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Abstract

By 2020 it is predicted that 1/3 of all data will pass through the cloud. With society’s

growing dependency on data, it is vital that data centers, the cloud’s physical house of

content, operate with optimal energy performance to reduce operating costs.

Unfortunately, today’s data centers are inefficient, both economically and environmen-

tally. This has led to an increase in demand for energy-efficient servers. One opportunity for

improved efficiency is in the power delivery architecture which delivers power from the grid

to the motherboard. In this dissertation, the main focus is the intermediate bus converter

(IBC), used for the intermediate conversion, typically 48-12V/5V, in server power supplies.

The IBC requires compact design so that it can be placed as close to the load as possible to

enable more space for computing power and high efficiency to reduce the need for external

cooling. Most commonly used converter topologies today include expensive bulky magnetics

hindering the converter’s power density. Furthermore, high output current of an IBC makes

the efficiency very sensitive to any resistance, such as magnetic parasitic resistance or PCB

trace resistance. In this work, analytical loss models are used to review the advantages

and disadvantages of frequently used IBC topologies such as the phase-shifted full bridge

and LLC. The Hybrid Dickson Switched Capacitor (HDSC) topology is also analyzed.

The HDSC’s high step-down conversion ratio and low dependence on magnetics due to

the reduced applied volt-seconds, provides a new opportunity for applications such as the

intermediate bus converter. The HDSC designs the on-time of devices in order to achieve

soft-charging between flying capacitors. Other advantages of the HDSC include low switch

stress, small magnetics and adjustable duty cycle for voltage regulation. Challenges, such as

minimizing parasitic inductance and resistance between flying capacitors, are addressed and

recommendations for PCB layout are provided. In this paper, a 4:1 24-5V and 8:1 48-5V,

iv



100W GaN-based HDSC is designed and tested. The influences of capacitor mismatch and

limitations placed on soft-charging operation for the HDSC is also modeled. This analysis

can be used as a tool for designers when selecting flying capacitors.
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Chapter 1

Introduction

1.1 Data Centers and the Global Economy

Global Economy’s Dependence on Data Centers

In recent decades, data centers have become the backbone of the global economy. Without

data centers, businesses could not operate, communications could not occur and online

consumer services would not be possible. Furthermore, with new technologies such as

driver-less vehicles and crypto-currency leveraging data centers as well, the global economy’s

dependency on data centers is undeniable and continuing to grow [10].

Massive Data Center Infrastructure

The data center infrastructure required to support the world’s Internet users is massive.

On an individual level, most Americans today have a significant digital presence. Emails,

social media, banking transactions, streaming entertainment, etc., all require the Internet

and are made possible by data centers. On a global scale, there are approximately 2.5 billion

people who use the Internet, 70 percent of which use the Internet every day [11] [12]. Not

surprisingly, the infrastructure to support this global system is extremely large. In fact,

according to the International Data Corporation (IDC), in 2015 there were 8.55 million data

centers in the world, with the largest called The Citadel, covering 7.2 million square feet in

Tahoe Reno, Nevada [13].

1



Data Center Energy Consumption

As stated in [14], ”Data centers are one of the most energy-intensive building types,

consuming 10-50 times the energy per floor space of a typical commercial office building.”

Put into more personal terms, charging a single tablet or smart phone requires a negligible

amount of energy. However, streaming an hour of video once a week on either of these

devices requires more energy from the data centers than two new refrigerators use in one

year [15]. According to a study on data center energy usage conducted by the United States

Department of Energy in 2014, US data centers consumed about 70 billion kilowatt-hours

of electricity, representing about 2 percent of the country’s total energy. This is a 4 percent

increase in the data center energy consumption from 2010 to 2014 [16]. On a global scale,

data centers consume approximately 3 percent of the world’s global power [? ]. And while

the rate of increase has slowed down in recent years, the integral nature of data centers and

cloud computing in today’s global economy is undeniable and will continue to be one of the

single largest global energy consumers.

Energy Consumption and Efficiency

A data center’s massive energy consumption is largely due to the inefficiency of the system.

Not only is energy needed for direct computing power, but to avoid temperature and humidity

rise, which may lead to condensation forming on machines, energy is also needed for massive

cooling systems. Most of the energy loss for a server occurs at the power supply, which

converts the AC voltage coming from a standard outlet to a set of low DC voltages used to

power microprocessors, memory subsystems, mass storage, network devices and the analog

and digital interfaces that complete the system [17] [18]. Considering the power delivered

from the grid to the motherboard, typical overall delivery efficiencies are around 50% [19].

As for the power supply, because of multiple power conversions within a single architecture,

efficiencies are typically range from 70% [20]-80% [3] [21].
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Summary

In summary, the global economy’s reliance on data centers is undeniable. The sheer size and

energy consumption is massive and there is a lot of room for improvement for making data

centers more efficient. In particular, substantial efficiency improvements are needed in the

power delivery architecture. Increasing efficiency and power density of the power delivery

architecture will enable the overall system to operate more efficiently and in turn decrease

the energy consumption and operating costs of data centers.

1.2 Market Trends for the Intermediate Bus Converter

(IBC)

As stated in the previous section, increasing the efficiency of the data center power supply can

greatly impact a data center’s operating costs. Over recent decades, the power distribution

technology for data centers has transitioned through several architectures starting with the

centralized-power architecture (CPA) and evolving to the intermediate bus architecture.

Each advancement has been driven by factors such as new technologies, demand for wider

input voltage ranges, higher power levels and better supply performance [22].

This thesis focuses on the design for the intermediate bus converter (IBC), which is part

of the intermediate bus architecture (IBA) depicted in Fig. 1.1. The IBC is one of three

conversions in the power supply architecture and high efficiency is paramount for the design.

The IBC is what differentiates the distributed power architecture (DPA) from the IBA. In

order for the IBA to be competitive to the DPA, the IBC must have the highest efficiency

among the power conversion stages. The power density is also critical. In order to keep

conduction loss from connectors between conversion stages low, the IBC needs to be placed

close to the motherboard. The evolution of the power supply system architecture ending

with the inclusion of the IBC is summarized in the following section.

3



Figure 1.1: Intermediate bus location in the data center power supply system.

1.2.1 Centralized Power System

During the 1960’s when semiconductor switches were becoming more accessible, a typical

configuration for the centralized power system included an AC-DC rectifier/ charger that

converted the AC input voltage to a 48V bus voltage. Then a DC/DC converter was used to

step the voltage down from 48V to 5V or 12V. The centralized power supplies were typically

located at the bottom of a server cabinet and connectors between conversion stages were

long and made it difficult to deliver high power. The typical configuration is provided in

Fig. 1.2. All of the voltages were generated at a central location and distributed to loads

via buses. This particular design was used until the mid 1980’s and was discontinued due

to issues relating to long time to market, system failures occurring from a single component

power failure, high cost for bulky bus bars and inability to accurately regulate the supply

voltage [2].

Figure 1.2: Centralized power architecture [2].
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1.2.2 Distributed Power Architecture

In the early 1990s, following the centralized power system, came the distributed power

architecture (DPA). The distributed power architecture broke the power conversion into

building blocks as pictured in Fig. 1.3. The centralized system was replaced with an AC/DC

front-end power supply that provided a 48V output to each shelf and line card. This more

modular architecture enabled the line cards to be replaced when component failures occurred

and decreased failure downtime. Each line card included multiple 48V, isolated DC/DC

modules that provided the required voltages for the line-card loads. A combination of the

trends towards digital functional blocks with lower voltages, market introduction of modular-

isolated DC/DC converters and a need for higher reliability contributed to the evolution from

the centralized power system to the distributed power architecture [2].

Figure 1.3: Distributed power supply [2].

1.2.3 Intermediate-Bus Architecture

By the early 2000s, demand increased for on-board low-cost point of load regulators, ranging

from .5-3.3V, for digital and analog chips. This meant more DC/DC bricks were needed

which took up more space and increased the system cost. This led to the market adoption

of the Intermediate Bus Architecture (IBA). The IBA includes a front end AC/DC power

supply, with a typical output of 48V, an intermediate bus converter that provides isolation

and steps the voltage down to a bus voltage, typically between 14V-5V and non-isolated

5



point of loads (POLs) which provides high-quality voltages for a variety of digital and analog

blocks. A diagram of this architecture is provided in Fig. 1.4. The IBA has been widely

adopted and due to requiring only one isolated converter has enabled financial savings. The

high quality voltage from the POLS has enabled higher efficiency and processing power for

data center operations [23, 24, 25]. Other industries, such as space, are also taking a page

from the data center world and are incorporating the intermediate bus architecture into their

own technical designs [26].

Figure 1.4: Intermediate-bus architecture [2].

1.2.4 Other Architecture Designs

With data centers upgrading IT equipment every 3-5 years [27], new architecture designs are

looking for ways to lengthen system longevity while continuing to increase power density and

efficiencies. Other approaches include the Factorized Power Architecture (FPA) developed

by Vicor, claiming to provide better system performance, longevity and cost compared to the

IBA [17]. This architecture eliminates the IBC and converts 48V to 1V as detailed in Fig.1.5.

Google and Facebook have also recently collaborated to propose a similar architecture,

boasting to reduce losses by 30% by delivering 48V directly to the server [3]. For this system,

regulation occurs at the 277Vac-48V conversion, enabling the converter to be compact and

placed closer to the load. While new architectures such as this may have proven to be
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efficient, they require large scale redesigns of data center server structuring and large initial

infrastructure investments.

Figure 1.5: Vicor’s 48V direct to the CPU architecture [3].

Summary

Over the past few decades the power supply architecture has evolved to the IBA. The IBA is

cost effective and its modular structure enables high flexibility for modifications and updates.

Adoption of the IBA is in part due to the IBC. IBCs need to have high efficiency for improved

overall system efficiency as well as high power density. The IBC needs to be placed as close

to the load as possible to reduce any I2R loss that can be introduced by parasitics in the

connectors between stages.
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Chapter 2

Topology Exploration for the IBC

In the following section different topologies used in data center power supplies and for similar

power levels are reviewed. Not all of the topologies include isolation though. Generally, the

IBC is implemented using an isolated structure to protect the server components from power

faults that could propagate from the front-end AC/DC converter. If a power surge occurs,

the isolated IBC can shield the POL converters, which do not have isolation. Recently

however, isolation for the IBC stage has not been required in some systems. Interestingly,

the isolation characteristic was adopted from telecommunication systems which do require

isolation. However, the power spike that warrants the isolation in telecommunication systems

does not actually occur in data centers due to the isolation from the ac/dc conversion stage

before the IBC. Therefore, isolation in the IBC stage, for particular systems, has been

increasingly viewed as an over provisioned safety requirement [28].

2.1 Buck Converter

The buck converter is appealing for stepping down voltage due to its design simplicity and

low cost. The buck, depicted in Fig. 2.1, is commonly used today for the Point-of-Load

(POL) stage [? 29, 30]. With some data centers shifting to DC distribution systems due to

the penetration of renewable energy sources in the distribution networks, the buck has been

researched for other stages within the IBA, such as the 380V-48V conversion [31].
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Figure 2.1: Buck topology.

One of the design limitations of the buck is the stress and loss created when operating

with an extreme duty cycle. To extend a short duty cycle, designs such as [32] can divide the

input voltage across stacked capacitors, increasing the duty cycle and decreasing the voltage

stress across the high-side device. Other designs reduce the conduction loss at the output

using a multi-phase design [33, 34, 35]. In [32] a multi-phase cascaded buck design is used

for a 54V-1V conversion, the input voltage is stacked in series and the outputs are connected

in parallel, however the overall power density becomes limited by the output inductors.

