET Comput. Vis.,
vol. 12, no. 1, pp. 16–26, 2017.

[40] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[41] Y. Chen, L. Yu, K. Ota, and M. Dong, “Robust activity recognition
for aging society,” IEEE J. Biomed. Health Inform., vol. 22, no. 6,
pp. 1754–1764, Nov. 2018.

[42] N. E. Huang et al., “The empirical mode decomposition and the
hilbert spectrum for nonlinear and non-stationary time series analysis,”
Proc. Roy. Soc. London A Math. Phys. Eng. Sci., vol. 454, no. 1971,
pp. 903–995, 1998.

[43] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA: Soc.
Ind. Appl. Math., 1992.

[44] K. Aoki et al., “Early detection of lower MMSE scores in elderly based
on dual-task gait,” IEEE Access, vol. 7, pp. 40085–40094, 2019.

[45] L. Zhou, G. Wang, C. Jia, and Z. Ma, “Being left-behind, mental dis-
order, and elderly suicide in rural China: A case–control psychological
autopsy study,” Psychol. Med., vol. 49, no. 3, pp. 458–464, 2019.

[46] K. Yoshiuchi, Y. Yamamoto, H. Niwamoto, T. Watsuji, H. Kumano, and
T. Kuboki, “Behavioral power-law exponents in the usage of electric
appliances correlate mood states in the elderly,” Int. J. Sport Health
Sci., vol. 1, no. 1, pp. 41–47, 2003.

[47] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

                                                                                                                                               



8354                                                   

[48] F. Eyben, Real-Time Speech and Music Classification by Large Audio
Feature Space Extraction. Cham, Switzerland: Springer Int., 2015.

[49] K. Qian et al., “Teaching machines to know your depressive state:
On physical activity in health and major depressive disorder,” in Proc.
EMBC, Berlin, Germany, 2019, pp. 3592–3595.

[50] I. Kononenko, E. Šimec, and M. Robnik-Šikonja, “Overcoming the
myopia of inductive learning algorithms with RELIEFF,” Appl. Intell.,
vol. 7, no. 1, pp. 39–55, 1997.

[51] M. N. Murty and V. S. Devi, Pattern Recognition: An Algorithmic
Approach. Dordrecht, The Netherlands: Springer, 2011.

[52] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugen., vol. 7, no. 2, pp. 179–188, 1936.

[53] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[54] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[55] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[56] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

[57] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[58] Z. S. Harris, “Distributional structure,” WORD, vol. 10, nos. 2–3,
pp. 146–162, 1954.

[59] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as
text retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 4,
pp. 591–606, Apr. 2009.

[60] F. Weninger, P. Staudt, and B. Schuller, “Words that fascinate the lis-
tener: Predicting affective ratings of on-line lectures,” Int. J. Distance
Educ. Technol., vol. 11, no. 2, pp. 110–123, 2013.

[61] S. Rawat, P. F. Schulam, S. Burger, D. Ding, Y. Wang, and F. Metze,
“Robust audio-codebooks for large-scale event detection in consumer
videos,” in Proc. INTERSPEECH, Lyon, France, 2013, pp. 2929–2933.

[62] M. Schmitt, F. Ringeval, and B. Schuller, “At the border of acous-
tics and linguistics: Bag-of-audio-words for the recognition of emotions
in speech,” in Proc. INTERSPEECH, San Francisco, CA, USA, 2016,
pp. 495–499.

[63] K. Qian et al., “A bag of wavelet features for snore sound classification,”
Ann. Biomed. Eng., vol. 47, no. 4, pp. 1000–1011, 2019.

[64] K. Qian et al., “Automatic detection of major depressive disorder via a
bag-of-behavior-words approach,” in Proc. ISICDM, Xi’an, China, 2019,
pp. 71–75.

[65] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. ACM-SIAM SODA, New Orleans, LA, USA, 2007,
pp. 1027–1035.

[66] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[67] S. Pancoast and M. Akbacak, “Bag-of-audio-words approach for
multimedia event classification,” in Proc. INTERSPEECH, Portland, OR,
USA, 2012, pp. 2105–2108.

[68] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,”
in Proc. ICASSP, Florence, Italy, 2014, pp. 6964–6968.

[69] G. Trigeorgis et al., “Adieu features? End-to-end speech emotion recog-
nition using a deep convolutional recurrent network,” in Proc. ICASSP,
Shangai, China, 2016, pp. 5200–5204.

[70] M. Schmitt and B. Schuller, “End-to-end audio classification with small
datasets—Making it work,” in Proc. EUSIPCO, 2019, pp. 1–5.

[71] Y. LeCun et al., “Handwritten digit recognition with a back-propagation
network,” in Proc. NIPS, Denver, CO, USA, 1989, pp. 396–404.

[72] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2,
pp. 179–211, 1990.

[73] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[74] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proc. NIPS
Deep Learn. Represent. Learn. Workshop, Montreal, QC, Canada, 2014,
pp. 1–9.

[75] S. Hochreiter et al., “Gradient flow in recurrent nets: The difficulty
of learning long-term dependencies,” in A Field Guide to Dynamical
Recurrent Neural Networks, J. F. Kolen and S. C. Kremer, Ed.
Piscataway, NJ, USA: IEEE, 2001, pp. 237–244.

[76] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681,
Nov. 1997.

[77] B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEECH 2009
emotion challenge,” in Proc. INTERSPEECH, Brighton, U.K., 2009,
pp. 312–315.

