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Abstract: Orthodox Bayesianism is a highly idealized theory of how we ought
to live our epistemic lives. One of the most widely discussed idealizations is
that of logical omniscience: the assumption that an agent’s degrees of belief
must be probabilistically coherent to be rational. It is widely agreed that
this assumption is problematic if we want to reason about bounded ratio-
nality, logical learning, or other aspects of non-ideal epistemic agency. Yet,
we still lack a satisfying way to avoid logical omniscience within a Bayesian
framework. Some proposals merely replace logical omniscience with a differ-
ent logical idealization; others sacrifice all traits of logical competence on the
altar of logical non-omniscience. We think a better strategy is available: by
enriching the Bayesian framework with tools that allow us to capture what
agents can and cannot infer given their limited cognitive resources, we can
avoid logical omniscience while retaining the idea that rational degrees of be-
lief are in an important way constrained by the laws of probability. In this
paper, we offer a formal implementation of this strategy, show how the result-
ing framework solves the problem of logical omniscience, and compare it to
orthodox Bayesianism as we know it.

Keywords: Bayesianism ⋅ Logical omniscience ⋅ Bounded rationality ⋅ Log-
ical learning

1 Introduction

Keep your degrees of belief probabilistically coherent at all times, and update
them by conditionalization as new information comes in. So the orthodox
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Bayesian story goes. The story is picture-perfect. It draws the contours of an
ideal epistemic life. A life where all tautologies are believed with certainty,
and where an agent’s confidence never drops across entailment; one where
logical perfection is just a matter of good epistemic housekeeping.

But for ordinary humans like you and me, life isn’t perfect. For us, and
other imperfect beings like us, probabilistic coherence remains an unattain-
able ideal. As hard as we may try, we will never unveil all tautologies or
recognize all entailment relations. Inevitably, we will fall short of logical
perfection. Not by choice, to be sure. Most of us would take great pride in
being able to prove the Riemann hypothesis or decide whether P = NP. We
simply can’t. After all, we are only human; logical imperfection is part of
our condition as cognitively limited beings.

Does this elementary fact about our epistemic predicament spell doom
for orthodox Bayesianism? Not straightforwardly. Epistemic ideals are in-
teresting in their own right, and deserve our attention no less than than do
moral or political ideals.1 But if we want to reason about bounded ratio-
nality, logical learning, or other aspects of non-ideal epistemic agency, the
message seems clear: ‘probabilistic coherence must go!’ The message has
not gone unheard. Many formally inclined epistemologists have viewed the
commitment to probabilistic coherence as one of the most serious problems
for orthodox Bayesianism—one that has come to be known as the problem of
logical omniscience.2

Don’t get us wrong: Ordinary humans need not be careless or epistem-
ically irresponsible. We often engage successfully in logical reasoning, not
only when we sweat over a logic exam, but also when we deliberate about
which decisions to make in day-to-day life. Suppose you ponder whether to
ask your boss for a pay raise today. You know that your boss is in a generous
mood only if she took the bike to work. Yet, you don’t see her bike in the
bike rack. Thus, you decide to defer your request for another day. This sort

1Although it is a matter of contention whether probabilistic coherence is indeed a
rational ideal. For more on this point, see Christensen (2007), Smithies (2015), and
Titelbaum (2015).

2Cf. Easwaran (2011) and Talbott (2016). See also Fagin et al. (1995) for a discussion
of logical omniscience as it arises in epistemic and doxastic logic.
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of basic ability to engage in logical reasoning should, we submit, feature in
a solution to the problem of logical omniscience. It is not enough to model
agents who fall short of logical omniscience; we also need to capture the sense
in which such agents nevertheless display some level of logical competence.

Over the past half century, several attempts have been made at solving
the problem of logical omniscience. But none has gained widespread accep-
tance. Some proposals merely replace logical omniscience with a different
logical idealization; others sacrifice all traits of logical competence on the
altar of logical non-omniscience (§2). We think a better strategy is available:
by enriching the Bayesian framework with tools that allow us to capture
what agents can and cannot infer given their limited cognitive resources, we
can avoid logical omniscience while retaining the idea that rational degrees
of belief are in an important way constrained by the laws of probability (§3).
As we will see, this ‘dynamic’ approach to the problem is not without sub-
stantive commitments; it forces us to reconsider some fundamental principles
of orthodox Bayesianism (§4). Yet it offers what we take to be a principled
and intuitive solution to a long-standing problem in Bayesian epistemology.

2 Existing approaches to logical omniscience

Let us begin by taking a closer look at the two main sources of logical omni-
science within orthodox Bayesianism:3

Classical Preservation: For any two propositions, A and B, if A logi-
cally entails B, then Cr(A) ≤ Cr(B).
Classical Normality: For any tautology T , Cr(T ) = 1.

According to Classical Preservation, an agent’s credences never drop across
entailment. For example, someone who is 80% confident that “it’s raining”
will be at least 80% confident that “it’s raining or snowing.” More generally,
whenever a proposition, A, entails another proposition, B, an agent will be
at least as confident of B as of A, however difficult it may be to see that

3Both principles follow from the Kolmogorov axioms; see Earman (1992) and Titelbaum
(forthcoming) for relevant background.
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B follows from A. According to Classical Normality, agents are certain of
all tautologies. For example, they will be certain that “it’s either raining or
not.” More generally, for any tautology, T , an agent will be certain of T ,
however difficult it may be to see that T is tautological.

Anyone who seeks to avoid logical omniscience must find a way to drop
(or relax) Classical Preservation and Classical Normality. But how? In the
rest of this section, we survey and criticize three prominent answers.

2.1 Garber on ‘Local Bayesianism’

In his “Old Evidence and Logical Omniscience in Bayesian Confirmation
Theory” (1983), Daniel Garber attempts to solve the problem of logical om-
niscience by making room for logical learning in the Bayesian framework.4

Logical learning is not possible within orthodox Bayesianism, since Classical
Preservation and Classical Normality tell us that agents already know every-
thing there is to know about logic; and you cannot learn what you already
know. Thus, while orthodox Bayesianism can accommodate empirical learn-
ing (in terms of conditionalization on incoming evidence), it rules out the
possibility of logical learning.