2.2 Phase-Shifted Full Bridge Converter

For IBC designs that still require isolation between the input and output, a transformer is

needed in the converter design. The Phase-Shifted Full Bridge (PSFB) provides isolation

as well as lower stress on devices and higher efficiencies compared to the buck converter.

The phase-shifted full bridge, depicted in Fig. 2.2, is typically used for medium power

levels ranging from 200W-3kW and for applications such as data center power supplies,

telecommunication, micro/mild hybrid vehicles, renewable energy systems and battery based

storage systems. Efficiencies for PSFB used across these applications range from 85% to

93% [36, 37, 38, 39, 40]. Similar to the buck design, the phase shifted full bridge includes an

inductor at the output which commonly causes high conduction loss. In [41], series-connected

transformers were used, each acting as a transformer or inductor depending on the switching

interval and could be used to replace the output inductor. Other factors that impact the

performance of the PSFB are the turns ratio of the transformer, core loss, AC winding loss
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and non-zero current switching (ZCS) of the synchronous rectifier devices. This topology

uses zero voltage switching (ZVS) for increased efficiency but it is not achievable across the

full load range [42]. Efforts to extend the ZVS range include utilizing the adaptive energy

stored in components of an auxiliary circuit [43].

Figure 2.2: Phase-shifted full bridge topology.

2.3 LLC Converter

An additional option for an isolated IBC design is the LLC converter. The LLC converter,

depicted in Fig. 2.3, is a popular topology used in DC-DC converters for data center

server power supplies [40], telecommunication power supplies [44] and electric hybrid vehicle

converters [45]. Compared to the PSFB, the LLC is capable of achieving ZVS over the full

load range [46]. By greatly reducing switching loss, the LLC is able to operate at high

frequencies to increase power density and reduce the size of the resonant components [47].

Transformer loss is typically the dominant loss mechanism in high-frequency LLC designs

[48]. Planar transformers can be used for greater power density but they can introduce other

issues such as termination loss that can hinder efficiency [49]. Typical LLC designs range in

power levels from 400W to 5kW with efficiencies ranging from 92% to 98% [50] [51] [52] [53]

[54].
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Figure 2.3: LLC topology.

2.4 Switched-Tank Converter

The switched-tank converter (STC), shown in Fig. 2.4 is also a resonant converter. Each of

the inductors creates a resonant tank with the capacitors. Compared to the PSFB and LLC,

the STC does not use a bulky transformer to step down the voltage. Instead, capacitors are

used to step down the voltage. The STC design has been used for data center power supply

applications due to its high efficiency, high power density and light-weight. One drawback to

the design is it’s inability to regulate the output voltage. Furthermore, while the topology

component count can be high increasing overall converter costs, the efficiencies achieved are

comparable to the LLC. The topology has achieved 98% efficiency for power levels up to

600W [55] [56] [57].

Summary

Fig. 2.5 shows a graphical summary of the articles reviewed in this chapter. The converter

efficiencies are compared with their output current. The buck converter design had the lowest

efficiency and current capability, followed by the PSFB. The LLC and STC are capable of

achieving efficiencies close to 98% at output currents upwards of 50A. The resonant converters

are limited by conduction loss of the resonant tank and in the case of the LLC, transformer

loss. The design specifications for this IBC are provided in Table 2.1 and the target is

included in the graphical summary.
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Figure 2.4: Switched-tank capacitor topology.

Figure 2.5: Efficiency summary at maximum currents.
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Table 2.1: IBC target design specifications.

Design Parameter Value

DC Input Voltage 48V
Output Power 500W

DC Output Voltage 5V
Output Current 100A

Conversion Efficiency 99%
Size 1/8 Brick

2.5 Switched Capacitor Converters

High current applications have long been dominated by resonant converters such as the LLC

and phase-shifted full bridge. While such converters are capable of achieving high efficiencies,

further improvement of efficiency is strongly linked to specialized magnetic design and

manufacturing. Searching for a topology that does not rely on magnetics for energy transfer

naturally pushes the designer towards switched capacitor (SC) topologies. With high-power

density becoming of greater importance for the power electronics designer, switched capacitor

designs offer unique opportunities for increased power density. Conventional switched

capacitor topologies include the Ladder, Fibonacci, Dickson, and Series-Parallel. From these

traditional designs, other topologies have been introduced such as the multilevel modular

capacitor-clamped converter (MMCCC) [58] and flying capacitor multilevel converter

(FCMDC) [59].

Switched capacitor converters have been used in a wide range of applications such as

low and high power integrated circuits [60, 61, 62], energy harvesting [63], interconnections

of offshore wind farms to DC grids [64] and for self-powered signal processing [65, 66].

Limitations of the SC topologies include inherent loss due to voltage mismatch during energy

transfer between capacitors that are shorted together and inability to regulate the output

voltage.
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2.6 Hybrid Dickson Switched Capacitor (HDSC)

The Hybrid Dickson Switched Capacitor (HDSC) Converter is based on the original Dickson

switched capacitor topology [61] which will be discussed in depth in Ch. 3. The HDSC is

suitable for extreme conversion ratios, has low switch stress [67], reduced magnetic size,

provides voltage regulation [68] and increased efficiency using soft-charging [69]. This

topology is analyzed, designed and tested for the IBC application and discussed in Chapters

3 and 4.

2.7 Topology Design and Loss Analysis

In this section, the four topologies introduced in Sections 2.1-2.4, the Buck, PSFB, LLC and

STC are analyzed and simulated for a loss comparison to the HDSC. The characteristics of the

selected passive elements and devices, such as Rds,on, Coss, capacitor ESR and inductor DCR,

are integrated into the simulation for accurate efficiency calculations. Magnetic loss due to

core loss and ac winding loss are calculated separately and included in the loss distribution

summary. The loss breakdown for each topology enables insight into the limitations of these

converters and used for comparison to the HDSC. The topologies are compared for a 135W

design and most of the designs are analyzed at a switching frequency, fs=1 MHz. In each

analysis the power loss distribution and required component list are provided.

2.7.1 Buck Converter Design and Loss Analysis

One of the advantages to the Buck topology is the simple design. It requires two switches, an

output inductor, input capacitor and output capacitor. The basic operation and operating

waveforms are depicted in Fig. 2.8 along with the operating characteristics in Table 2.2.

Each of the devices, Q1 and Q2, are driven with complementary gate-to-source voltage

signals. The length of time that Q1 is ON is related to the duty cycle, D, and conducts

current for DTs, where Ts represents the switching period. Q2 conducts for the remaining
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Figure 2.6: Buck schematic.

period, (1−D)Ts. The duty cycle is determined using the following equation,

D =
Vout
Vin

(2.1)

One of the disadvantages to the buck converter is the high stress that occurs on the

hi-side device, Q1, when operating under a high voltage conversion ratio. This high stress is

due to high voltage and peak current, resulting in increased switching loss, such as turn-off

loss and overlap loss. Additionally, the high peak currents through the inductor will lead to

increased RMS currents, IL,RMS, and higher inductor conduction loss. From Eq. 2.1 and the

design parameters listed in Table 2.3, the duty cycle is D=.104. This short duty cycle means

that Q1, must transfer the entire power flow of the converter during this short amount of

time. The device not only has to block the input voltage but also withstand much higher

current levels than the average current that goes through the device. From the simulated

buck model, where L = 4.7µH, IL=27 A, the average current through Q1 is 2.8 A. The RMS

current through the device is over three times the average current, Q1,rms=8.7 A. This high

rms current will result in high conduction loss. The simulated drain-to-source voltage, Vds,

waveforms for Q1 and Q2 are provided in Fig. 2.9. The list of components selected for the

buck design are provided in Table 2.4. With regards to cost, when selecting devices, the cost

of the device will increase depending on the voltage and current stresses that each device

needs to withstand. The discrete device and passive characteristics were integrated into the

simulation for an accurate efficiency approximation. The losses of this converter include,

conduction loss due to the on-resistance of the devices, Rds,on, switching loss due to device
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(a) Buck schematic for subinterval 1, DTs. (b) Buck
schematic for Subinterval 2

(b) Buck schematic for Subinterval 2, (1−D)Ts.

Figure 2.7: Buck circuit configurations.

Figure 2.8: Buck operating waveforms.
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Table 2.2: Buck Characteristics

Operation Characteristics Symbol

Conversion Ratio, Vout

Vin
D

Max. Switch Voltage Vin
Max. rectifier voltage Vin

Average Rectifier Current IoutD
Switch Utilization Vout

Vin

output capacitance, conduction loss from the DCR of the output inductor, inductor core loss,

inductor ac winding loss and gate charge loss, accounting for the charge required to turn

the FET on and off. The conduction loss and output capacitance loss were calculated from

the simulation, the core and winding loss were determined using Coilcraft’s Power Inductor

Analysis and Comparison Tool. The loss distribution is provided in Fig. 2.10. The overall

efficiency of the converter was 87.2%. The leading loss is due to the inductor conduction loss

from the inductor’s parasitic resistance and core loss.
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Table 2.3: Buck Simulation Parameters

Vin 48V
Vout 5V
Iload 27A

fs 1MHz
D .104

Table 2.4: Values and components for buck design.

Component Name Rating Value

Q1 EPC2001C 100V, 25A, Rds,on=7mΩ
Coss=450pF

Q2 EPC2023 30V, 60A Rdson=1.3mΩ
Coss=2400pF

inductor XAL1510-472 DCR=3.8mΩ 4.7µH

Figure 2.9: SPICE simulated buck waveforms.
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Figure 2.10: Loss distribution of designed buck converter.

Buck Summary

To improve the efficiency of this buck design, multiple devices could be used in parallel to

reduce the conduction loss attributed to the device’s on resistance and multiple inductors

could be used in parallel to reduce the equivalent parasitic resistance of the output inductor.

While adding devices in parallel will reduce the conduction loss it will increase the overall

volume as well as increase switching losses such as turn-off loss, with every additional device

added.

2.7.2 Phase Shifted Full Bridge Design and Loss Analysis

The PSFB design is more complex than the buck converter and requires more components

leading to increased overall cost. The components required include four switches on the

primary side, a transformer, and two diodes or synchronous switches on the secondary side.

The phase shifted-full bridge circuit is provided in Fig. 2.11

The phase shifted gate signals and operational waveforms are provided in Fig. 2.12. The

basic operation entails, Q1 and Q2 switched at 50% duty cycles and 180◦ out of phase from
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each other. Q3 and Q4 follow this same switching scheme and are phase shifted with respect

to Q1 and Q2. The amount of energy transfered depends on the phase-shift, φ, or overlap

between the diagonal switches of the Q1/Q2 and the Q3/Q4 leg. The leakage inductance,

Lr resonates with the output capacitance of the devices and enables soft-switching. The

synchronous devices on the secondary side act as a current rectifier followed by an output

filter. The operating characteristics are provided in Table 2.5.

Figure 2.11: Phase shifted full bridge circuit.
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Figure 2.12: Phase shifted full bridge waveforms.

Table 2.5: Phase shifted full bridge characteristics.

PSFB Converter Operation Characteristics

Conversion Ratio Ns

Np

Vout

Vin

Pri. Side Max. Switch Voltage Vin
Pri. Side Peak Switch Current Iout

Ns

Np

Max rectifier Voltage Vin
Ns

Np

Average Rectifier Current (Iout)
2
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When considering the PSFB design for a high output current application it is mandatory

to replace the secondary side diode rectification with synchronous devices. This is due to

the forward voltage drop, VF of each diode. The losses caused by the forward voltage drop

of the diode current rectification can greatly impact the overall efficiency. Loss due to the

forward voltage drop of a diode rectifier can be calculated using Eq. 2.2.

PVF
= VF IF (2.2)

At high output currents, losses become detrimental to proper operation.

