698 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Convertisseurs modulaires multiniveaux pour le transport d'Ă©nergie Ă©lectrique en courant continu haute tension

    Get PDF
    Les travaux présentés dans ce mémoire ont été réalisés dans le cadre d’une collaboration entre le LAboratoire PLAsma et Conversion d’Énergie (LAPLACE), Université de Toulouse, et la Seconde Université de Naples (SUN). Ce travail a reçu le soutien de la société Rongxin Power Electronics (Chine) et traite de l’utilisation des convertisseurs multi-niveaux pour le transport d’énergie électrique en courant continu Haute Tension (HVDC). Depuis plus d’un siècle, la génération, la transmission, la distribution et l’utilisation de l’énergie électrique sont principalement basées sur des systèmes alternatifs. Les systèmes HVDC ont été envisagés pour des raisons techniques et économiques dès les années 60. Aujourd’hui il est unanimement reconnu que ces systèmes de transport d’électricité sont plus appropriés pour les lignes aériennes au-delà de 800 km de long. Cette distance limite de rentabilité diminue à 50 km pour les liaisons enterrées ou sous-marines. Les liaisons HVDC constituent un élément clé du développement de l’énergie électrique verte pour le XXIème siècle. En raison des limitations en courant des semi-conducteurs et des câbles électriques, les applications à forte puissance nécessitent l’utilisation de convertisseurs haute tension (jusqu’à 500 kV). Grâce au développement de composants semi-conducteurs haute tension et aux architectures multicellulaires, il est désormais possible de réaliser des convertisseurs AC/DC d’une puissance allant jusqu’au GW. Les convertisseurs multi-niveaux permettent de travailler en haute tension tout en délivrant une tension quasi-sinusoïdale. Les topologies multi-niveaux classiques de type NPC ou « Flying Capacitor » ont été introduites dans les années 1990 et sont aujourd’hui couramment utilisées dans les applications de moyenne puissance comme les systèmes de traction. Dans le domaine des convertisseurs AC/DC haute tension, la topologie MMC (Modular Multilevel Converter), proposée par le professeur R. Marquardt (Université de Munich, Allemagne) il y a dix ans, semble particulièrement intéressante pour les liaisons HVDC. Sur le principe d’une architecture de type MMC, le travail de cette thèse propose différentes topologies de blocs élémentaires permettant de rendre le convertisseur AC/DC haute tension plus flexible du point de vue des réversibilités en courant et en tension. Ce document est organisé de la manière suivante. Les systèmes HVDC actuellement utilisés sont tout d’abord présentés. Les configurations conventionnelles des convertisseurs de type onduleur de tension (VSCs) ou de type onduleur de courant (CSCs) sont introduites et les topologies pour les systèmes VSC sont ensuite plus particulièrement analysées. Le principe de fonctionnement de la topologie MMC est ensuite présenté et le dimensionnement des éléments réactifs est développé en considérant une commande en boucle ouverte puis une commande en boucle fermée. Plusieurs topologies de cellules élémentaires sont proposées afin d’offrir différentes possibilités de réversibilité du courant ou de la tension du côté continu. Afin de comparer ces structures, une approche analytique de l’estimation des pertes est développée. Elle permet de réaliser un calcul rapide et direct du rendement du système. Une étude de cas est réalisée en considérant la connexion HVDC d’une plateforme éolienne off-shore. La puissance nominale du système étudié est de 100 MW avec une tension de bus continu égale à 160 kV. Les différentes topologies MMC sont évaluées en utilisant des IGBT ou des IGCT en boitier pressé. Les simulations réalisées valident l’approche analytique faite précédemment et permettent également d’analyser les modes de défaillance. L’étude est menée dans le cas d’une commande MLI classique avec entrelacement des porteuses. Enfin, un prototype triphasé de 10kW est mis en place afin de valider les résultats obtenus par simulation. Le système expérimental comporte 18 cellules de commutations et utilise une plate-forme DSP-FPGA pour l’implantation des algorithmes de commande. ABSTRACT : This work was performed in the frame of collaboration between the Laboratory on Plasma and Energy Conversion (LAPLACE), University of Toulouse, and the Second University of Naples (SUN). This work was supported by Rongxin Power Electronic Company (China) and concerns the use of multilevel converters in High Voltage Direct Current (HVDC) transmission. For more than one hundred years, the generation, the transmission, distribution and uses of electrical energy were principally based on AC systems. HVDC systems were considered some 50 years ago for technical and economic reasons. Nowadays, it is well known that HVDC is more convenient than AC for overhead transmission lines from 800 - 1000 km long. This break-even distance decreases up to 50 km for underground or submarine cables. Over the twenty-first century, HVDC transmissions will be a key point in green electric energy development. Due to the limitation in current capability of semiconductors and electrical cables, high power applications require high voltage converters. Thanks to the development of high voltage semiconductor devices, it is now possible to achieve high power converters for AC/DC conversion in the GW power range. For several years, multilevel voltage source converters allow working at high voltage level and draw a quasi-sinusoidal voltage waveform. Classical multilevel topologies such as NPC and Flying Capacitor VSIs were introduced twenty years ago and are nowadays widely used in Medium Power applications such as traction drives. In the scope of High Voltage AC/DC converters, the Modular Multilevel Converter (MMC), proposed ten years ago by Professor R. Marquardt from the University of Munich (Germany), appeared particularly interesting for HVDC transmissions. On the base of the MMC principle, this thesis considers different topologies of elementary cells which make the High Voltage AC/DC converter more flexible and easy suitable respect to different voltage and current levels. The document is organized as follow. Firstly, HVDC power systems are introduced. Conventional configurations of Current Source Converters (CSCs) and Voltage Source Converters (VSCs) are shown. The most attractive topologies for VSC-HVDC systems are analyzed. The operating principle of the MMC is presented and the sizing of reactive devices is developed by considering an open loop and a closed loop control. Different topologies of elementary cells offer various properties in current or voltage reversibility on the DC side. To compare the different topologies, an analytical approach on the power losses evaluation is achieved which made the calculation very fast and direct. A HVDC link to connect an off-shore wind farm platform is considered as a case study. The nominal power level is 100 MW with a DC voltage of 160 kV. The MMC is rated considering press-packed IGBT and IGCT devices. Simulations validate the calculations and also allow analyzing fault conditions. The study is carried out by considering a classical PWM control with an interleaving of the cells. In order to validate calculation and the simulation results, a 10kW three-phase prototype was built. It includes 18 commutation cells and its control system is based on a DSP-FGPA platform