Garber seeks to rectify this situation by developing what he calls a lo-
cal version of the Bayesian framework. The idea is to think of an agent’s
credence function as being defined over a problem-relative language, which
consists of (the truth-functional closure of) those sentences that the agent is
concerned with when being engaged in a given “inferential problem” (Garber
1983, p. 111). For example, the local language of a 17th-century physicist
might contain vocabulary from Newtonian mechanics, but will presumably
not contain vocabulary from quantum mechanics.

In addition to these problem-relative sentences, Garber also includes sen-
tences of the form ‘A ⊢ B’ in the agent’s local language. Informally, these sen-
tences are to be interpreted as ‘A entails B’. But they are treated as atomic

4In a broader perspective, Garber’s approach to logical omniscience forms part of an
attempt to solve the so-called ‘problem of old evidence’ introduced by Glymour (1980).
Related approaches to this problem can be found in Gaifman (2004), Good (1968), and
Jeffrey (1983). See also Fitelson and Hartmann (2015) and Sprenger (2015) for more
recent developments in this direction.
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sentences in the formalism, and may therefore be assigned non-extreme cre-
dences.

The idea, then, is to make room for logical learning by allowing agents to
update on sentences of the form ‘A ⊢ B’ that they are not already certain of.
For example, a physicist might at one point have a non-extreme credence that
quantum mechanics entails such-and-such evidence, but might later discover
that this entailment relation in fact obtains.

For present purposes, let us say that A locally entails B iff B can be
derived from A in the agent’s local language, and let us say that T is a local
tautology iff T is a tautology in that language. We can then think of Garber’s
proposal as replacing Classical Preservation and Classical Normality with the
following two principles:

Local Preservation: For any two sentences, A and B, if A locally entails
B, then Cr(A) ≤ Cr(B).
Local Normality: For any local tautology T , Cr(T ) = 1.

Assuming that all local entailments are logical entailments, but not vice versa,
Local Preservation is strictly weaker than Classical Preservation. Likewise,
assuming that all local tautologies are logical tautologies, but not vice versa,
Local Normality is strictly weaker than Classical Normality. Thus, Garber’s
proposal offers a way around the classical assumption of logical omniscience.

But although Local Bayesianism does not give rise to full-blown logical
omniscience as we know it from orthodox Bayesianism, it still carries a com-
mitment to a problematic kind of logical idealization. Ellery Eells puts the
point as follows: “[T]here will always be extremely complex logically true
sentences of the local language [for which] it will be inappropriate to insist
on probability 1” (Eells 1985, p. 241). The observation here is that the lo-
cal language is still closed under truth-functional operations, which means
that even a very sparse characterization of the local language will give rise
to very complicated logical relations that go far beyond the cognitive reach
of ordinary agents. As such, Local Bayesianism merely replaces the classical
assumption of logical omniscience with a different logical idealization.

It is also worth pointing out that even if we could define a local language
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without any overly complex logical relations, there are general grounds for
doubting that the resulting model would adequately capture the sense in
which ordinary humans fall short of logical omniscience. The central rea-
son why such agents fail to be logically omniscient, we take it, is not that
they operate with a restricted language, but rather that they have limited
cognitive resources available to reason logically in that language. Thus, it
seems to us that the strategy of defining an agent’s credence function over a
restricted language does not ultimately get at the heart of the matter.

2.2 Hacking on ‘Personal Probability’

In his “Slightly More Realistic Personal Probability” (1967), Ian Hacking
attempts to solve the problem of logical omniscience by developing a ‘per-
sonalized’ version of the Bayesian framework. The idea is to replace the
classical entailment relation with a ‘personal’ entailment relation, which is
strictly weaker (that is, all personal entailments are logical entailments, but
not vice versa). Personal entailment is defined in terms of a notion of personal
possibility: just as A logically entails B iff A∧¬B is not logically possible, A

personally entails B (for a given agent) iff A ∧ ¬B is not personally possible
(for that agent).

When is a proposition personally possible for a given agent? Intuitively,
says Hacking, when the agent does not know that the proposition is false
(Hacking 1967, p. 318). In other words, A is personally possible for an
agent iff A cannot be ruled out by the agent given his or her empirical
information and deductive abilities. For example, suppose that B is a highly
complex logical consequence of A, which lies far beyond the cognitive reach
of any human. Given this, the notion of personal possibility will come apart
from logical possibility: although A ∧ ¬B is not logically possible, it will be
personally possible for agents who are unable to recognize that A and ¬B are
in fact logically incompatible. Accordingly, personal entailment comes apart
from logical entailment in this case: while A logically entails B, it does not
personally entail B.

For present purposes, let us supply the notion of personal entailment with
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a notion of a personal tautology: T is a personal tautology (for an agent) iff
¬T is not personally possible (for that agent). We can then think of Hacking’s
proposal as replacing Classical Preservation and Classical Normality with the
following two principles:

Personal Preservation: For any two sentences, A and B, if A person-
ally entails B, then Cr(A) ≤ Cr(B).
Personal Normality: For any personal tautology T , Cr(T ) = 1.

Assuming that all personal entailments are logical entailments, but not vice
versa, Personal Preservation is strictly weaker than Classical Preservation.
Likewise, given that all personal tautologies are logical tautologies, Personal
Normality is strictly weaker than Classical Normality. Thus, like Garber’s
proposal, Hacking’s proposal offers a way around the classical assumption of
logical omniscience.

Just how weak are Hacking’s principles? The answer is: extremely weak!
The reason for this is that Hacking treats personal entailment as a “degen-
erate concept with no closure conditions” since such closure conditions (say,
closure under modus ponens) tend to “lead disastrously near the divine sense
of knowledge” (Hacking 1967, p. 319). That is, to eliminate all traits of logi-
cal omniscience, Hacking assumes that no logical entailment, however trivial,
need count as a personal entailment. The result is a model that shows no
sign of logical competence.