Psynch. = I2Rds,on (2.3)

In [? ] the Rds,on losses due to the synchronous rectifiers, calculated using Eq. 2.3 and

switching losses of the synchronous FETs are shown to be less compared to loss from the

forward voltage drop of the secondary rectifiers.

The leakage inductance of the transformer is leveraged to achieve zero voltage switching

(ZVS) on all of the primary side devices by resonating with the output capacitance of the

primary side devices. The resonant tank, consisting of the device output capacitance and

transformer leakage inductance, is used to position zero volts across the switching device

eliminating any loss due to simultaneous overlap of the switch current and voltage at each

transition. It should be noted that ZVS is not achievable across the full load range, but is

limited to the bounds of minimum output load and maximum input line voltage [42]. The

duty cycle of the PSFB is determined by

DPSFB =
nVout
Vin

(2.4)

Comparing Equation 2.4 to Equation 2.1 for the buck, the duty cycle is extended by the

turns ratio, n. Assuming a phase shift of φ = .4, the turns ratio of the transformer Ns

Np
, can

be solved by
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Ns

Np

φ =
V

V g
(2.5)

From Equation 2.5 and the simulation parameters of Table 2.6 the turns ratio is approxi-

mately n=.25. Proper dead-time, dt, must be included in order for the converter to achieve

ZVS this can be determine using the resonant frequency of the magnetizing inductance, Lm

and output capacitance, Coss of the primary side devices using the following equation,

fr =
1

2π
√
Lm2Coss

(2.6)

dt ≥ π

2

√
Lm(2Coss) (2.7)

Using the parameters provided in Table 2.6 and the selected discrete components listed in

Table 2.7, the design is verified in simulation. The results are provided in Fig. 2.13. The

overall efficiency for the 135W design is 89.3%. The PSFB loss distribution is provided in

Fig. 2.14.

Table 2.6: PSFB Simulation Parameters

Vin 48V
Vout 4.89V
Iload 28.9A
fs 1MHz

D .365
Cr 100nF

Ns : Np 4:1
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Table 2.7: Components for Phase Shifted Full Bridge Design

Component Value Rating Characteristics

Q1, Q2, Q3, Q4 EPC2031 60V, 48A Rds,on=2.6mΩ
Coss=940pF
Qg=16nC

Q5, Q6 EPC2023 30V, 60A Rds,on=1.3mΩ
Coss=2400pF
Qg=19nC

Transformer coilcraft-RA7040 4:1 DCRpri=10.75mΩ
DCRsec=4.25mΩ

Lm=.55µH
Output inductor coilcraft-SER2915L-222 2.2uH DCR=2.5mΩ

Figure 2.13: PSFB simulated waveforms.
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.

Figure 2.14: Simulated PSFB loss breakdown.

PSFB Summary

The loss distribution shows that over half of the losses are related to the output inductor and

the transformer. Similar to the buck converter multiple inductors could be used in parallel

to decrease conduction loss at the output, however power density will be reduced.

2.7.3 LLC Design and Loss Analysis

The LLC converter, illustrated in Fig. 2.15, is a widely used design that is capable of

achieving high efficiencies for a wide load range. One advantage the LLC has in comparison

to the PSFB is its ability to achieve soft-switching for all of the switching devices over the full

load range where as the PSFB is limited in operation for maintaining ZVS. Due to the low

switching losses of the LLC, the converter is able to operate at higher switching frequencies

and can therefore use smaller passive components for increased power density. Additionally,

in comparison to the PSFB which suffers from high-order harmonics on the secondary side

currents requiring a large output inductor to reduce the current ripple, the LLC has the

advantage of not needing an output inductor and can further increase its power density in

comparison to the PSFB [70] [71].
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The LLC is a resonant converter, obtaining regulation through frequency modulation

not pulse-width modulation. Compared to the PSFB the LLC requires the same amount of

switches with the option to implement a half or full bridge on the primary or secondary. In

this design a half bridge, Q1 and Q2, is designed on the primary and synchronous switches,

Q3 and Q4 are used on the secondary. As stated previously, each of the switches can achieve

soft-switching enabling the LLC to operate at higher switching frequencies for increased

power density. While the design of the converter is more complicated in comparison to

the buck or PSFB, the basic operation shown in Fig. 2.15, is simple. Q1 and Q2 operate

complimentary and generate a square wave voltage across the resonant tank. The reactive

components, Lr and Cr, generate a sinusoidal current. The sinusoidal current is then rectified

by the synchronous devices on the secondary side and sent through a low pass filter to

the output. Zero-voltage switching is achievable on all devices and zero current switching

(ZCS) is achievable on the secondary side devices. The resonant circuit is comprised of the

primary side inductance, Lm, leakage inductance of the transformer, Lr and the device output

capacitance, Cr. In order to reduce the size of the magnetics high frequency operation is

needed. The disadvantage of operating at high frequencies however is this leads to increased

AC loss in the magnetics. Other drawbacks of the transformer include core loss heating, large

footprint and expensive implementation costs. For designs that include planar transformers,

cost can by high due to multilayer PCBs and cutouts for transformer pieces. The loss

breakdown of the LLC include the synchronous rectifier conduction loss, transformer loss,

primary side conduction loss and resonant tank conduction loss.

The LLC was simulated using the characteristics for the selected devices listed in Table

2.8. The operating point and simulation parameters for the LLC design is provided in Table

2.9. The simulated waveforms are provided in Fig. 2.16. The overall efficiency for the 141W

design was 95.6%.
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Figure 2.15: LLC operating waveforms.
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Table 2.8: Components for LLC Design

Component Name Rating Characteristics

Q1, Q2 EPC2031 60V, 48A Rds,on=2.6mΩ
Coss=940pF
Qg=16nC

Q3, Q4 EPC2023 30V, 60A Rds,on=1.3mΩ
Coss=2400pF
Qg=19nC

Cr Murata-GCM21BR72A104KA37K 100nF 100V, X7R, ESR=30mΩ
Lr coilcraft-XEL6030− 28ME 280nH DCR=2.1mΩ

transformer coilcraft-POE120PL− 33 24:5 DCR=5mΩ

Table 2.9: LLC simulation parameters.

Vin 48V
Vout 4.89V
Iload 28.9A
fs 1MHz

Lr 280nH
Cr 100nF

Ns : Np 24:5
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Figure 2.16: LLC simulated waveforms.

Summary of LLC

The simulated LLC loss breakdown in Fig. 2.17 shows that the transformer and the

synchronous secondary devices are the largest contributors of loss. In [72] a matrix

transformer is used with enhanced termination loop for the synchronous rectifier using a non

uniform winding structure. AC losses such as proximity effect, skin effect and termination

loss can be improved through magnetic manufacturing [73] [74] [75].

2.7.4 Switched Tank Design and Loss Analysis

The advantage that the STC has over the previous topologies, is it does not require a large

output inductor or bulky transformer. The disadvantage is that the STC requires many more

switches than the previous designs. However, each device has low voltage stress helping to

reduce switching loss. While no transformer is needed, small inductors are used to create

resonant currents. The sinusoidal resonant currents enable zero-current switching. While

many switches are needed the switching scheme is simple, each half-bridge operates with

complimentary gate signals that are 180 deg out of phase. The circuit subintervals and

corresponding waveforms are provided in Fig. 2.18.
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Figure 2.17: LLC loss distribution.

The resonant frequency is determined using Equation 2.8. The resonance occurs between

the capacitor and inductor in series in each branch.

fr =
1

2π
√
LC

(2.8)

Using the discrete devices used in Table 2.11, the STC topology was simulated and the

corresponding waveforms are provided in Fig. 2.19 with a summary of the simulated

waveforms given in Table 2.10. The overall efficiency for the 179W design is 93.6%.

STC Summary

The loss breakdown in Fig. 2.20 shows that the combined conduction loss of the resonant

tank capacitors and devices are the dominant loss mechanism. This can be improved by

paralleling more capacitors for a decreased equivalent ESR, but will require re-design of the

resonant tank and switching frequency. Furthermore, added capacitors will decrease power

density and increase the design cost.
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Figure 2.18: Switched-tank converter subintervals and waveforms.
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Table 2.10: STC Simulation Parameters

Simulated Parameters

Vin 48V
Vout 5.87V
Iload 28.7A
fs 328kHz

IQ11,pk 11.9A
IQ11,rms 5.9A

Table 2.11: Components for STC Design

Component Value Rating Characteristics

GaN device EPC2023 30V, 60A Rds,on=1.3mΩ
Coss=2400pF
Qg=19nC

Cr C3225X7S2A475K200AB 4.7µF, 100V X7S, ESR=5mΩ
Lr LP02-500-1S 50nH, 50A DCR=.22mΩ

Figure 2.19: STC simulated waveforms.
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Figure 2.20: STC simulated waveforms.

2.7.5 Topology Comparison and Summary

While the designed buck converter required the fewest number of devices, the efficiency was

the lowest. For the buck design a large inductor was needed to reduce the inductor current

ripple. Due to the large inductance the series resistance was high as well causing high

conduction loss of the output inductor. While the PSFB has better efficiency the greatest

loss is similarly attributed to the output inductor series resistance. The resonant converters

eliminate the need for an output inductor and instead conduction losses for the resonant tank

largely contribute to the overall power loss. For this high output current application, series

resistance from magnetics, whether at the output or in the resonant tank are a common loss

mechanism across each of the converters simulated.
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Chapter 3

Switched Capacitor Converters

SC converters use capacitors to store and transfer energy instead of inductors. The energy

storing capacitors, commonly called flying capacitors, Cfly, transfer power by alternately

connecting the source to the load or another capacitor. The following sections cover the

fundamentals of switched capacitor circuits and their inherent loss.

3.1 Energy Density of Capacitors

Today’s capacitor dielectric materials allow capacitors to exceed the power density of

inductors [76]. In [77], a detailed analysis of available surface mount discrete components

was performed and the results show that capacitors have substantially higher energy and

power density than inductors. For example, a 1µF T-Y Ceramic capacitor was 149x more

energy dense than the 10µH Coilcraft SMT inductor it was compared to. Fig. 3.1 compares

the energy density of shielded inductors and ceramic capacitors, confirming that capacitors

can provide increased energy density [78].
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Figure 3.1: Energy density comparison of ceramic capacitors and inductors [4].
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3.2 Ideal Simplified Switched Capacitor Model

A simplified model for the switched capacitor converter is presented in Fig.3.2 [? ]. The ideal

SCC model uses a transformer to represent the voltage conversion and an output impedance

representing the losses and output variation. For switched capacitor converters, the output

impedance is a measure of performance and power loss.

Figure 3.2: Basic Model for a switched capacitor converter.

The transformer turns ratio represents the unloaded conversion ratio of the converter.

When the ideal converter is connected to a load, there is a voltage drop across Rs, due to

charge transfer and conduction loss.

There are two asymptotic limits to Rs, the slow switching limit, SSL and the fast

switching limit, FSL. The ideal SSL and FSL output impedance asymptotes along with

the corresponding capacitor current wave-shapes, are plotted in Fig. 3.3. For SSL, the

capacitors are able to fully equilibrate during each switching cycle and the charge transfer

is impulsive, resulting in high current spikes. When a SC converter is operating in the

SSL region, Rs is determined by switching frequency and capacitance. For the FSL region

of operation, when the switching frequency exceeds the critical frequency, fcrit, the output

resistance becomes independent of frequency. The capacitor voltages remain constant due

to the nature of high switching frequency and current flow is constant. When operating in

FSL, Rs is determined by the device on-resistance, Rds,on, capacitor ESR and other parasitic

resistances in the charge transfer path [79]. The optimal design is at the intersection of the

SSL and FSL. The analytical expressions for the output impedance for the two operating

regions of a SCC are provided in Equations 3.1 and 3.2. The charge flow coefficient for

each capacitor and switch, ar,i, correspond to charge flows that occur immediately after the

switches are closed to initiate each respective phase of the SC and are derived in [5].