    Modular Multilevel Converters with Integrated Split Battery Energy Storage

    Get PDF
    The electric power grid is undergoing significant changes and updates nowadays, especially on a production and transmission level. Initially, the move towards a distributed generation in contrast to the existing centralized one implies a significant integration of renewable energy sources and electricity storage systems. In addition, environmental awareness and related concerns regarding pollutant emissions have given rise to a high interest in electrical mobility. Advanced power electronics interfacing systems are expected to play a key role in the development of such modern controllable and efficient large-scale grids and associated infrastructures. During the last decade, a global research and development interest has been stimulated in the field of modular multilevel conversion, due to the well-known offered advantages over conventional solutions in the medium- and high-voltage and power range. In the context of battery energy storage systems, the Modular Multilevel Converter (MMC) family exhibits an additional attractive feature, i.e., the capability of embedding such storage elements in a split manner, given the existence of several submodules operating at significantly lower voltages. This thesis deals with several technical challenges associated with Modular Multilevel Converters as well as their enhancement with battery energy storage elements. Initially, the accurate submodule capacitor voltage ripple estimation for a DC/AC MMC is derived analytically, avoiding any strong assumptions. This is beneficial for converter dimensioning purposes as well as for the implementation improvement of several control schemes, which have been proposed in the literature. The impact of unbalanced grid conditions on the operation and design of an MMC is then investigated, drawing important conclusions regarding the choice of line current control and required capacitive storage energy during grid faults. [...