In response to this sort of worry, Hacking submits that the notion of
personal probability is not, in fact, as ‘laissez faire’ as one might think. He
writes:

[D]oes not the slightly more realistic theory excuse a man from
any cogent reasoning whatsoever? No. In the classical [Bayesian]
theory, the Dutch Book argument is used to club a man into
reasoning. There may be a better club to hand. (Hacking 1967,
p. 322)

The thought here is that, even if ordinary humans cannot be faulted for being
susceptible to a dutch book made by a logically omniscient Bookie, they can
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be faulted for being susceptible to a dutch book made by a Bookie who is
epistemically on a par with them. If so, we can still rely on Dutch book
considerations to justify certain non-ideal rationality constraints.

Unfortunately, we don’t think that the appeal to non-ideal Bookies pro-
vides us with the necessary resources to model agents who are logically com-
petent in the relevant sense. As Ellery Eells rightly points out:

[Hacking’s proposal] has the consequence that if the agent is un-
aware of an incoherence in his subjective probabilities, then so
must be an appropriate betting opponent. But this means that a
person will turn out to be rational in the Bayesian sense as long
as the person is not aware of an incoherence. (Eells 1985, p. 217)

In other words, as long as there are no general constraints on what can be per-
sonally possible for an agent, there is no incoherence so obvious that an agent
must be aware of it to be rational. As such, nothing in Hacking’s framework
reflects the sense in which ordinary humans are logically competent.

Nevertheless, we think that Hacking is halfway right. He is wise not to
impose any substantive closure constraints on epistemic states, since these
give rise to a problematic kind of logical omniscience. What is missing from
his picture is a way of capturing what ordinary humans can and cannot infer
given their limited cognitive resources.

2.3 Hintikka on ‘Impossible Possible Worlds’

In his “Impossible Possible Worlds Vindicated” (1975), Jaakko Hintikka tries
to solve the problem of logical omniscience by developing an impossible-worlds
model of belief, which extends his earlier work on doxastic and epistemic
logic.5 While Hintikka’s own exposition centers around “all-or-nothing” belief
rather than credences, we can straightforwardly translate it into Bayesian
terms.

To put Hintikka’s proposal in its proper context, let us begin by consid-
ering his original possible-worlds model for belief:

5Hintikka (1962). See also von Wright (1951) for an early precursor to Hintikka.
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Belief: An agent believes a proposition, A, iff A is true at all possible
worlds that are doxastically possible for the agent.

As Hintikka himself recognized, this model carries a commitment to logical
omniscience: it implies that any agent believes all logical consequences of
what they believe, including all tautologies. To see this, suppose that you
believe A, and let B be any logical consequence of A. Since you believe A,
A is true at all possible worlds that are doxastically possible for you. And
since A entails B, all possible worlds that verify A also verify B. Thus, B

must be true at all doxastically possible worlds for you, which means that
you believe B.

To avoid this result, Hintikka suggests that we extend the set of possible
worlds with a set of impossible worlds: worlds that “look possible and hence
must be admissible as epistemic alternatives but which none the less are not
logically possible” (Hintikka 1975, p. 477).6 The basic idea is that, for limited
agents, the space of doxastic possibilities is larger than the space of logical
possibilities. For example, even if you believe each of the Peano Axioms,
you might well fail to believe Goldbach’s Conjecture, even if the former in
fact entail the latter. In other words, even if the Axioms are true at all
doxastically possible worlds for you, the Conjecture need not be.

Motivated by this thought, Hintikka suggests the following modification
of the original possible-worlds model of belief:

Belief-impossible: An agent believes a proposition, A, iff A is true at
all worlds (whether possible or impossible) that are doxastically possible
for the agent.

By quantifying over impossible as well as possible worlds, we can make room
for agents who believe the Peano Axioms, but fail to believe Goldbach’s
Conjecture. For even if the Axioms are true in all doxastically possible
worlds, the Conjecture need not be, as long as impossible worlds are allowed
to verify the Axioms without verifying the Conjecture.

When translated into a credence framework, Hintikka’s proposal becomes:
6For other early discussions of impossible worlds, see Cresswell (1973) and Rantala

(1982). See also Berto and Jago (2018; 2019) for relevant background.
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Credence-impossible: An agent’s credence in a proposition, A, is x iff
the probabilities of those A-worlds (whether possible or impossible) that
are doxastically possible for the agent sum up to x.

Like Belief-impossible, Credence-impossible offers a way around the assump-
tion of logical omniscience. Even if you are certain that the Peano Axioms
are true, you need not, according to Credence-impossible, be certain that
Goldbach’s Conjecture is true. After all, there might be doxastically pos-
sible (but logically impossible) worlds that verify the Axioms, but not the
Conjecture.

As stated, Credence-impossible says nothing about the nature of impos-
sible worlds. Hence, we can get different versions of the impossible-worlds
model by adopting different underlying conceptions of impossible worlds.
Following Berto and Jago (2018), we can distinguish between two general
such conceptions—what they call the ‘Australasian stance’ and the ‘Amer-
ican stance’ on impossible worlds. According to the Australasian stance,
impossible worlds are allowed to violate the laws of classical logic, but must
still respect the laws of some non-classical logic (say, intuitionistic or para-
consistent logic).7 According to the American stance, impossible worlds are
not subject to any closure constraints whatsoever, but may be arbitrarily
logically ill-behaved.8

Both these stances give rise to problems that are structurally very similar
to those that led us to reject the proposals by Garber and Hacking. Consider
first the Australasian stance. Suppose that all impossible worlds must respect
the laws of some non-classical logic, L. Given this, we can replace Classical
Preservation and Classical Normality by the following two principles:

Non-classical Preservation. For any two propositions A and B, if A

entails B in L, then Cr(A) ≤ Cr(B).
Non-classical Normality. For any tautology T in L, Cr(T ) = 1.

Since L is assumed to be strictly weaker than classical logic, these principles
do not imply that agents are omniscient within classical logic. But they do

7See, e.g., Fagin et al. (1995), Levesque (1984), and Lakemeyer (1987).
8See, e.g., Nolan (1997).
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imply that agent are omniscient within the chosen non-classical logic, L. For
example, if we understand L as an intuitionistic logic, agents are assumed
to be certain of all intuitionistic tautologies and entailment relations. Yet,
just as ordinary humans fall short of classical omniscience, they fall short of
intuitionistic omniscience as well. Indeed, even if we grant that a particular
non-ideal agent reasons intuitionistically rather than classically, the agent
obviously cannot reason unlimitedly in that logic. Thus, the Australasian
stance faces much the same problem as Garber’s Local Bayesianism: it merely
replaces logical omniscience with a different logical idealization.