36



RSSL =
∑ (ar,i)

2

Cifsw
(3.1)

RFSL = 2
∑

Ri((ar,i)
2 (3.2)

Charge sharing determines RSSL so the next section will analyze the effects of charge-sharing

and the losses that are inherent for operation in the SSL region.

3.3 Hard-Charging Loss

As stated in the previous section when operating in SSL, hard-charging losses are the

dominant loss mechanism. In this section a basic capacitor charge sharing scenario and

the inherent loss is described.

Hard charging loss, also known as charge sharing loss, occurs when two capacitors, or a

voltage source and a capacitor, with a difference in voltage, ∆Vdiff , are shorted together.

The basic capacitor charging scenarios are provided in Fig. 3.4.

As stated in [6], after the switch is closed between the two capacitors in Fig. 3.14b, ”The

capacitor voltage can not change instantaneously and the mismatch of the initial capacitor

voltage will be present across the series resistance, Rs, resulting in a large instantaneous

current,” as shown in Fig. 3.5. This can be described analytically in Equation 3.3. Where

Ceq is the equivalent series and parallel capacitance seen at the output.

IC =
∆Vdiff
Rs

e
−t

RsCeq (3.3)

Due to the voltage difference, ∆Vdiff , the rate of change in voltage across the capacitor is

extremely high causing the current in the capacitor, Ic to be very high with a decay rate

related to the time constant of the series resistance, Rs and capacitance, Ceq.

Assuming that the time constant, τ=RsCeq�Ts, such that the converter is operating in

the SSL region, the power loss for hard-charging for the scenarios of Fig. 3.4 can be related
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Figure 3.3: Output impedance vs. switching frequency [5].

(a) Voltage source charging
capacitor.

(b) Capacitor charging ca-
pacitor.

Figure 3.4: Basic capacitor charging scenarios.
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Figure 3.5: Capacitor voltages and current waveforms in the charge redistribution process
[6].

to the average current, Iavg. The average current can be calculated using Equations 3.4 to

Equation 3.7.

d(Q)

dt
= Iavg (3.4)

Iavg = C1
(Vin − V1)

Ts
=
C1∆V

Ts
(3.5)

Req =
∆V

Iavg
=
Ts
C1

=
1

fsC1

(3.6)

PHC =
(∆V )2

Req

= fsC1(∆V )2 (3.7)

Notice that this inherent charge transfer loss does not depend on the series resistance,

Rs. Therefore, a lower Rds,on or decreased parasitic resistance will only result in an increased

current spike over a shorter time, but the total power loss in each charge cycle will remain

the same [80]. Instead the change in energy stored in the capacitors and the losses of the

charging process are a function of the voltage mismatch, ∆Vdiff , and capacitance.

For a constant current load where Irms=Iavg, the mismatch is related to how much charge

each capacitor transfers in the previous subinterval of the switching period. The voltage

mismatch is proportional to the load current or the charge drawn from the load and inversely

proportional to the capacitor values. Using the relationship between voltage and current in
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a capacitor,

IC = C
dV

dt
(3.8)

equations 3.9 and 3.10, presented in [6] summarize the relationship between the capacitor

voltage difference, switching frequency and capacitance. From Equation 3.10 we see that

for a constant capacitor current, losses due to hard-charging can be decreased by increasing

the switching frequency, fs or the capacitance, Cfly. While a higher fs would allow smaller

passives to be used, drawbacks of increasing the switching frequency or capacitance include,

increased switching loss, difficulty with control, achieving precise timing intervals, increased

capacitor size and increased cost.

∆V ∝ 1

fs
,

1

Cfly

(3.9)

Ploss ∝
1

fs
,

1

Cfly

(3.10)

Therefore, it is desirable to minimize the capacitor voltage mismatch, ∆V , without increasing

fs or Cfly [6]. This is achieved with the ideal hybrid Dickson switched capacitor topology

and will be addressed in a later section.

3.4 Dickson Topology

The hybrid Dickson switched capacitor circuit is derived from the original Dickson topology

[61]. The 4:1 Dickson topology, provided in Fig. 3.6 has two switching intervals which will

be referred to as phases. Each phase lasts half of the switching period. The corresponding

gate signals for the circuit are provided in Fig. 3.7. The simplified circuits for subintervals

1 and 2, are provided in Fig. 3.8. The characteristics of the Dickson topology design are

described in Table 3.1. The basic operation of the Dickson Converter is summarized below.
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Figure 3.6: 4:1 Dickson Topology

Table 3.1: Dickson Converter Characteristics

Conversion Ratio n+ 1
Capacitors n
Switches n+ 5

Figure 3.7: Gate signals for 4:1 Dickson Converter

(a) Phase 1 (b) Phase 2

Figure 3.8: 4:1 Dickson topology for each phase of the switching period.
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Subinterval 1

Q1, Q4, Q6 and Q8 turn-on and the input voltage, Vin charges C3. C2 discharges into C1.

Each branch discharges to the load.

Subinterval 2

Q2, Q3, Q5 and Q7 turn-on and the previously on switches turn-off. C3 is now connected in

series to C2. C1 is connected to the load, in parallel with the branch containing C2 and C3.

C3 which was just charged in the previous subinterval, discharges into C2 which discharges

to the load. In a parallel branch C1 also discharges to the load.

Advantages and Limitations of the Dickson

One advantage of the Dickson switched capacitor converter is its low switch stress [81] [82].

The bottom switches, Q1 − Q4, are rated for Vout while the upper switches, Q5 − Q8 are

rated for 2Vout. Admittedly, other switched capacitor circuits such as the ladder topology,

also have similar switch utilization, but the ladder topology requires more flying capacitors

and is therefore less appealing for the design [83]. Limitations to the Dickson include it’s

inability to regulate the output voltage [6] and low capacitor utilization [84]

. Regarding voltage regulation, instead of being able to regulate the output voltage, the

conversion ratio is fixed, and is determined by the circuit topology. This results in loss as the

load changes. Capacitor utilization [82] provides a way to quantify the capacitor’s ability to

effectively utilize energy. The constraint can be calculated as

Etot =
∑
i

1

2
(VC,i(rated))

2(Ci) (3.11)

where Ci is the value of the capacitor and (VC,i(rated)) is the voltage rating of the capacitor.

A capacitor’s utilization, or energy storage capability, is related to the voltage rating which

corresponds to the volume and price of the capacitor [82]. To decide whether switch

utilization should take priority over capacitor utilization the cost of devices and capacitors

can be considered. Since capacitors are less expensive than devices it was decided that switch

utilization should be higher in order to reduce converter cost.
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Each of the flying capacitors in the Dickson converter requires a different voltage rating

related to a fraction of the input voltage. The capacitor voltage ratings for the 4:1 are

provided in Table 4.1. The capacitor DC bias is derived using the charge-flow voltage vector

in a later section. In Section 3.3, the impact on efficiency due to hard-charging loss was

Table 3.2: 4:1 Dickson Capacitor Voltage Rating

Component Rating

C3
3Vin

4

C2
Vin

2

C1
Vin

4

introduced. To determine whether a circuit can achieve soft-charging, where hard-charging

losses are eliminated, KVL equations in each interval must be satisfied at all times [85]

including during phase transitions. In the original Dickson, since the output capacitance

does not allow instantaneous change in the output voltage, the KVL equations can not be

satisfied for each phase. As a result, there is a mismatch in capacitor voltage during each

phase transition. This mismatch causes high transient currents as demonstrated in Fig. 3.5.

This is characteristic of a converter operating in the slow switching limit, where efficiency is

dominated by voltage mismatch losses and result in low efficiency [86].

Original Dickson Topology Summary

The Dickson converter has the advantage of low switch stress and the disadvantage of low

capacitor utilization and hard-charging loss. The next section will discuss steps that can be

taken in order to eliminate the hard-charging loss.

3.5 Reducing Hard-Charging Loss by Adding an Out-

put Inductor

The premise behind soft-charging is to add an element that can absorb the voltage mismatch

between capacitors and control the capacitor current without transferring ohmic loss from
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the original element to the new element [81]. Therefore, by incorporating one or multiple

magnetics into switched capacitor topologies, high-current transients caused by voltage

mismatch between capacitors can be reduced and higher efficiencies can be achieved. There

are two ways to incorporate magnetics into SC topologies and they are listed below.

Cascaded Second Stage

One method to integrate magnetics into a switched capacitor topology is to cascade a

magnetic based second-stage converter. A simple model of this topology is illustrated in

Fig. 3.9. In this example, a switched capacitor converter is followed by a magnetic converter

for ripple reduction and better regulation. The magnetic stage acts as a controlled current

load and reduces loss caused by voltage mismatch [87]. This method has the advantage of

simple design and low cost.

Figure 3.9: Direct Energy Transfer

Integrated Magnetics for Resonance with Flying Capacitors

The second method uses multiple inductors in series with the flying capacitors to create a

resonant switched capacitor circuit (ReSC). The simplified model is provided in Fig. 3.10.

This type of topology is able to achieve zero current switching (ZCS) and increase overall

Figure 3.10: Indirect Energy Transfer
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efficiency [6]. This method is used in the STC topology introduced in section 2.7.4. There is

a subtle difference between these two methods and as shown in [85] [87], even with a single

inductor added to the output the SC converter can operate as a ReSC as well as using the

direct energy transfer method.

The Dickson topology is suitable for the cascaded second stage since each branch of capacitors

is connected to the load. The inductor is placed before the output capacitor and reduces

hard-charging loss by allowing the output voltage to vary. The output capacitor is still

needed because there is nothing to maintain the output voltage with only a current source.

Otherwise, if an output capacitor was not used in parallel with the load the voltage ripple

would become quite large. The updated 4:1 Dickson topology is provided in Fig. 3.11. The

operating modes are provided in Fig. 3.12. A simplified circuit model is depicted in Fig.

3.13 where a constant current source replaces the constant voltage source, discharging the

capacitor [7]. When the switch closes, a majority of the voltage mismatch will occur across

the current source and not the series resistance.

Figure 3.11: 4:1 Dickson with soft-charging capability.

In order to determine whether the Dickson with an added output inductor can achieve

complete soft-charging the analysis presented in [5] shows that complete soft-charging can

not be achieved. In this analysis, Kirchoff’s Voltage Law (KVL) and Kirchoff’s Current

Law (KCL) are used to solve for the voltage and charge flow vectors. The results from this

analysis for the 4:1 Dickson topology with an added inductor suggest that C2 must have
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(a) Phase 1 (b) Phase 2

Figure 3.12: Circuit configurations for the 4:1 Dickson.

Figure 3.13: Capacitor discharged by a constant current load.
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and infinite capacitance. Since it is impossible for C2 to have an infinite capacitance, these

results show the Dickson topology can only approach complete soft-charging as long as C2 is

much larger than C1 and C3. While the constant current source mitigates the mismatch at

the output, there is still a mismatch between the parallel capacitor connections. The next

section discusses how the timing of each interval can be leveraged in order to eliminate the

remaining hard-charging occurring between the parallel branches.

(a) Phase 1 (b) Phase 2

Figure 3.14: KVL 4:1 Dickson Modes of Operation

The reduced loop matrices for each subinterval, used in the analysis in [5], can also be

used to determine the DC bias of each flying capacitor as given in Table 4.1. The voltage

matrices can be determined by using the polarities of the voltages used for KVL in each

subinterval. The corresponding simple circuits for each subinterval, or phase, is provided in

Fig. 3.14. The corresponding KVL equations for each of the phases are:

Phase 1

Vin − VC3 − Vsw = 0 (3.12)

VC2 − VC1 − Vsw = 0 (3.13)

Phase 2

VC3 − VC2 − Vsw = 0 (3.14)
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VC1 − Vsw = 0 (3.15)

The corresponding reduced loop matrices for phases 1 and 2 are then combined to form

the matrix used in Equation 3.16. The flying capacitor voltages are found by multiplying

the inverse of the 4x4 voltage matrix by a constant Vin. The matrix solution is the flying

capacitor voltage in terms of Vin.