    Modulated Model Predictive Control for Modular Multilevel AC/AC Converter

    Get PDF

    Modular DC/DC Converter for DC Distribution and Collection Networks

    Get PDF
    A major change in the electrical transmission and distribution system is taking place in Europe at the moment. The shift from a centralised energy production to a distributed generation profoundly changes the behaviour of the grid. Environmental or social issues associated with the construction of new power lines to relieve bottlenecks, together with aged equipment dating from the 1960s, pose some serious challenges to government, the research community and the economy. Concepts of reactive compensation, harmonic cancellation, voltage stability, power quality and bulky low-frequency transformers need to be redefined for power exchange and transmission in the future. Photovoltaics, wind turbines, fuel cells, storage systems and uninterruptible power supplies use many power electronic interface circuits, where DC intermediate levels already exist. Large photovoltaic- or wind- powered installations, which are connected to a cable network, are characterised by non-negligible distances due to their low power-by-surface density. On the side of the consumer, current trends show an increasing use of DC in end-user equipment. In such a context, the numerous advantages of power electronics and DC cables may sometimes out-weigh their higher cost. In the future, high-power semiconductor devices that allow higher switching frequencies of the converters may make it possible to down-size even more the passive components. This would significantly reduce raw material consumption and therefore cost, something that is crucial for the market to accept the technology. In the first part of this PhD thesis, the advantages of DC distribution in terms of transmission losses are illustrated with the help of three case studies. The second part and the main contribution of this thesis is the analysis of a promising candidate for a power electronic transformer, the key component of any DC based grid. It is a bidirectional isolated DC/DC converter based on modular multilevel converters, which are well suited for medium or even high voltage range. The motivation was to investigate a converter operation with important voltage elevation ratios, capable of adapting the voltage level between low, medium and high voltage. A medium-frequency isolation stage provides the possibility of downsizing the passive components. Two modulation methods, a multilevel and a two-level operation, were analysed and compared in terms of losses. The modular DC/DC converter is an attractive solution for the sensitive aspect of the short-circuit behaviour of classical DC links and power lines. The converter can also handle short circuits without the need for additional protection devices, such as circuit breakers. Given the many advantages of DC systems (reduced environmental impact, reduced space requirements, reduced raw material use, high power quality, power flow control, low transmission losses), this new technology must, at least, be considered when assessing the extension or the renovation of conventional AC grids

    Impedance Modeling and Stability Analysis of AC/AC Modular Multilevel Converter for Railway System

    Get PDF

    The modular multilevel DC converters for MVDC and HVDC applications

    Get PDF
    A dc structure for an electrical power system is seen to have important advantages over an ac structure for the purpose of renewable energy integration and for expansion of transmission and distribution networks. There is also much interest and strong motivation to interconnect the existing point-to-point dc links to form multi-terminal and multi-voltage dc networks, which can make full use of the benefits of a dc scheme across various voltage levels and also increase the flexibility and ease the integration of both centralized and distributed renewable energy. This thesis investigates both high step-ratio dc-dc conversion to interface dc systems with different voltage levels and low step-ratio dc-dc conversion to interconnect dc systems with similar but not identical voltages (still within the same voltage level). The research work explores the possibility of combining the relatively recent modular multilevel converter (MMC) technology with the classic dc-dc circuits and from this proposes several modular multilevel dc converters, and their associated modulation methods and control schemes to operate them, which inherit the major advantages of both MMC technologies and classic dc-dc circuits. They facilitate low-cost, high-compactness, high-efficiency and high-reliability conversion for the medium voltage level and high voltage level dc network interconnection. For medium voltage level cases, this thesis extends the classic LLC dc-dc circuit by introducing MMC-like stack of sub-modules (SMs) in place of the half-bridge or full-bridge inverter in the original configuration. Two families of resonant modular multilevel dc converters (RMMCs) are proposed covering high step-ratio and low step-ratio conversion respectively. A phase-shift modulation scheme is further proposed for these RMMCs that creates an inherent feature of balancing SM capacitor voltages, provides a high effective operating frequency for reducing system footprint and offers a wide operating range for flexible conversion. For high voltage level cases requiring a high step-ratio conversion, a modular multilevel dc-ac-dc converter based on the single-active-bridge or dual-active-bridge structure is explored. The operating mode developed for this converter employs a near-square-wave ac current in order to decrease both the volt-ampere rating requirement for semiconductor devices and the energy storage requirement for SM capacitors. For low step-ratio cases, a single-stage modular multilevel dc-dc converter based on a buck-boost structure is examined, and an analysis method is created to support the choice of the circulating current frequency for minimum current stresses and reactive power losses. Theoretical analysis of and operating principles for all of these proposed modular multilevel dc converters, together with their associated modulation methods and control schemes, are verified by both time-domain simulation at full-scale and experimental tests on down-scaled prototypes. The results demonstrate that these medium voltage and high voltage dc-dc converters are good candidates for the interconnection of dc links at different voltages and thereby make a contribution to future multi-terminal and multi-voltage dc networks.Open Acces