To add fuel to the fire, we do not think the Australasian stance provides us
with the resources to capture the sense in which ordinary humans are logically
competent. The central reason why we fall short of logical omniscience, it
seems, is not that we operate with a non-classical notion of entailment, but
rather that we have limited cognitive resources available for logical reasoning.
Thus, it seems that the Australasian stance, like Garber’s approach, does not
ultimately get at the heart of the problem.

What about the American stance? Suppose that impossible worlds are
not subject to any closure constraints whatsoever. That is, impossible worlds
are allowed to verify A without verifying B, for any A and B. Given this,
we can eliminate all traits of logical omniscience: an agent’s confidence need
not be preserved across any entailments, however trivial; and the agent need
not be certain (or even moderately confident) of any tautologies, however
obvious.

The problem, of course, is that logical anarchy not only eliminates logical
omniscience, but also breeds logical incompetence. More specifically, if our
model allows an agent’s credences to be arbitrarily logically ill-behaved, we
are left with no way of capturing the logical reasoning abilities of ordinary
humans. Thus, the American stance faces much the same problem as Hack-
ing’s approach: it sacrifices all traits of logical competence on the altar of
logical omniscience.

In light of these problems, it is very natural to search for a ‘middle
way’ between the Australasian stance and the American stance on impos-
sible worlds. In particular, it is natural to think that we should try to close
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an agent’s doxastic state under a notion of logical entailment that—unlike
classical entailment and, say, intuitionistic entailment—reflects the agent’s
limited cognitive resources. At the level of worlds, this amounts to saying
(roughly) that impossible worlds should be closed under a notion of par-
tial logical consequence: they should verify everything that lies within the
agent’s cognitive reach, and nothing more. The hope is to thereby be able
to replace Classical Preservation and Classical Normality with the following
two principles:

Partial Preservation. For any propositions A and B, if A partially
entails B, then Cr(A) ≤ Cr(B).
Partial Normality. For any partial tautology T , Cr(T ) = 1.

As stated, these principles are obviously not fully precise, since we have not
given a precise definition of partial entailment. But the idea is clear enough:
the principles are supposed to avoid the assumption of logical omniscience
while retaining an appropriate level of logical competence.

Unfortunately, the natural idea cannot be made to work. The problem,
in a nutshell, is that any notion of partial entailment ‘collapses’ into full
entailment. Here is a way of illustrating the mechanism behind this sort of
collapse: Consider a very minimal partial closure constraint, which says that
impossible worlds should at least obey those entailment relations that are
trivial or obvious for ordinary humans to recognize. That is, if A trivially
entails B, every impossible world that verifies A must verify B as well. What
counts as ‘trivial’ or ‘obvious’ is clearly a vague matter. But nothing turns
on the vagueness: regardless of how we make the notion of a ‘trivial logi-
cal entailment’ precise, it turns out that we cannot close impossible worlds
under trivial logical consequence without closing them under full logical con-
sequence.

Here is why: let w be any world that is not closed under full logical
consequence. That is to say, there exists two propositions, A and B, such that
the following three conditions are met: (i) A entails B; (ii) w verifies A; and
(iii) w does not verify B. By (i), we can consider a sequence of propositions
A, S1, S2, . . . , B corresponding to a step-by-step inference from A to B in
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terms of simple logical rules such as conjunction elimination, modus ponens,
and the like. By (ii) and (iii), we know that w must violate at least one step
in this inference. Yet, each step in the inference is exceedingly simple, and so
must count as trivial for ordinary humans, if anything does. It follows, then,
that w cannot be closed under trivial logical consequence. Upshot: if w is
closed under trivial logical consequence, w must be closed under full logical
consequence. Intuitively, it collapses under its own deductive weight.9

In sum, there is no stable ‘middle way’ between the Australasian stance
and the American stance. Even the most minimal closure constraints on
impossible worlds are too strong. What to do about this?

3 A Dynamic Bayesian Framework

The foregoing considerations urge us to choose between two evils: logical
omniscience or logical incompetence—which shall it be? Neither! Or so we
submit. The dilemma arises when we try to model logical competence in
terms of closure constraints on doxastic states. But we need not restrict our-
selves to this ‘static’ way of modeling logical competence. A better strategy
is available: if we enrich the Bayesian framework with tools that allow us
to model how an agent’s doxastic state can change as a result of engaging
in logical reasoning, we can steer clear of logical omniscience and logical in-
competence at the same time. In previous work, we have used this ‘dynamic’
strategy to solve the problem of logical omniscience as it arises within dox-
astic and epistemic logic (Bjerring & Skipper forthcoming). Here we want to
show how the same basic strategy can be extended to a Bayesian context.

Before we get into the details, let us clarify how the positive proposal
outlined below should be seen in relation to the collapse result discussed in
the previous section. Our claim is not that we can avoid the collapse result
by moving into a dynamic framework. Indeed, if the foregoing considerations
are right, this cannot be done. Rather, our dynamic framework will offer a

9For related discussions of similar collapse results that arise in the contexts of epis-
temic logic, decision theory, and formal semantics, see Bjerring (2013), Bjerring and Skip-
per (forthcoming), Bjerring and Schwarz (2017), Elga and Rayo (ms.), Jago (2013), and
Rasmussen (2015).
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way out of the more generic dilemma between logical omniscience and logical
incompetence, which is compatible with the collapse result. That is the claim,
anyway. The rest of the section makes the case.

Our first task is to define a quantitative measure of an agent’s cogni-
tive resources, which can be implemented in a Bayesian framework. The
exact choice of measure is of little importance for present purposes. Our aim
is not to give an empirically accurate representation of how human beings
reason logically. Rather, we are looking to provide a general, empirically non-
committal way of capturing the elementary fact that some logical inferences
are more complex or difficult to perform than others. That is, we need a
way of distinguishing the Kurt Gödels of this world from his less resourceful
fellow earthlings.