VC1

VC2

VC3

Vout

 =


0 0 −1 −1

−1 1 0 −1

0 −1 1 −1

1 0 0 −1



−1

Vin (3.16)


VC1

VC2

VC3

Vout

 =


1/4

1/2

3/4

1/4

Vin (3.17)
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3.6 Complete Soft-Charging for the HDSC

In the previous section it was determined that while adding an inductor to the output of the

Dickson topology reduces the hard-charging loss, it does not eliminate it. Therefore, more

analysis is needed in order to achieve complete soft-charging.

Due to the asymmetry of the 4:1 Dickson topology, the voltage ripple across the outer

most capacitor, C3, and innermost capacitor, C1, are not equal in Phase 1 and Phase 2.

Assuming a constant load current, Iout, means that a constant current through each capacitor

can be assumed as well. With an equivalent capacitance between each of the flying capacitors,

the voltage ripple will be proportional to the impedance in each branch. The outer branch

consisting of Vin and C3 has a lower impedance than the inner branch of C2 and C1. Therefore,

the constant load current will not be distributed equally between each branch.The voltage

across C3 during Phase 1 is linear and can be calculated using Equation 3.18.

VC3,Phase1(t) =
IC3(t)

C3

=
2Iout
3C

(3.18)

The voltage ripple across C3 will increase faster than the voltage ripple of the inner branch

consisting of C2 and C1 in series. In the next phase when C3 is in series with C2 the current

through the branch will be less than it was in the previous phase, such that,

dv

dt C3,Phase1
>
dv

dt C3,Phase2
(3.19)

Therefore, it is not possible for the system of KVL-based equations, which imply the flying

capacitors are balanced (i.e. Vin−VC3 = VC2−VC1), to be satisfied during each of the phase

transitions and capacitor charge sharing loss is inevitable between the parallel capacitor

branches. This is demonstrated in the simulation of the combined capacitor voltages in each

branch. The simulation is provided in Fig. 3.15 where it is clear that there is still a mismatch

between the capacitor voltages during phase transitions.

To eliminate the voltage mismatch between parallel capacitor branches, two additional

phases are added to allow each branch with larger impedance additional time to reach

the same ∆V as the lower impedance branch. These additional phases are named ”split
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Figure 3.15: Voltage mismatch between branches during phase transitions.

phases” in [69]. The method for determining the split-phase intervals is derived in [69]

and will be reviewed in this section. The simplified circuits for the split-phase intervals are

provided in Fig. 3.16. The circuit topology remains the same as the Dickson with a constant

current source, however the switching sequence changes. The updated switching sequence

is provided in Fig. 3.17. By incorporating Phases 1b and 2b, the parallel branches with

a lower impedance have additional time to ramp voltage down until the voltage mismatch

reaches zero. Once the voltage mismatch reaches zero, the next phase of the period can

begin. The length of time required for the split phase interval can be calculated using charge

vector analysis and is related to the native conversion ratio, N . Switching loss will not

increase because these switches were used in the original design and are turned-off earlier in

comparison to the circuit that does not implement the split phase intervals.

Determining Timing for Split-Phase Interval

To determine the timing of the split phase intervals current division can be applied to the

simple circuits. For Phase 1a the equivalent capacitance in the inner loop is

Cinner = C2||C1 =
C2C1

C1 + C2

(3.20)
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(a) Phases 1a and 1b

(b) Phases 2a and 2b

Figure 3.16: 4:1 Dickson simplified circuit configurations for each interval within the
switching period with additional split phases.

Figure 3.17: 4:1 Dickson gate signals operating with added split phase intervals.
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The current will distribute through each branch based on the ratio of the capacitance.

Iinner =
Cinner

C3

IL (3.21)

Iinner + Iouter = IL (3.22)

I3 = (1− Cinner

C3

)IL (3.23)

Using the relationship between current and voltage in a capacitor,

IC = C
dv

dt
(3.24)

and assuming steady state operation, equations for the ideal voltage waveforms can be

determined. The steady state flying capacitor voltage over one switching period are provided

in Equations 3.25-3.28. The voltage mismatch for each flying capacitor can then be solved

in terms of Ts and is pictured in Fig. 3.18.

∆VC3Ts
=

2IL
3C

(t1a)−
IL
3C

(t2a)−
IL
C

(t2b) = 0 (3.25)

∆VC2 =
−IL
3C

(t1a)−
IL
C

(t2a) +
IL
3C

(t2a) +
IL
C

(t2b) = 0 (3.26)

∆VC1 =
IL
3C

(t1a) +
IL
C

(t1b)−
2IL
3C

(t2a) = 0 (3.27)

t1a + t1b + t2a + t2b = Ts (3.28)
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The capacitor voltage ripple equations can be solved and the timing intervals for the 4:1

Dickson in terms of Ts are given below:

t1a =
3

8
Ts (3.29)

t1b =
1

8
Ts (3.30)

t2a =
3

8
Ts (3.31)

t2b =
1

8
Ts (3.32)

(3.33)

The timing for the split phase interval will change depending on how many flying capacitors

there are. As the conversion ratio increases the split phase interval approaches 1/4 of the

timing of the original interval.

For this design the split phase intervals will occur after each of the original phases. The

additional phases can theoretically occur before or after the original phase, however if in

the order 1b-1a-2b-2a, there will be a negative Vds across some of the switches due to the

large voltage ripple during the operation and additional blocking devices would need to be

added [69]. This would not only increase the complexity but also reduce the efficiency.

Therefore, for physical implementation the split phases should be performed in the ordering

of 1a-1b-2a-2b.

Split Phase Dickson Summary

In summary, hard-charging losses are inherent to switched capacitor circuits operating in

SSL. Hard-charging between capacitors results in a large current spike. To eliminate hard-

charging loss there are two requirements. The first is that a constant load current must

be added to the output to enable the output to change instantaneously. The second

requirement is that there is no mismatch between the parallel capacitor branches between

phase transitions. This can be achieved by implementing the split-phase intervals, 1b and

2b. The simulated waveforms for the capacitor current IC2 and Vsw voltage for each of

the topologies previously discussed (original Dickson, Dickson with output inductor and
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Figure 3.18: Ideal capacitor voltage waveforms.
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Dickson with split phase) are compared in Figs. 3.19-3.21. For the same load, the current

spikes through each of the flying capacitors are reduced with the added output inductor and

removed when operating with the split phase.

Figure 3.19: Original Dickson,Vout (blue), IC2 (red).
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Figure 3.20: Dickson with output inductor,Vsw (blue), IC2 (red).

Figure 3.21: Split-phase Dickson with output inductor,Vsw (blue), IC2 (red).
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3.7 Incorporating Output Voltage Regulation in the

HDSC

Depending on the specific design, the IBC can be fully regulated, semi-regulated, or

unregulated. Fully regulated designs are used in architectures were the IBC’s output is

the supply voltage for the most power-consuming load and tend to be more expensive and

less efficient due to its wide duty-cycle range [22]. Semi-regulated designs are lower cost than

the regulated version but still have lower power density and efficiency than the unregulated

due to the wider duty-cycle range. The unregulated design offers the highest power density

but faces challenges such as a high ripple current, start-up problems, reverse energy flow and

parallel-operation issues [22].

For many switched capacitor topologies, regulation can only be achieved by adjusting

the output impedance which results in decreased efficiency. By leveraging the on-time of

the bottom four switches the HDSC is able to regulate the output voltage. This ability to

regulate the output is also beneficial because it enables the duty cycle to be extended to

reduce the peak inductor current through the output inductor, decreasing RMS currents.

Using a PWM regulation technique, switches Q1-Q4 are turned ON for the duration of

(1−D)Ts, shorting the switch node to ground. In [88], the equation for the regulated output

voltage is

Vout ≈
DVin
N

(3.34)

The circuit for implementation of the regulation interval is provided in Fig. 3.22a along with

the simplified circuit in Fig. 3.22b. The corresponding gate signals are shown in Fig. 3.23.
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(a) Split phase

(b) Simplified circuit

Figure 3.22: Voltage regulation circuit.
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Figure 3.23: Gate signals and the switch node voltage, Vsw, for the regulated 4:1 HDSC.
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3.8 HDSC Design

3.8.1 Selecting the Conversion Ratio (N), Flying Capacitance

(Cfly), Inductance (L), and Switching Frequency (fs)

Conversion Ratio

The 4:1 and 8:1 conversion ratios were considered for this 48-5V application. The circuit

parameters for each conversion ratio are provided in Table 3.3. The average current,

Iavg, is representative of the current through the parallel branches during Phase 1a.

Table 3.3: Comparison of circuit characteristics for the 4:1 and 8:1 HDSC

4:1 8:1

# of Cfly 3 7
# of devices 8 12

Vds 12V 6V
Iavg

1
3
IL, 2

3
IL

1
7
IL, 2

7
IL

Vsw 12V 6V
D .417 .833

The 4:1 conversion ratio has the advantage of using fewer switches, reducing implemen-

tation costs. The switching losses are not reduced however compared to the 8:1 conversion.

With fewer flying capacitors, the voltage domain for each switch in the 4:1 is increased (12V),

leading to a higher Vds compared to the 8:1 (6V), which corresponds to higher loss due to the

discharge of the device output capacitance. A comparison of the loss breakdown between the

4:1 and 8:1 designs are provided in Fig. 3.24. The losses are analyzed using the same devices

(EPC2023C), capacitors (CGA6M3X7S2A475K200AB), output inductor (LP202) and duty

cycle. Additionally, as the conversion ratio increases so does the number of parallel capacitor

branches. As the number of branches increases, the current through each branch decreases

for the same output current. Therefore, conduction losses are reduced as the conversion ratio

increases. The loss breakdown in Fig.3.24 includes the inductor conduction loss caused by the
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Figure 3.24: Loss comparison for the 4:1 and 8:1 conversion ratio, Vin=48V, Vout=5V,
fs=500kHz

series parasitic DC resistance of the inductor (DCR). The conduction loss for this parasitic

resistance can be calculated using, I2rmsRDCR. However, since the inductor current ripple of

the 4:1 is greater than the 8:1, ac losses related to the output inductor such as conduction

loss from the inductor’s ac resistance, Rac, and core loss should also be considered. Since

the applied volts-seconds of the 4:1 is greater than the 8:1, for the same duty cycle, D, there

will be a much larger current ripple. A large current ripple is not ideal because it can cause

increased inductor core loss and conduction loss due to the inductor’s AC resistance. The

core loss is related to the applied volts-seconds and is demonstrated in Equation 3.35.

(Vsw − Vout)DTs =
∆iL
L

= n∆BAc (3.35)

where Vsw is the positive terminal of the inductor, Ts is the length of the period, ∆B is the

maximum flux density, n is the number of turns on the inductor and Ac is the area of the

core. To improve the current ripple, the area or the number of turns must increase in order

to increase the inductance,

L = n2Acµ0

lg
. (3.36)
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where lg is the length of the air gap and µ0 is the permeability of air. Therefore, the 4:1

design would require a larger inductor for a comparable current ripple. This would effect

the power density as well as increase cost. In comparison to the buck converter, however,

the inductance that the HDSC requires is smaller than that of the buck. Equations 3.37 and

3.38 compare the inductance required for both the buck converter and the HDSC.