[78] K. Qian, “Automatic general audio signal classification,” Ph.D. dis-
sertation, Lehrstuhl für Mensch-Maschine-Kommunikation Technische
Universität München, München, Germany, 2018.

[79] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011. [Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/libsvm

[80] M. Schmitt and B. W. Schuller, “openXBOW—Introducing the PASSAU
open-source crossmodal bag-of-words toolkit,” J. Mach. Learn. Res.,
vol. 18, no. 96, pp. 1–5, 2017.

[81] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS,
Montreal, QC, Canada, 2014, pp. 2672–2680.

[82] J. Kim, T. Nakamura, H. Kikuchi, K. Yoshiuchi, T. Sasaki, and
Y. Yamamoto, “Covariation of depressive mood and spontaneous physi-
cal activity in major depressive disorder: Toward continuous monitoring
of depressive mood,” IEEE J. Biomed. Health Inform., vol. 19, no. 4,
pp. 1347–1355, Jul. 2015.

[83] A. Adadi and M. Berrada, “Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),” IEEE Access, vol. 6,
pp. 52138–52160, 2018.

Kun Qian (Senior Member, IEEE) received the
doctoral degree for his study on automatic general
audio signal classification in electrical engineering
and information technology from the Technische
Universität München (TUM), Munich, Germany, in
2018.

He is currently working as a JSPS Postdoctoral
Research Fellow with the Educational Physiology
Laboratory, Graduate School of Education,
University of Tokyo, Tokyo, Japan. He was also
sponsored by fellowships to conduct cooperative

research with the Nanyang Technological University, Singapore, Tokyo
Institute of Technology (Tokyo Tech), Tokyo, and the Carnegie Mellon
University, Pittsburgh, PA, USA. He (co-)authored more than 50 publications
in peer reviewed journals, and conference proceedings having received more
than 700 citations (H-index 16). His main research interests include signal
processing, machine learning, biomedical engineering, and deep learning.

Dr. Qian serves as an Associate Editor for Fontiers in Digital Health,
and is the leading organizer of the special session on computer audi-
tion for healthcare in the ICASSP 2021, Toronto, Canada. He reviews
regularly for many prestigious journals (e.g., IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE INTERNET OF

THINGS JOURNAL, IEEE TRANSACTIONS ON CYBERNETICS, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS

ON AUTOMATIC CONTROL, and IEEE/ACM TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING). He was also the Reviewer for the
past ICASSP/INTERSPEECH/EMBC conferences.

Tomoya Koike (Student Member, IEEE) received
the B.Sc. degree from Kobe University, Kobe, Japan,
in 2020. He is currently pursuing the master’s degree
with the Graduate School of Education, University
of Tokyo, Tokyo, Japan.

He is the main author of the open source
toolkit deepSELF, and has successfully published
academic papers in a series of prestigious confer-
ences, such as EMBC and INTERSPEECH. His
research interests include machine learning, deep
learning, and healthcare applications.

                                                                                                                                               



                                                                                     8355

Kazuhiro Yoshiuchi received the M.D. degree from
the School of Medicine, University of Tokyo, Tokyo,
Japan, in 1991, and the Ph.D. degree in medical sci-
ence from the University of Tokyo in 1998.

He is currently an Associate Professor with the
Department of Stress Sciences and Psychosomatic
Medicine, Graduate School of Tokyo, University
of Tokyo, Tokyo. He is also the Director of the
Department of Psychosomatic Medicine, University
of Tokyo Hospital. His current research interests
include ecological momentary assessment and eco-

logical momentary intervention in stress-related diseases.

Björn W. Schuller (Fellow, IEEE) received the
diploma, doctoral, and habilitation degrees in elec-
trical engineering and information technology and
the Adjunct Teaching Professorship in the subject
area of signal processing and machine intelligence
from the Technische Universität München, Munich,
Germany, in 1999, 2006, and 2012, respectively.

He is a Tenured Full Professor heading the
Chair of Embedded Intelligence for Health Care
and Wellbeing, University of Augsburg, Augsburg,
Germany, and a Professor of Artificial Intelligence

heading GLAM, Department of Computing, Imperial College London,
London, U.K. He (co-)authored five books and more than 900 publications in
peer reviewed books, journals, and conference proceedings leading to more
than 33 000 citations (H-index 85).

Dr. Schuller is the field Chief Editor of Frontiers in Digital Health,
the former Editor-in-Chief of the IEEE TRANSACTIONS ON AFFECTIVE

COMPUTING, a President-Emeritus of AAAC, a Fellow of the Golden Core
Awardee of the IEEE Computer Society and ISCA, and a Senior Member of
ACM.

Yoshiharu Yamamoto (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in education from
the University of Tokyo, Tokyo, Japan, in 1984,
1986, and 1990, respectively.

Since 2000, he has been a Professor with the
Graduate School of Education, University of Tokyo,
where he is teaching and researching physiolog-
ical bases of health sciences and education. He
(co-)authored more than 230 publications in peer
reviewed books, journals, and conference proceed-
ings leading to more than 11 000 citations (H-index

55). His research interests include biomedical signal processing, nonlinear and
statistical biodynamics, and health informatics.

Dr. Yamamoto is currently an Associate Editor of the IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING, and an Editorial Board
Member of the Technology and Biomedical Physics and Engineering Express.
He is also the President of the Healthcare IoT Consortium, Japan.

                                                                                                                                               



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