In principle, many different measures could do this job, whether they
appeal to time consumption, neural activity, or some third quantity. How-
ever, in line with previous work, we will use a simple step-based model of
bounded logical reasoning.10 The basic idea is to represent an agent’s cogni-
tive resources by a number, n, which corresponds to the number of inference
steps that the agent is able to perform. By varying the value of n, we can
then generate a whole spectrum of agents with different levels of cognitive
resources. When n = 0, no chain of logical reasoning, however simple, lies
within the agent’s cognitive reach. Intuitively, the agent has no cognitive
resources whatsoever. When n approaches infinity, no chain of logical rea-
soning, however complex, lies beyond the agent’s cognitive reach. Intuitively,
the agent has unlimited cognitive resources. For intermediate values of n,
some but not all chains of logical reasoning lie within the agent’s cognitive
reach. Intuitively, the agent is neither logically omniscient nor logically in-
competent. This is the part of the spectrum that we will mainly be interested
in.

The step-based model goes along with a broadly rule-based picture of
logical reasoning. On such a picture, agents reason logically by applying
rules from a designated set, R, of available inference rules. For illustrative

10Bjerring & Skipper (forthcoming). The step-based model was initially inspired by
work in active logic; see Elgot-Drapkin and Perlis (1990) for background.
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purposes, we will think of R as containing familiar inference rules such as
conjunction elimination, modus ponens, disjunction introduction, and the
like. But on the official story, we do not presuppose any particular specifica-
tion of R. There are two reasons for this. First, by leaving the specification
of R open, our framework will be applicable to different contexts, which call
out for different specifications of R. In particular, our framework will not be
limited to contexts that call out for a sound and complete proof system of
classical logic. Second, our framework is not going to stick its neck out with
respect to substantive, empirical questions about human cognition. This is
not to say that such questions are entirely orthogonal to the present project.
Indeed, we suspect that certain applications of our framework may require
an empirically informed reasoning mechanism. But for the purposes of lay-
ing out the basic framework, there is no reason to sacrifice generality for
empirical accuracy.

Henceforth, then, we will think of logical competence as the ability to
perform up to n steps of reasoning using the rules in R. In the formalism, we
will implement this idea by defining a ‘non-ideal’ notion of logical entailment,
which we call n-entailment:

n-entailment: A set of sentences, Γ, n-entails a sentence, A, (writ-
ten ‘Γ ⊢n

R A’) iff A can be inferred from Γ within n applications of the
inference rules in R.

The role of the ⊢n
R-relation is to capture what logical entailments lie within

an agent’s cognitive reach; and which do not. To get a feel for the definition,
suppose that R contains just a single rule: conjunction elimination. Given
this, A is 1-entailed by A ∧B, and A ∧B is 1-entailed by (A ∧B) ∧ (A ∧B),
but A is not 1-entailed by (A ∧B) ∧ (A ∧B), since it takes two applications
of conjunction elimination to infer A from (A ∧B) ∧ (A ∧B).

Three properties of the ⊢n
R-relation are worth noting. First, as illustrated

by the example above, n-entailment is not transitive (in contrast to classical
entailment): even if A n-entails B, and B n-entails C, A need not n-entail C.
Such transitivity failures are going to play an important role in our solution
to the problem of logical omniscience.
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Second, the ⊢n
R-relation is monotonic in n: if A i-entails B, A also j-

entails B, for i ≤ j. The reason is trivial: any inference that can be carried
out in i steps or less can also be carried out in j steps or less, for i ≤ j. The
opposite is obviously not the case. So, even if A j-entails B, A need not
i-entail B.

Third, n-entailment is equivalent to classical entailment in the special
case where n goes to infinity and R is a sound and complete proof system of
classical logic. Although not our main target, this effectively means that our
framework is general enough to model agents who are logically omniscient in
the classical sense.

Our next task is to define the formal language over which we will define
our models. So, let L be a probabilistic modal language with atomic sentences
p1, p2, . . . , negation ¬, conjunction ∧, weak inequality ≤, a credence function
Cr, and a countably infinite set of ‘dynamic’ operators ⟨n⟩ and [n] (for n =

0, 1, 2, . . . ).11 In addition to the atomic sentences, L contains the following
sentence types:

¬A ∣ A ∧B ∣ Cr(A) ≤ x ∣ ⟨n⟩A ∣ [n]A,

where x is a real number in the unity interval [0, 1], and A and B are arbitrary
sentences of L. We will help ourselves to other familiar connectives (∨,→, . . . )
and (in)equalities (=,<, . . . ), which can be defined in the usual way from the
primitive language.

The dynamic operators have the following intended readings:

⟨n⟩A: after some n-step reasoning process, A is the case.
[n]A: after any n-step reasoning process, A is the case.

By combining the dynamic operators with the credence function, we can
write things like ‘⟨n⟩(Cr(A) < .7)’ to say that the agent is less than 70 %
confident of A after some n-step reasoning process, or ‘[n](Cr(A) = 1)’ to
say that the agent is certain of A after any n-step reasoning process.

11Slightly abusing notation, we will use ‘L’ both as the name of our object language and
as a variable that ranges over all sentences of that language.
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To develop a semantics for L, we will combine some familiar tools from
probabilistic modal logic with some more recent developments in dynamic
epistemic logic.12

We begin with the notion of a subjective probability space:

Subjective probability space: Let W P and W I be finite, non-empty
sets of possible and impossible worlds, and let W = W P∪W I . A subjective
probability space is a pair, (S, Pr), where S ⊆ W is a non-empty set of
worlds, and Pr ∶ S ↦ [0, 1] is a distribution over S such that ∑S Pr(S) =

1. The set of all subjective probability spaces is denoted by S.

As usual, we think of a subjective probability space as a representation of an
agent’s doxastic situation at a given time. The worlds in S are those that are
doxastically possible for the agent. That is, for each w ∈ S, w might be the
actual world for all the agent can tell given his or her cognitive resources and
empirical information. The distribution, Pr, encodes information about how
probable the agent takes it to be that a given world is actual. For example,
if Pr(w) < Pr(w′), the agent takes it to be more probable that w′ is actual
than that w is. Since the agent is certain that some world in S is actual, we
require that ∑S Pr(S) = 1.