LSC =
Vout
∆iL

(1− NVout
Vin

)
1

2fs
(3.37)

Lbuck =
Vout
∆iL

(1− Vout
Vin

)
1

fs
(3.38)

The HDSC inductor, Lsc, is reduced by 2 because the switching frequency of the inductor

current occurs twice over one period due to the nature of the topology. Lsc is further reduced

due to the conversion ratio of the switched capacitor network. The inductor current ripples

for a buck and 4:1 HDSC at equivalent operating points and are compared in Fig. 3.25a and

Fig. 3.26a. For the buck, ∆iL = 17.2A. For the 4:1 HDSC, ∆iL = 1.68A.

Selecting Cfly, L, and fs

The relationship between capacitance and ∆V are inversely proportional for the same output

current, Iload as described in Equation 3.39.

Iload =
C∆V

fs
(3.39)

There is a trade-off when selecting the value for the flying capacitors. A large capacitance will

decrease the voltage ripple and minimize hard-charging loss but the large capacitance will

decrease the power density and increase the overall costs. A smaller capacitance will mean a

smaller footprint and lower cost but the voltage ripple will be large and may cause decreased

efficiency. To determine Cfly, a constraint can be applied to ∆Vc,fly. The constraint on

∆V can be found be determining an acceptable ripple at the output. The capacitor voltage
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(a) Simulated inductor current ripple of buck converter.

(b) Circuit schematic of buck converter.

Figure 3.25: Simulated inductor current ripple of buck converter and schematic.
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(a) Simulated inductor current ripple of 4:1 HDSC converter.

(b) Circuit schematic for 4:1 HDSC.

Figure 3.26: Simulated inductor current ripple of 4:1 HDSC converter and circuit
schematic.
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ripple, ∆V , can be chosen as a fraction, α, of Vout.

∆VC,fly = αVout (3.40)

The capacitance can then be calculated using the amount of charge, Qc, and the permissible

voltage ripple, ∆V .

Cfly =
Qc

∆V
=

Iload
fsCeq

(3.41)

Ceq is the equivalent series and parallel capacitance seen at the output. For the 4:1 Ceq is

equal to 1.5Cfly and for the 8:1, Ceq is equal to 2.5Cfly.

When selecting the switching frequency, capacitance of Cfly, and output inductance,

there is one requirement that must be met in order to stay in the operating region for

achieving soft-charging. As previously described the original Dickson operates in the SSL

region where the capacitor voltage ripple is tied to the efficiency of the converter. By adding

an output inductor, the output impedance is reduced and the converter is able to operate in

FSL at a lower switching frequency [7]. This can be seen in Fig. 3.27 where the comparison

of impedance curves are shown for a 2:1 switched capacitor with and without an output

inductor. Therefore, the requirement is that the switching frequency must be much greater

Figure 3.27: Simulated output impedance vs. frequency [7].

than the critical frequency, fcrit, which can be calculated using Equation 3.42. This is the
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minimum switching frequency that the converter can operate in FSL.

fcrit =
1

2π
√
LCeq

(3.42)

As previously stated the 8:1 design requires the most devices, but with a higher conversion

ratio, and more flying capacitors in parallel branches, the load current is distributed through

each branch resulting in lower conduction loss, lower output capacitance loss and decreased

stress on the inductor. For these reasons the 8:1 conversion ratio was selected, the topology

is provided in Fig. 3.28.
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Figure 3.28: 8:1 Hybrid Dickson Switched Capacitor Converter.
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Chapter 4

Implementation and Testing

4.1 Flying Capacitor Selection

As devices and control circuity continue to decrease in size, passive elements such as inductors

and capacitors become the dominant elements for determining converter volume. Therefore,

selecting energy storage elements with high power density is of great importance. Ceramic

capacitors were selected for the flying capacitors because they offer high energy density

and low equivalent resistance. The drawback of ceramic capacitors, however, is that their

capacitance decreases with applied voltage.

Other types of capacitors that were considered were metal film and electrolytic capacitors.

Metal film capacitors have very low loss and are able to maintain their capacitance. However,

they have low energy density. Electrolytic capacitors can maintain their capacitance with

applied voltage but have high ESR limiting RMS current capability and they have low

reliability. In [78] the energy storage capability of ceramic, electrolytic and film capacitors

operating with a wide voltage swing at high frequencies was analyzed. Ceramic capacitors

were shown to have the highest energy density for the application. Electrolytic capacitors

were current limited but have a higher density in DC applications.

Class I Ceramic Capacitors

Class I ceramic capacitors have a linear temperature coefficient, their capacitance does not

depreciate due to applied voltage, they do not suffer significant aging due to paraelectric
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materials, have low electrical loss and have high stability and accuracy. However, Class I

capacitors have low energy density and require a large package for high capacitance [78].

Class II Ceramic Capacitors

In comparison, Class II capacitor’s nominal capacitance varies nonlinearly with temperature.

The capacitance is highly dependent on the applied voltage, suffers significant aging due to

the ferro electric materials used in manufacturing, has low stability and accuracy, significantly

higher electrical loss compared to Class I but they have high permitivity which enables large

capacitance values to be achieved in small device packages. Therefore, Class II capacitors

are practical devices for this design [89] [86]. For ceramic capacitors with a voltage rating

of 100V, the X7S material offers high energy density [78] and is used in the implementation.

Fig. 4.1 shows the Class II ceramic capacitor code definitions. The X7S material can operate

between −55◦ C and 125◦C with a capacitance variance of + 22%.

Figure 4.1: Class 2 ceramic capacitors Code system.

As previously stated, one of the disadvantages of the Class II capacitor is that the

nominal capacitance decreases non linearly with applied voltage. Table 4.1 shows the drop in

capacitance for three 4.7µF TDK capacitors (CGA6M3X7S2A475K200AB) in parallel with

a DC bias, measured on the 4294A 40Hz-110MHz Precision Impedance Analyzer.
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Table 4.1: Measured capacitance with DC bias voltage using the 4294A 40Hz-110MHz
Precision Impedance Analyzer.

Applied DC Bias Capacitance

No DC Bias 13.38µF
6V 12.49µF
12V 11.44µF
18V 10.27µF
24V 8.92µF
30V 7.58µF
36V 6.47µF
42V 5.08µF

(a) Percent change in capacitance with applied DC bias voltage.

Figure 4.2: Capacitance change vs. Voltage for (3) TDK CGA6M3X7S2A475K200AB in
parallel.
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4.2 Device Selection

Gallium Nitride (GaN) power devices are reshaping the power electronics industry. The

material properties of GaN and GaN device structures have many advantages over silicon

(Si). Silicon is limited in its voltage blocking capability, operation temperature and switching

frequency. Silicon Carbide (SiC) and GaN are the most commercially available WBG devices

today. GaN offers a lower thermal conductivity, better high frequency and high voltage

performance and commercially available low voltage rated devices than SiC. GaN is therefore

the best material for this application. The material properties of GaN compared to other

materials are provided in Table 4.2. The large electrical field, high electron mobility and

thermal conductivity properties are considerable when compared to silicon [90].

Table 4.2: Material Characteristic of GaN compared to Si and SiC

Parameter Si SiC GaN

Band Gap, Eg(eV) 1.12 3.2 3.4
Breakdown Field, EBD (MV

cm
) .3 3.5 3.3

Electron Mobility, µn ( cm
2

Vs
) 1500 650 900-2000

Saturated Drift Velocity, Vs ( cm
s

) 1.0 2.0 2.5

The higher breakdown field, EBD, of GaN enables a much higher blocking voltage

compared to Si. This higher blocking voltage allows the terminals of the device to be placed

closer together while still being able to block larger amounts of voltage, enabling a smaller

device, with less capacitance and faster switching capabilities. The specific on-resistance,

Ron [91], is inversely proportional to the cube of the breakdown field, E3
BD and the electron

mobility, µn ( cm
2

V s
) and inversely proportional to the square of the breakdown voltage, VBr

(V).

Ron =
4V 2

BR

εrE3
BDµn

(4.1)

For GaN devices, the electron mobility increases due to a 2-dimensional electron gas. This

high mobility and increased EBD can significantly reduce the on- resistance of a GaN device
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compared to Si. Fig. 4.3 compares the theoretical on-resistance and blocking voltage

capability for silicon, silicon-carbide and gallium nitride .

Figure 4.3: Theoretical on-resistance vs. blocking voltage capability for silicon, silicon
carbide and gallium nitride [8].

The low Rds,on of GaN devices is beneficial for high current application where every milli-

ohm of resistance can significantly impact efficiency. Additionally, the small packaging is

desirable as long as thermal requirements can be met. Fig. 4.4 shows the dimensions and

footprint for the GaN device used in this converter design.

Figure 4.4: Top view of an eGaN FET EPC2023C [9].

In power FETs there is a trade-off between the amount of charge required to turn the

device ON and OFF and the on-resistance called the RonQg product. The RonQg product is

a figure of merit (FOM) that has been shown to translate into improved conversion efficiency
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in high frequency circuits [92]. Multiple 30V Si and GaN devices are compared in Fig. 4.5.

While the GaN device does not suffer from Qrr loss it does have a voltage drop similar to that

Figure 4.5: RonQg product for 30V benchmark silicon compared to GaN.

of a body diode. The forward voltage drop, VF , is approximately 1.4V for the EPC2023C

device selected. To minimize losses associated with the forward voltage of the body diode,

dead-times should be designed appropriately. A summary of the device characteristics for

the EPC2023C device are provided in Table 4.3.

4.3 Isolation Stage

Each pair of devices, starting with the top two switches, sit in their own voltage domain and

each device requires an isolated gate drive signal. For the 8:1 design, 6 isolation blocks were

needed for each TI-LM5113 gate driver. The designed isolation board is provided in Fig.

4.6. Each isolation block includes an isolated power supply, a linear regulator to provide

VCC to the gate driver and two digital isolators used to provide gate drive signals to the Hi

and Lo-side devices.
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Table 4.3: EPC2023C device characteristics [1].

Parameter Value

Vds 30V
Ids 90A

Rds,on 1.45mΩ
Coss 2300pF
Vgs 6 to -4V
Qg 19nC

Figure 4.6: Isolation board.
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4.4 Power Stage Printed Circuit Board

4.4.1 HDSC 4:1 PCB 1

Three prototypes were designed. Printed circuit board (PCB) 1, Fig. 4.7, was fabricated

first, followed by PCB 2, Fig. 4.12, and PCB 3, Fig. 4.27. Each design includes improvements

and revisions compared to the previous and will be discussed in this section.

Figure 4.7: PCB 1.

Experimental waveforms from PCB 1 for the inductor current, IL and the switch-node

voltage, Vsw, are provided in Fig. 4.8a and Fig. 4.8b. The Vsw waveform in heavy load

operation shows considerable ringing when transitioning from Phase 1a to 1b and Phase 2a

to 2b. During each of these transitions a single device, Q5 or Q8 turns off. The output

capacitance of the device rings with any parasitic inductance in the PCB. This ringing can

over stress the devices, possibly leading to device failure and can cause a decrease in the

efficiency. The efficiency results are plotted in Fig. 4.9. The converter reached a peak

efficiency of η = 93% at 23W. At the highest power, 55W, the efficiency was 87.5%. The
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(a) Light Load: Pout = 5W

(b) Heavy Load: Pout = 49.3W , η = 88.6%

Figure 4.8: PCB 1 4:1 waveforms: Vin = 24V , fs = 500kHz.
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efficiency decreased quickly as the output current increased. This suggests that conduction

loss is a limiting factor.

Figure 4.9: PCB 1 experimental efficiency.

