808 research outputs found

    The many-property problem is your problem, too

    Get PDF
    The many-property problem has traditionally been taken to show that the adverbial theory of perception is untenable. This paper first shows that several widely accepted views concerning the nature of perception---including both representational and non-representational views---likewise face the many-property problem. It then presents a solution to the many-property problem for these views, but goes on to show how this solution can be adapted to provide a novel, fully compositional solution to the many-property problem for adverbialism. Thus, with respect to the many-property problem, adverbialism and several widely accepted views in the philosophy of perception are on a par, and the problem is solved

    Norm Based Causal Reasoning in Textual Corpus

    Full text link
    Truth based entailments are not sufficient for a good comprehension of NL. In fact, it can not deduce implicit information necessary to understand a text. On the other hand, norm based entailments are able to reach this goal. This idea was behind the development of Frames (Minsky 75) and Scripts (Schank 77, Schank 79) in the 70's. But these theories are not formalized enough and their adaptation to new situations is far from being obvious. In this paper, we present a reasoning system which uses norms in a causal reasoning process in order to find the cause of an accident from a text describing it

    Propositional logic extended with a pedagogically useful relevant implication

    Get PDF
    First and foremost, this paper concerns the combination of classical propositional logic with a relevant implication. The proposed combination is simple and transparent from a proof theoretic point of view and at the same time extremely useful for relating formal logic to natural language sentences. A specific system will be presented and studied, also from a semantic point of view. The last sections of the paper contain more general considerations on combining classical propositional logic with a relevant logic that has all classical theorems as theorems

    Bayesianism for Non-ideal Agents

    Get PDF
    Orthodox Bayesianism is a highly idealized theory of how we ought to live our epistemic lives. One of the most widely discussed idealizations is that of logical omniscience: the assumption that an agent’s degrees of belief must be probabilistically coherent to be rational. It is widely agreed that this assumption is problematic if we want to reason about bounded rationality, logical learning, or other aspects of non-ideal epistemic agency. Yet, we still lack a satisfying way to avoid logical omniscience within a Bayesian framework. Some proposals merely replace logical omniscience with a different logical idealization; others sacrifice all traits of logical competence on the altar of logical non-omniscience. We think a better strategy is available: by enriching the Bayesian framework with tools that allow us to capture what agents can and cannot infer given their limited cognitive resources, we can avoid logical omniscience while retaining the idea that rational degrees of belief are in an important way constrained by the laws of probability. In this paper, we offer a formal implementation of this strategy, show how the resulting framework solves the problem of logical omniscience, and compare it to orthodox Bayesianism as we know it

    A Lightweight Defeasible Description Logic in Depth: Quantification in Rational Reasoning and Beyond

    Get PDF
    Description Logics (DLs) are increasingly successful knowledge representation formalisms, useful for any application requiring implicit derivation of knowledge from explicitly known facts. A prominent example domain benefiting from these formalisms since the 1990s is the biomedical field. This area contributes an intangible amount of facts and relations between low- and high-level concepts such as the constitution of cells or interactions between studied illnesses, their symptoms and remedies. DLs are well-suited for handling large formal knowledge repositories and computing inferable coherences throughout such data, relying on their well-founded first-order semantics. In particular, DLs of reduced expressivity have proven a tremendous worth for handling large ontologies due to their computational tractability. In spite of these assets and prevailing influence, classical DLs are not well-suited to adequately model some of the most intuitive forms of reasoning. The capability for abductive reasoning is imperative for any field subjected to incomplete knowledge and the motivation to complete it with typical expectations. When such default expectations receive contradicting evidence, an abductive formalism is able to retract previously drawn, conflicting conclusions. Common examples often include human reasoning or a default characterisation of properties in biology, such as the normal arrangement of organs in the human body. Treatment of such defeasible knowledge must be aware of exceptional cases - such as a human suffering from the congenital condition situs inversus - and therefore accommodate for the ability to retract defeasible conclusions in a non-monotonic fashion. Specifically tailored non-monotonic semantics have been continuously investigated for DLs in the past 30 years. A particularly promising approach, is rooted in the research by Kraus, Lehmann and Magidor for preferential (propositional) logics and Rational Closure (RC). The biggest advantages of RC are its well-behaviour in terms of formal inference postulates and the efficient computation of defeasible entailments, by relying on a tractable reduction to classical reasoning in the underlying formalism. A major contribution of this work is a reorganisation of the core of this reasoning method, into an abstract framework formalisation. This framework is then easily instantiated to provide the reduction method for RC in DLs as well as more advanced closure operators, such as Relevant or Lexicographic Closure. In spite of their practical aptitude, we discovered that all reduction approaches fail to provide any defeasible conclusions for elements that only occur in the relational neighbourhood of the inspected elements. More explicitly, a distinguishing advantage of DLs over propositional logic is the capability to model binary relations and describe aspects of a related concept in terms of existential and universal quantification. Previous approaches to RC (and more advanced closures) are not able to derive typical behaviour for the concepts that occur within such quantification. The main contribution of this work is to introduce stronger semantics for the lightweight DL EL_bot with the capability to infer the expected entailments, while maintaining a close relation to the reduction method. We achieve this by introducing a new kind of first-order interpretation that allocates defeasible information on its elements directly. This allows to compare the level of typicality of such interpretations in terms of defeasible information satisfied at elements in the relational neighbourhood. A typicality preference relation then provides the means to single out those sets of models with maximal typicality. Based on this notion, we introduce two types of nested rational semantics, a sceptical and a selective variant, each capable of deriving the missing entailments under RC for arbitrarily nested quantified concepts. As a proof of versatility for our new semantics, we also show that the stronger Relevant Closure, can be imbued with typical information in the successors of binary relations. An extensive investigation into the computational complexity of our new semantics shows that the sceptical nested variant comes at considerable additional effort, while the selective semantics reside in the complexity of classical reasoning in the underlying DL, which remains tractable in our case

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    About Norms and Causes

    Full text link
    Knowing the norms of a domain is crucial, but there exist no repository of norms. We propose a method to extract them from texts: texts generally do not describe a norm, but rather how a state-of-affairs differs from it. Answers concerning the cause of the state-of-affairs described often reveal the implicit norm. We apply this idea to the domain of driving, and validate it by designing algorithms that identify, in a text, the "basic" norms to which it refers implicitly
    • …
    corecore