We extend the notion of a subjective probability space to a full proba-
bilistic model as follows:

Probabilistic model: A probabilistic model is a tuple,

M = (W P , W I , f, V ),

where f ∶ W ↦ S assigns a subjective probability space to each world in
W , and V ∶ W ↦ 2L assigns a set of sentences in L to each world in W .

The function f tells us what the agent’s subjective probability space looks
like at different worlds. In general, f will assign different subjective prob-
ability spaces to different worlds, since an agent’s doxastic situation differs

12For background on dynamic epistemic logic, see Ditmarsch et al. (2008) and Baltag
and Renne (2016).
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from world to world. The function V serves as a ‘labeling device’ that as-
sociates each world in W with a set of sentences in L. As we will see, V is
going to behave as a standard valuation function at possible worlds, but will
behave non-standardly at impossible worlds. For ease of exposition, we will
henceforth say that w n-entails A iff V (w) n-entails A.

In light of the collapse result, we do not want to impose any closure
constraints on impossible worlds. Doing so would result in a problematic kind
of logical omniscience. To avoid any such problems, we will instead adopt a
highly liberal comprehension principle, as Nolan (1997) calls it, according to
which no set of sentences is too logically ill-behaved to count as an impossible
world. More precisely:

Comprehension principle: For any incomplete and/or inconsistent set
of sentences Γ ⊆ L, there is a world w ∈ W I such that V (w) = Γ.

This effectively means that we will take an ‘American stance’ on impossi-
ble worlds. However, while the American-style approach discussed in the
previous section fails to retain a proper measure of logical competence, our
approach is going to avoid this pitfall.

We now turn to the dynamic part of our semantic framework. To make
it easier to parse the definitions below, it will be helpful to have the intuitive
picture in mind. So, consider a simple sentence of the form ‘⟨n⟩(Cr(A) = 1)’.
The semantics below will tell us that this sentence is true iff A is n-step
inferable from every doxastically possible world. This is meant to capture
the idea that the agent is in a position to become certain of A after having
performed some n-step reasoning process. But note that even if the agent
is capable of performing n steps of reasoning, she need not be in a position
to become certain of A after some n-step reasoning process. After all, she
might be uncertain of one or more of the premises involved in the relevant
reasoning process. At the level of worlds, this amounts to saying that one or
more of the premises might fail to be true at one or more doxastically possible
worlds. More generally, then, our semantics will say that ‘⟨n⟩(Cr(A) = x)’
is true iff the probabilities of those doxastically possible worlds that n-entail
A sum up to x.
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This informal characterization of our semantics already shows that the
truth-conditions for ‘⟨n⟩(Cr(A) = x)’ will be weaker than those for ‘Cr(A) =

x’: while the semantics for ‘Cr(A) = x’ requires that the probabilities of
those doxastically possible worlds that verify A sum up to x, the semantics
for ‘⟨n⟩(Cr(A) = x)’ merely requires that the probabilities of those doxasti-
cally possible worlds that n-entail A sum up to x. So, for example, the truth-
conditions for ‘⟨n⟩(Cr(A) = 1)’ will be weaker than those for ‘Cr(A) = 1’:
while the semantics for ‘Cr(A) = 1’ requires that A is true at every doxasti-
cally possible world, the semantics for ‘⟨n⟩(Cr(A) = 1)’ merely requires that
every doxastically possible world n-entails A.

That’s the intuitive picture; now for the formal details. We begin by
defining a formal device that allows us to capture what is n-step inferable
from a given world:

n-radius: The n-radius of a world, w, is written ‘wn’ and is defined as
follows:

wn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{w} for w ∈ W P .

{w′ ∈ W I ∶ V (w) ⊆ V (w′) and V (w) ⊢n
R V (w′)} for w ∈ W I .

Each member of wn is called an n-expansion of w.

Let us unpack this definition a bit. The idea is that any given world is
associated with an ‘n-radius’, which is the set of ‘n-expansions’ of that world.
Each n-expansion is itself a world; so the n-radius of a world is a set of worlds.
Now, which worlds count as an n-expansion of w depends on whether w is
possible or impossible. If w is possible, w is its own unique n-expansion, and
so the n-radius of w is a singleton set: wn = {w}, for any n. This reflects
the fact that possible worlds are deductively closed entities that already
verify everything that follows from them in any number of steps. More
interestingly, if w is impossible, w′ is an n-expansion of w iff the following
three conditions are satisfied: (i) w′ is impossible; (ii) w′ verifies everything
that w verifies; and (iii) everything that w′ verifies is n-step inferable from w.
It follows that every impossible world is an n-expansion of itself, just as every
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possible world is an n-expansion of itself. However, in contrast to possible
worlds, impossible worlds generally have more than one n-expansion. For
example, suppose that V (w) = {A→ B,¬B}, V (w1) = {A→ B,¬B,¬A} and
V (w2) = {A → B,¬B,¬B ∨C}. Here w1 and w2 both count as 1-expansions
of w (assuming that R contains modus tollens and disjunction introduction).

Since the ⊢n
R-relation is monotonic in n, any i-expansion of w is also a

j-expansion of w, for i ≤ j. The opposite is obviously not the case. Thus, we
can think of w0, w1, w2, . . . as a sequence of concentric circles that stand in
the following subset relations:

w0 ⊆ w1 ⊆ w2, . . .

Assuming, as we will henceforth do, that no inference can be carried out in
zero steps (except for the trivial inference ‘A, therefore A’), the 0-expansion
of a world contains just the world itself. That is: w0 = {w}, for any w ∈ W .

In addition to the n-radius of a world, we will also need a way to pick
out exactly one n-expansion from the n-radius of each doxastically possible
world. The following choice function allows us to do just that:

Choice function: Let C ∶ 22W
↦ 22W be a function that takes a set

W = {W1, . . . , Wm} of sets of worlds as input and returns the set C(W )

of sets of worlds that results from all the ways in which exactly one
element can be picked from each Wi ∈ W . Each member of C(W ) is
called a choice of W .