ANSYS Q3D Designer software was used to analyze the current density in the 4-layers

of PCB1. Current density is the current flow per unit area through a copper trace or metal

plated via. The formula for calculating the current density is

J = I/A (4.2)

where J (A/m2) is the current density, I (A) is the current and A (m2) is the cross sectional

area. It is well known that that the movement of current through a conductor generates

heat. This heat is dissipated into the surrounding area and the power loss is proportional to

the resistance of the conductor. Therefore, the current density can provide insight into high

resistive traces that will result in increased conduction loss. The current distribution on the

top layer is provided in Fig. 4.10a. The simulation was performed placing the source at the

input and the sink was placed at Vsw and devices Q12, Q10, Q8, Q6, Q4 and Q1 pads were

shorted to resemble the ON state. On the top layer, the two places where current density is

the highest is within the input trace and around the vias that connect to a flying capacitor

node on the second layer. The high current density at the input is not worrisome due to the

low current levels seen at the input. The high current density around the vias on the top
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layer, circled in Fig. 4.10a, is troublesome because this is where Vsw connects to the trace on

the second layer which connects to flying capacitors, C2, C4 and C6.This node sees the full

load current for half of the switching period. The via-stitching connection between layers is

very small and will result in a large parasitic resistance. Furthermore, the trace used on the

second layer to connect to the vias on the first layer as seen in Fig. 4.10b, is too narrow . The

much higher current density causes higher trace resistance, leading to increased conduction

loss.

A thermal image of PCB 1 operating at 55W, Fig. 4.11, shows significant heat at the

Vsw node. This result is consistent with the results calculated by the Q3D simulation.

4.4.2 HDSC 4:1 Printed Circuit Board 2

The second revision, PCB 2, is shown in Fig. 4.12. The most significant change made to

the layout was moving the bottom half-bridges of Q1 − Q4 to the other side of the flying

capacitors to create a more comparable trace length between each of the flying capacitor

branches and the output. These switches enable regulation of the output and are used to

connect each flying capacitor to ground or the output inductor. In PCB 1, Q1 − Q4 were

placed to the far left-hand side. This created a longer loop for the farthest away capacitors

to connect to the output inductor. For example, during Phase 1a when C7 is connected to

the output inductor the path is much longer than that of C1. In PCB 2, Q1 − Q4 and the

output inductor, were moved onto the other side of the capacitors so that the trace length

for each capacitor to connect to the output inductor was comparable.

The experimental waveforms for PCB 2, operating at light and heavy load are provided

in Fig. 4.13. There is still significant ringing Vsw. Additionally, when Q5 turns off to shift

the circuit from Phase 2a to Phase 2b, disconnecting C1 from the output, there is large

ringing on Vsw.

78



(a) Q3D simulation of current distribution on top layer of PCB 1.

(b) Q3D simulation of current distribution on layer 2 of PCB 1.

Figure 4.10: Q3D simulations of current distribution for PCB 1.
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(a) PCB 1 populated as 4:1.

(b) Output Power=55W.

Figure 4.11: Thermal image of PCB 1 taken with FLIR-T630sc camera.
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Figure 4.12: Populated PCB 2 power stage connected to isolation board.
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(a) Light load: Pout = 4.97W , η = 90.58%.

(b) Heavy load: Pout = 65.3W , η = 85.44%.

Figure 4.13: PCB 2 4:1 waveforms: Vin = 24V , fs = 500kHz.
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4.4.3 HDSC 4:1 Printed Circuit Board 3

The third revision, PCB 3, is shown in Fig. 4.27. The layout included an extra Vin terminal

and footprints for decoupling capacitors so that the 4:1 topology could be tested without

forming a large loop between the input supplies and Q8. The populated 4:1 circuit is provided

in Fig. 4.14. One of the main layout improvements for this board was aim towards reducing

parasitic inductance in each of the commutation loops. During each transition between

phases, the capacitor current has a high di/dt. This is due to a step change between each

phase interval where the average current changes. Fig. 4.17 shows the phase transition from

Phase 1a to 1b. During Phase 1a, assuming a constant output current, the current through

C3 changes from 2
3
IL to 0. Using the relationship between voltage and inductance,

VL = Lpar
di

dt
(4.3)

it can be seen that for any parasitic inductance, Lpar, found in the path, will result in a

voltage drop, VL. Furthermore, a trace carrying current acts like an electromagnet whose

field strength is proportional to the current. If the loop is large, magnetic fields can sum

together inducing a voltage. This can further impede the flying capacitor’s ability to achieve

soft-charging. As previously discussed in earlier designs, the parasitic inductance of each

loop combined with the output capacitance of the device that turns off for that particular

phase transition will results in ringing. In order to reduce the parasitic inductance of each

loop, the flying capacitors are pushed to either side of the device. Devices, Q1-Q12, are placed

down the middle. The traces on each layer carry current in opposite directions and directly

on top of each other. Therefore, the magnetic fields generated by the changing current are

canceled. This is depicted in Fig. 4.15. Each layer of PCB 3 is highlighted and provided in

Fig. 4.16.
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Figure 4.14: PCB 3 populated for 4:1 testing.

Figure 4.15: Field cancellation of parallel conductors with currents flowing in opposite
directions.
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Figure 4.16: PCB 3 Altium layers designed for field cancellation.
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To confirm whether the parasitic inductance of the commutation loops were reduced,

ANSYS Q3D Extractor software was used to extract the parasitic inductance of selected

loops. The software uses method of moments (integral equations) and finite element methods

(FEM) to compute the parasitics of a PCB. Simulations were conducted for the Phase 1a

loop (Fig.4.18) and the Phase 2a loop. The simulations were ran at 1MHz. Ideal copper

connections were placed across device and capacitor footprints to connect the traces forming

the commutation loop. The results show that PCB 2 has the highest loop inductance in

each phase. Furthermore, layering the traces of the commutation loops directly on top

of one another significantly reduced the loop inductance in PCB 3. The Q3D results are

provided in Table 4.4 and Table 4.5.

Table 4.4: Q3D results for commutation loop during Phase 2a for PCB 1-3.

PCB Revision Rac(mΩ) L(nH)

PCB 1 3.5 7.250
PCB 2 5.9 8.54
PCB 3 2.705 4.907

Table 4.5: Q3D results for commutation loop during Phase 1a for PCB 1-3.

PCB Revision Rac(mΩ) L(nH)

PCB 1 11.9 21.21
PCB 2 6.876 14.744
PCB 3 5.748 8.622

The Q3D results show that PCB 3 has the lowest loop inductance when compared to the other

PCB revisions. The experimental waveforms for the 4:1 topology of PCB 3 are provided in

Fig. 4.19b. In comparison, the experimental waveforms show less ringing than the previous

two boards.

To further improve the layout, the traces in PCB 3 connecting the flying capacitor to the

regulating half-bridges were made larger to decrease trace resistance. The GaN devices were
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Figure 4.17: Circuit for measured loop inductance of Phase 1a with a constant load current.

87



(a) PCB 2.

(b) PCB 3.

Figure 4.18: Q3D simulation for Phase 1a parasitic loop inductance.
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placed at a 45-degree angle to improve the current sharing between the GaN devices. By

angling the devices current can be more evenly distributed across each of the drain-source

pins and the on-resistance of the pad will be low compared to a device with sharp corners

in the conducting path where current crowds at one end and only a few of the drain-source

traces are used to conduct current.

The experimental efficiency curve of PCB 3 is compared to PCB 2 in Fig. 4.20. The

efficiency curve of PCB 3 does not drop off as quickly as does PCB 2. This is in part due to

the reduced trace resistance in each flying capacitor loop. The DC resistance was measured

in each of the flying capacitor loops by soldering wires on either side of the trace and sending

2A of current through. Using a multimeter the voltage was measured on either side of the

trace. Using Ohm’s law the DC resistance could be calculated. The conducting paths for

C3, C2 and C1 of PCB 2 and PCB 3 are compared in Table 4.6.
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(a) Light Load: Pout = 21.73W , η = 95.2%.

(b) Heavy Load: Pout = 67.8W , η = 90.6%.

Figure 4.19: PCB 3 4:1 waveforms: Vin = 24V , fs = 500kHz.
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Table 4.6: Trace Resistance Comparison between PCB 2 and PCB 3

Rtrace PCB 2 Rtrace PCB 3

C3 trace 4mΩ 2.3mΩ
C2 trace 15mΩ 2.3mΩ
C1 trace 4mΩ 1.1mΩ

The Q3D simulation in Fig. 4.20 shows a significant improvement between the current

density in PCB 2 and PCB 3. Aside, from increasing the area of the traces connecting the

flying capacitors to the output, the sharp corners of traces and planes were redesigned as

well. In PCB 2 current crowding was high at the corners of traces and power planes. In PCB

3 the edges of traces and planes were rounded which further improved the current density.

Thermal images were taken with the FLIR-T630sc thermal camera and are provided in Figs.

4.22b and 4.22d. The images confirm the Q3D simulation. PCB 3 has a better thermal

performance, operating at a lower temperature at a higher power when compared to PCB 2.

4.4.4 Loss Model

In this section the loss mechanisms of the converter are introduced and used in an analytical

loss model. The loss model was evaluated using a constant load current and applied to the

experimental results for PCB 3 in the 4:1 configuration. The operating point parameters are

provided in Table 4.7.

The efficiency curve generated from the analytical loss model is then compared to the

experimental results in Fig. 4.24.

Coss Loss

The output capacitance is the sum of the gate-to-drain capacitance, Cgd and drain-to-source

capacitance, Cds.

Coss = Cgd + Cds (4.4)
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Figure 4.20: Experimental efficiency comparison between PCB 2 and PCB 3.

Table 4.7: Operating Conditions for 4:1 Loss Model and Testing.

Parameter Value

Vin 24V
Vout 5V
D .833
fs 500kHz
Cfly (3) 4.7µ F, 5mΩ
L 10nH, 20.5mΩ

wire 80nH, 4.7mΩ
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(a) PCB 2: Phase 1a.

(b) PCB 3: Phase 1a.

Figure 4.21: Q3D simulation of current density for Phase 1a.
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(a) PCB 2 (b) PCB 2, Pout = 53W

(c) PCB 3 (d) PCB 3, Pout = 67W

Figure 4.22: Comparison of thermal images for PCB 2 and PCB 3 in the 4:1 configuration.
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Coss is a non-linear voltage dependent parasitic. In [93] an equivalent linear capacitance

that stores the same energy, Ceq,E or charge, Ceq,Q as the non-linear model can be calculated

using the non-linear capacitance data.

Ceq,E =
2

V 2
c

∫ Vc

0

vCx(v)dv (4.5)

Ceq,Q =
1

Vc

∫ Vc

0

Cx(v)dv (4.6)

This capacitance is not dependent on voltage and can more accurately model the turn-off

switching loss in Equation 4.7.

Pcoss =
1

2
CossV

2
dsfs (4.7)

Vds for each device can be related to the output. For Q1-Q4, Vds=Vout, for Q5-Q8 Vds=2Vout.

Accounting for the voltage ripple ∆V which can be represented as a fraction of Vout, enables

a more accurate representation of the turn-off loss. For a voltage ripple of 10% Vout the

equivalent loss becomes,

Pcoss,Q5−Q8 =
1

2
Coss(2.1)V 2

outfs (4.8)

Gate Charge Loss

Gate charge, Qg is calculated from the current required to switch the FET from Vgs=0 to

when Vgs=Vdr reaches the maximum driving voltage which occurs at time, tr as seen in Fig.

4.23.
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Figure 4.23: Gate charge plot.

Qg =

∫ tr

0

igdt (4.9)

The power loss can then be calculated as

PQg = VdrQgfs (4.10)

Conduction Loss

The conduction loss is calculated by summing the device on-resistance, Rds,on, the capacitor

series resistance, ESR, and the trace resistance, Rtrace. Assuming a constant load current

and a constant current through each capacitor during each phase the conduction losses can

be calculated as

Pcond. = I2avg(Rds,on + ESR +Rtrace) (4.11)

The conduction loss due to the output inductor can be calculated using the inductor’s

equivalent series DC resistance, RDCR, and with a constant output current Irms=Iavg.