    A novel multi-modular series HVDC tap

    Get PDF
    Tapping energy from a HVDC transmission line to serve small remote communities has been considered by researchers and HVDC manufacturers since the 1960s. Many HVDC taps proposed consider the performance of diodes, Thyristors and GTOs and the utilization of bulky and expensive high voltage transformers. This paper proposes a novel HVDC tap topology, the n-phase multi-modular series tap (MMST), which utilises capacitors to decouple HV voltage and IGBT H-bridge sub-modules typically found in modular multilevel converters to transfer HVDC to MVAC. The number of phases and operating frequency can be picked according to the requirement of the application. The feasibility of n-phase MMST has been verified by the results from simulation carried out in PLECS software

    Analysis and Design of a Hybrid Dickson Switched Capacitor Converter for Intermediate Bus Converter Applications

    Get PDF
    By 2020 it is predicted that 1/3 of all data will pass through the cloud. With society\u27s growing dependency on data, it is vital that data centers, the cloud\u27s physical house of content, operate with optimal energy performance to reduce operating costs.Unfortunately, today\u27s data centers are inefficient, both economically and environmentally. This has led to an increase in demand for energy-efficient servers. One opportunity for improved efficiency is in the power delivery architecture which delivers power from the grid to the motherboard. In this dissertation, the main focus is the intermediate bus converter (IBC), used for the intermediate conversion, typically 48-12V/5V, in server power supplies. The IBC requires compact design so that it can be placed as close to the load as possible to enable more space for computing power and high efficiency to reduce the need for external cooling. Most commonly used converter topologies today include expensive bulky magnetics hindering the converter\u27s power density. Furthermore, high output current of an IBC makes the efficiency very sensitive to any resistance, such as magnetic parasitic resistance or PCB trace resistance. In this work, analytical loss models are used to review the advantages and disadvantages of frequently used IBC topologies such as the phase-shifted full bridge and LLC. The Hybrid Dickson Switched Capacitor (HDSC) topology is also analyzed. The HDSC\u27s high step-down conversion ratio and low dependence on magnetics due to the reduced applied volt-seconds, provides a new opportunity for applications such as the intermediate bus converter. The HDSC designs the on-time of devices in order to achieve soft-charging between flying capacitors. Other advantages of the HDSC include low switch stress, small magnetics and adjustable duty cycle for voltage regulation. Challenges, such as minimizing parasitic inductance and resistance between flying capacitors, are addressed and recommendations for PCB layout are provided. In this paper, a 4:1 24-5V and 8:1 48-5V, 100W GaN-based HDSC is designed and tested. The influences of capacitor mismatch and limitations placed on soft-charging operation for the HDSC is also modeled. This analysis can be used as a tool for designers when selecting flying capacitors

    A monopolar symmetrical hybrid cascaded DC/DC converter for HVDC interconnections

    Get PDF
    With the rapid development of voltage source converter (VSC) based high voltage direct current (HVDC) transmission, it is an irresistible trend that HVDC grid will come into being. High-voltage and high-power DC/DC converters will serve as DC transformers in HVDC grid to interconnect DC lines with different voltage ratings. This paper proposes a monopolar symmetrical DC/DC converter which is composed of cascaded half-bridge sub-modules (SMs) and series-connected IGBTs. This hybrid topology features low capital costs, high efficiency, small footprint, and bidirectional power transfer capability. Operation principle, parameter design, and the control strategies of this topology are introduced. A 480MW, ±500kV/±160kV monopolar symmetrical DC/DC converter is simulated to verify its performance and evaluate the efficiency. In addition, a downscaled prototype rated at 2.4kW, ±300V/±100V has been built and tested. Experimental results further validate the effectiveness of the proposed DC/DC converter
    • …
    corecore