An example will help illustrate this somewhat cumbersome definition. Let
W = {{w1},{w2, w3}}. A choice of W is a set of worlds formed by picking
exactly one world from each member of W . In the case at hand, there are
precisely two ways of doing so: we can either pick w1 and w2 or w1 and
w3. Accordingly, the choice function maps W to a set containing those two
choices: C(W ) = {{w1, w2},{w1, w3}}.

While the choice function is defined in a highly general way, it will serve
a much more specific purpose in what follows: it will allow us to capture
all the different ways in which one can pick exactly one n-expansion of each
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doxastically possible world from a given world. For present purposes, then,
we can think of a choice as a set of worlds formed by picking exactly one
n-expansion of each world in S.

The reason why choices are important is that they will allow us to distin-
guish semantically between the dynamic operators, ⟨n⟩ and [n]. Here is the
rough idea: consider again a simple sentence of the form ‘⟨n⟩(Cr(A) = 1)’.
For such a sentence to be true, we do not want to require that every n-
expansion of each doxastically possible world verifies A. We only want to re-
quire that at least one n-expansion of each doxastically possible world verifies
A. By contrast, for ‘[n](Cr(A) = 1)’ to be true, we do want to require that
every n-expansion of each doxastically possible world verifies A. The same
goes for all sentences of the form ‘⟨n⟩(Cr(A) = x)’ and ‘[n](Cr(A) = x)’.

Next up is the most central notion of our semantic framework, which will
govern the truth-conditions of the dynamic operators. Let ‘n∼’ be a binary re-
lation that holds between pairs of pointed models (where, as usual, a pointed
model consists of a model and a world). If the relation holds between two
pointed models, (M, w) and (M ′, w′), we write ‘(M, w)

n
∼ (M ′, w′)’ and say

that (M ′, w′) is n-accessible from (M, w). Since the formal definition of n-
accessibility will get a bit ugly, it will be helpful to begin with a sketch of
the intuitive idea: Suppose that the pointed model (M, w) characterizes an
agent’s doxastic state at a given time. We then want to say that (M ′, w′) is
n-accessible from (M, w) iff (M ′, w′) characterizes a doxastic state that the
agent can enter by performing some n-step reasoning process. At the level
of worlds, this amounts to saying that (M ′, w′) is n-accessible from (M, w)

iff the set of doxastically possible worlds at w′ in M ′ corresponds to a choice
of n-expansions of the doxastically possible worlds at w in M .

To ensure that the n
∼-relation behaves in the desired way, we need a way

to replace a set of doxastically possible worlds with a choice of n-expansions
of those worlds. The notion of an n-variation will allow us to do just that:

n-variation: Let M = (W P , W I , f, V ) be a model, and let f(w) =

(S, Pr) be the subjective probability space associated with (M, w). The
function V arn (for n = 0, 1, 2, . . . ) associates (M, w) with a set of subjec-
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tive probability spaces:

V arn(M, w) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f ′ ∈ S ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f ′(w′) = fc(w′) for w′ = w

f ′(w′) = f(w′) for w′ ≠ w

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where fc(w) = (c, Prc) is a subjective probability space such that c ∈

C({w′n∣w′ ∈ S}), and Prc is the unique probability distribution over c

such that, for each w′ ∈ S, Prc(w′
c) = Pr(w′), where w′

c is the n-expansion
of w′ in c. Each member of V arn(M, w) is called an n-variation of (M, w).

The way to understand this definition is as follows: We start with a pointed
model, (M, w), which is associated with a subjective probability space, f(w) =

(S, Pr). This subjective probability space consists of a set of doxastically
possible worlds, S, and a distribution over those worlds, Pr. Now we mod-
ify S in a particular way: we replace each doxastically possible world with
an n-expansion of that world. That is, we replace S with a choice, c, of
n-expansions of the worlds in S. We keep the distribution fixed: each of the
chosen n-expansions is assigned the same probability that was assigned to its
corresponding world in S. More precisely, for any v ∈ S, if v′ is the chosen
n-expansion of v, we let Prc be a distribution such that Prc(v′) = Pr(v). We
then define a function, f ′, such that f ′ is identical to f except at w, where
f ′(w) = (c, Prc). What we have ended up with is an n-variation of (M, w).

Three properties of the n-variation of a pointed model are worth keeping
in mind. First, there are in general many different n-variations of a given
pointed model; indeed, as many as there are ways of forming choices of n-
expansions of the doxastically possible worlds. Second, if f ′ is an i-variation
of (M, w), f ′ is also a j-variation of (M, w), for i ≤ j. Again, this follows
from the fact that the ⊢n

R-relation is monotonic in n. Third, since every world
is an n-expansion of itself, f will itself be an n-variation of (M, w).

We can now define the n
∼-relation:

n-accessibility: Let M = (W P , W I , f, V ) and M ′ = (W ′P , W ′I , f ′, V ′)

be two models. Then (M, w)
n
∼ (M ′, w′) iff w′ = w, W ′P = W P , W ′I = W I ,

V ′ = V , and f ′ ∈ V arn(M, w).
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According to this definition, (M ′, w′) is n-accessible from (M, w) iff the fol-
lowing two conditions are met: (i) f ′ is an n-variation of (M, w); and (ii)
(M ′, w′) is otherwise identical to (M, w).

By construction, the definition reflects the intuitive role that we wanted
the n-accessibility relation to play: if (M, w) characterizes an agent’s doxastic
state at a given time, the n-accessible pointed models from (M, w) represent
all the different doxastic states that the agent can enter by performing some
n-step reasoning process. As such, the n

∼-relation gives us a formally precise
way of capturing what the agent can and cannot infer given her limited
cognitive resources.

The three properties that we highlighted about the notion of an n-variation
carry over to the notion of n-accessibility as well. First, there are in general
many different n-accessible pointed models from a given pointed model; as
many as there are n-variations of that pointed model. Second, if (M ′, w′) is
i-accessible from (M, w), (M ′, w′) is also j-accessible from (M, w), for i ≤ j.
Third, (M, w) is always n-accessible from itself, since the ‘empty’ line of
reasoning—not performing any inference at all—is always within the agent’s
cognitive reach, for any value of n.

This puts us in a position to complete our semantics for L. As usual,
sentences are evaluated for truth and falsity at pointed models. We write ‘⊧’
and ‘â’ for verification and falsification, respectively.