Pind. = I2rmsRDCR (4.12)
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A wire was added in series with the output inductor so that the inductor current could be

measured with a current probe. The resistance of the wire was lumped into the inductor’s

DCR. In this testing configuration a large inductance of 10µH was used to maintain a

constant output current. If the output rms current Irms was larger than Iavg then the ac

resistance, Rac, of the inductor would need to be accounted for. The loss due to the ac and

dc resistance of the inductor can be calculated using the following equation

Pind.ac,dc = I2rmsRDCR + ∆i2Rac (4.13)

where ∆i, is the output current ripple.

Using the above loss model, Fig. 4.24 shows the comparison between the analytical

loss model and the experimental results. Gate charge loss was not included in the final

model due to the gate drive circuitry being powered by a different power supply than the

power stage. The loss breakdown of the 4:1 converter operating at 59W is provided in

Fig. 4.25. The largest loss is caused by DCR conduction loss of the inductor. The 10uh

inductor was replaced with a smaller 180nH and 1.3 mΩ DCR inductor. The overall efficiency

improved by approximately 1%. The efficiency curves are compared in Fig. 4.26. The

180nH inductor introduced ac resistive losses that the 10µH inductor did not have. The ac

resistive losses limited the overall efficiency improvement. Therefore, to reduce the output

inductor conduction loss multiple inductor could be used in parallel. The trade-off would be

diminished power density and added costs for the added inductors.
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Figure 4.24: Efficiency curve validation for the 4:1 HDSC.

Figure 4.25: 4:1 loss distribution at an output power of 59W, η = 90.3%.
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Figure 4.26: Efficiency comparison for L=10uH and L=180nH.

4.4.5 HDSC 8:1 Printed Circuit Board 3

PCB 3 was also tested in the 8:1 configuration with 12 devices (EPC2023C) and 7 flying

capacitors (TDK-CGA6M3X7S2A475K200AB). The populated board is provided in Fig.

4.27. The experimental results are provided in Fig.4.28a and Fig. 4.28b. Ringing on Vsw

was minimal. The testing parameters are listed in Table 4.8.

The 8:1, 48V-5V converter was tested up to an output power of 100.8W (89.9%) with a

maximum efficiency of 95%. The experimental efficiency results are provided in Fig. 4.29.

4.5 Modeling Hard-Charging Loss for Varying Cfly

As stated previously, the flying capacitors of the HDSC are DC biased with a voltage that

depends on the conversion ratio and input voltage. For the 4:1 HDSC with an input of 24V,

the flying capacitors, C1, C2 and C3 are biased at 6V, 12V and 18V respectively. For Class II

ceramic capacitors as the DC bias increases the nominal capacitance decreases. In Section 3.6

the timing intervals for the split phase intervals were determined based on an ideal equivalent

capacitance. If the capacitance changes the load current will distribute differently than in the

ideal case, effecting the rate of change of the voltage across the capacitor in a given interval. If
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Figure 4.27: PCB 3 populate for 8:1 conversion ratio.

Table 4.8: 8:1 Testing Parameters

Parameter Value

Vin 48V
Vout 5V
D .833
fs 500kHz
Cfly (3) 4.7uF, 5mΩ

L 180nH, Rdc = 1.5mΩ,Rac = 8.8mΩ
wire 80nH, Rdc = 4.7mΩ,Rac = 13.5mΩ
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(a) Light Load: Pout = 24.2W , η = 94.2%.

(b) Heavy Load: Pout = 100.8W , η = 89.6%.

Figure 4.28: PCB 3 8:1 waveforms Vin = 48V , fs = 500kHz.
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Figure 4.29: 8:1 experimental efficiency.

the rate of change for the voltage across a capacitor changes, the time required to achieve soft-

charging will also change. If the timing remains constant, hard-charging will occur. In this

section hard-charging losses are analyzed for a range of capacitances, 1-14µF, for each flying

capacitor. The analytical capacitor voltage waveforms are calculated based on Equations

3.20-3.28. For each capacitance level the equations are iterated until they reach a steady-

state. To determine whether hard-charging loss is occurring, the experimental waveforms

of the voltage across each of the flying capacitors in the 4:1 configuration was measured

experimentally and compared to the analytical model. Fig. 4.30 compares the experimental

capacitor voltage ripple to the analytical model. The analytical model accurately captures

the peak to peak voltage ripple.

With the capacitor voltage ripple accurately captured, the waveforms can be added to

each other to obtain the KVL equations that occur for each phase transition. This analysis

was done for VC,fly1−3 of PCB 2 and PCB 3 with a constant output current. The waveforms

are compared in Fig. 4.31 and 4.32. In Fig. 4.31a, the experimental waveforms of PCB

2 resonate around the analytical model, such that by the end of Phase 1a there is hard-

charging. Fig. 4.31b, shows how reduced resonance around the analytical model and the

experimental waveforms of PCB 3 show increased accuracy. A similar comparison was done
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Figure 4.30: Comparing experimental capacitor voltages to analytical models.

for the transition to Phase 2a and is provided in Fig. 4.32a and Fig. 4.32b. Using the

well matched analytical model of PCB 3, the waveforms can be adjusted to ensure steady

state operation . As stated earlier the charge flow vectors used to calculate the timing for

the split phase interval are calculated based on each of the flying capacitors being equal.

However, given the characteristics of Class II ceramic capacitors the capacitance depreciates

non-linearly with a DC bias voltage. Using the analytical model that accurately captures

the capacitor voltage ripple, the voltage ripple can be modeled over a range of capacitances.

Models were calculated for varying C1, C2 and C3. Fig. 4.33 shows a varying C3 voltage

ripple, where 14µF provides almost a constant voltage and C3=1µ F results in a very large

voltage ripple. Each of the capacitor voltages iterates through voltage waveforms until the

steady state waveform is found for a given C3. For each value of C3 that the model iterates

through, the varying capacitor voltage ripple can be reconfigured into the original KVL

equations and it can be determined whether hard-charging is occurring. From these KVL

equations and Equation 3.7, the ∆Vdiff is calculated and loss due to hard-charging can be

modeled based on a varying capacitance. The power loss curves for hard charging that
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(a) PCB 2

(b) PCB 3

Figure 4.31: Experimental and analytical waveforms of (Vin − VC3) and (VC2 − VC1).
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occurs in Phase 1a and 2a due to voltage mismatch for a varying C3 is provided in Fig.

4.36. The same analysis is done for C2 and C1. The results are provided in Fig. 4.39 and

Fig. 4.42. The results from the hard-charging analysis show that when the nominal flying

capacitance varies by over 50% hard-charging loss begins to occur. For the hard-charging

losses analyzed at an output power of 59W, when the capacitance dropped below 30% of the

nominal capacitance the losses due to hard-charging increased exponentially.
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(a) PCB 2

(b) PCB 3

Figure 4.32: Experimental and analytical waveforms of (VC3 − VC2) and (VC1).
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Figure 4.33: Varying C3 voltage waveform in steady state.

Figure 4.34: Hard-charging during transition to Phase 1a between inner leg and outer leg
of capacitors as C3 iterates through a range of values.
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Figure 4.35: Hard-charging during transition to Phase 2a between inner leg and outer leg
of capacitors as C2 iterates through a range of values.
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(a) Phase 1a

(b) Phase 2a

Figure 4.36: Hard-charging loss based on a varying C3 capacitance.
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Figure 4.37: Determining steady-state voltage waveforms for a varying C2.
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(a) Hard-charging during transition to Phase 1a between inner leg and outer leg of capacitors as C2

varies.

(b) Hard-charging during transition to Phase 2a between inner leg and outer leg of capacitors as
C2 varies.

Figure 4.38: Combined capacitor voltage branch equations to determine voltage mismatch
between capacitors as C2 varies.
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(a) Phase 1a

(b) Phase 2a

Figure 4.39: Hard-charging loss for varying C2.
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Figure 4.40: Determining steady-state voltage waveforms for a varying C1.
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(a) Hard-charging during transition to Phase 1a between inner leg and outer leg of capacitors as C1

varies.

(b) Hard-charging during transition to Phase 2a between inner leg and outer leg of capacitors as
C1 varies.

Figure 4.41: Combined capacitor voltage branch equations to determine voltage mismatch
between capacitors as C1 varies.
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(a) Phase 1a

(b) Phase 2a

Figure 4.42: Hard-charging loss for varying C1.
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Chapter 5

Conclusion and Future Work

Increasing the efficiency of the intermediate bus converter will enable a higher percentage

of the power provided from the grid to reach the motherboard of the data center server.

Increasing the power density of the IBC will enable the converter to be placed closer to

the motherboard, reducing conduction loss due to connecting wires and also enable space

for more modules, increasing computing density. Of the topologies reviewed in literature

the dominant loss mechanisms were related to magnetics and conduction loss at the output.

Further improvements were primarily limited to specialized magnetic design and paralleling

components for decreased conduction loss, hindering power density. Switched capacitor

converters offer high-power density solutions and do not depend on bulky magnetics to

step down voltage. However, the efficiency of switched capacitor topologies are typically

limited by hard-charging, a loss that results from shorting capacitors together with a voltage

mismatch between them. The Hybrid Dickson Switched Capacitor topology eliminates hard-

charging loss by incorporating a single inductor at the output and by incorporating additional

subintervals, or phases, to reduce the voltage mismatch that occurs between the branches

of the flying capacitors. The output inductor increases efficiency by allowing the output

voltage to change instantaneously, compared to a SC that uses a capacitor at the output.

The additional split phase intervals require no additional switches and therefore there is no

trade-off in physical design complexity. The thesis research goals were to investigate whether

the HDSC topology is a viable solution for the IBC.
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Three 4:1 GaN based HDSC PCBs were designed and tested. The parasitics of each

PCB layout was analyzed and the efficiencies were compared. The final design was able to

achieve the lowest parasitic inductance and DC resistance among the three designs and also

achieved the highest efficiency.

From the loss model derived in Chapter 4 the largest loss contribution of the 4:1 HDSC

was due to the DCR of the output inductor. At high output currents, a 25mΩ output

resistance contributed to 65% of the total loss. Increasing the efficiency would require using

an inductor with a lower DCR or paralleling multiple inductors. Caution must be taken if a

lower inductance is used. A lower inductance will increase the output current ripple causing

conduction loss due to Rac to be an additional loss and may limit the efficiency improvement

as shows in Ch. 4. A model was also developed that provides insight as to how much the

flying capacitance can vary from the nominal value before hard-charging loss significantly

impacts the efficiency.

For the specific application of a 48-5V DC-DC IBC converter the 8:1 HDSC was designed

and tested. The GaN-based HDSC was tested up to 100W with η = 90%. While the 8:1

design achieved higher efficiency at a higher power level than the 4:1 HDSC, the output

parasitic resistance of the inductor and trace resistance of the PCB in each of the flying

capacitor loops were dominant loss mechanisms. Further increase in efficiency would require

traces with lower resistance which could be achieved by increasing the copper thickness of

the PCB or increasing the trace width in the PCB layout. The output inductor DCR could

be reduced by paralleling multiple inductors at the output. In comparison to the designs

referenced in the literature review, the HDSC is not able to achieve as high an efficiency

as the LLC or STC, with the limiting factor being conduction loss at the output. Moving

forward, an analysis of how the timing intervals could be changed to accommodate for a

large variance in the nominal flying capacitance would be beneficial. Implementation of a

closed-loop design that is able to adjust the split phase timing intervals based on the voltage

mismatch between parallel branches would also be valuable.

In conclusion the HDSC topology provides a high-power density solution for the IBC,

however the efficiency is limited by parasitics introduced by the PCB layout and conduction

loss at the output. A higher efficiency could be achieved with a trade-off in power density.
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