For any possible world, w ∈ W P :
(P1) M, w ⊧ p iff p ∈ V (w), where p is an atomic sentence.
(P2) M, w ⊧ ¬A iff M, w /⊧ A.
(P3) M, w ⊧ A ∧B iff M, w ⊧ A and M, w ⊧ B.
(P4) M, w ⊧ Cr(A) ≤ x iff ∑Q Pr(Q) ≤ x, where Q = {v ∈ S ∶ M, v ⊧ A}.
(P5) M, w ⊧ ⟨n⟩A iff M ′, w′ ⊧ A for some (M ′, w′) ∶ (M, w)

n
∼ (M ′, w′).

(P6) M, w ⊧ [n]A iff M ′, w′ ⊧ A for all (M ′, w′) ∶ (M, w)
n
∼ (M ′, w′).

(P7) M, w â A iff M, w ⊭ A.

For any impossible world, w ∈ W I :
(I1) M, w ⊧ A iff A ∈ V (w).
(I2) M, w â A iff ¬A ∈ V (w).
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For the central results below, logical validity is defined in terms of truth-
preservation across all possible worlds: Γ ⊧ A iff every possible world in
every model is such that it verifies every sentence in Γ only if it verifies A.

A few remarks about the various satisfaction clauses are in order. First,
note that falsehood behaves classically at both possible and impossible worlds:
a sentence is false iff its negation is true. But, in contrast to possible worlds,
impossible worlds can contain truth-value gaps (sentences that are neither
true nor false) and truth-value gluts (sentences that are both true and false).

Second, note that (P1)-(P4) are identical to a standard possible-worlds
semantics for probabilistic modal logic, except the semantics for the credence
operator, (P4), which quantifies over both possible and impossible worlds.
This is what allows us to steer clear of logical omniscience.

Third, (P5) says that sentences of the form ‘⟨n⟩A’ are true at a pointed
model, (M, w), iff A is true at some n-accessible pointed model from (M, w).
In particular, ⟨n⟩(Cr(A) = x) is true at (M, w) iff Cr(A) = x is true at some
n-accessible pointed model from (M, w). This reflects the idea that the agent
can come to have a credence of x in A by performing some n-step reasoning
process provided that there is an n-accessible doxastic state from her current
doxastic state at which she has a credence of x in A. Since the ⊢n

R-relation
is monotonic in n, any pointed model that verifies ⟨i⟩A will also verify ⟨j⟩A,
for i ≤ j.

Finally, (P6) says that sentences of the form ‘[n]A’ are true at (M, w)

iff A is true at every n-accessible pointed model from (M, w). In particular,
[n](Cr(A) = x) is true at (M, w) iff Cr(A) = x is true at every n-accessible
pointed model from (M, w). This reflects the idea that the agent will come
to have a credence of x in A regardless of which n-step reasoning process
she performs. Since a pointed model is always n-accessible from itself, the
semantics for [n](Cr(A) = x) is equivalent to that of Cr(A) = x. That is,
[n](Cr(A) = x) and Cr(A) = x are true under exactly the same circum-
stances. This might seem to deprive the [n]-operator of much of its interest.
Indeed, our main focus in what follows will be on the ⟨n⟩-operator. But
the semantics for the [n]-operator captures the aforementioned idea that the
‘empty’ line of reasoning is always within an agent’s cognitive reach, for any
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value of n.
With our semantics in place, we can establish the first of our main results

(all proofs can be found in the Appendix):

Theorem 1 (n-preservation)
If A ⊢n

R B, then Cr(A) = x ⊧ ⟨n⟩(Cr(B) ≥ x).

This result says that, if A n-entails B, and the agent’s credence in A is x,
there is an n-step inference such that, after having performed that inference,
the agent’s credence in B is at least x. For example, if the agent is 70%
confident that “it rains,” she will be at least 70% confident that “it rains
or snows” after having performed some 1-step inference (assuming that R

contains disjunction introduction).
We can think of n-preservation as a non-ideal analogue of Classical Preser-

vation. In contrast to Classical Preservation, n-preservation does not carry
any commitment to logical omniscience: it does not describe an agent’s
credences as being preserved across logical entailment. In fact, for all n-
preservation says, an agent’s credences need not be preserved across any
logical entailments. Yet, n-preservation allows us to retain a central trait
of logical competence: it describes agents as being in a position to preserve
their credences across those entailments that lie within their cognitive reach.

The second of our main results is a non-ideal analogue to Classical Cer-
tainty:

Theorem 2 (n-certainty)
If ⊢n

R A, then ⊧ ⟨n⟩(Cr(A) = 1).

According to n-certainty, if A is an ‘n-step tautology’—that is, if A is n-
step inferable from the empty set—then an agent can come to be certain
of A after having performed some n-step reasoning process. For example,
the agent can come to be certain that “it’s either raining or not” after some
1-step reasoning process (assuming that A ∨ ¬A is 1-step provable in R).

In contrast to Classical Certainty, n-certainty does not carry any commit-
ment to logical omniscience: it does not describe agents as being certain of
all tautologies. In fact, for all n-certainty says, agents need not be certain of
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any tautologies. Yet, n-certainty allows us to retain a central trait of logical
competence: it describes agents as being in a position to become certain of
any tautology that lies within their cognitive reach.

Together, n-preservation and n-certainty show how our dynamic frame-
work avoids the problems that faced the static approaches discussed in the
previous section: it allows us to model agents who are logically competent
despite falling short of logical omniscience. But we are not home free yet.
The unorthodox nature of our approach gives rise to a number of questions
that need to be addressed. That is the task of the next section.

4 Damage Control: Beyond Orthodox Bayesianism

It is not cost-free to give up the assumption of logical omniscience. With-
out it, many fundamental results of orthodox Bayesianism do not go through.
But all is not lost. Just as our dynamic framework provides us with non-ideal
analogues of Classical Preservation and Classical Certainty, so it provides us
with non-ideal analogues of various other centerpieces of orthodox Bayesian-
ism. Here we focus on two in particular.

First up is the notion of a conditional credence. Bayesians typically define
conditional credences in terms of ratios of unconditional credences:13

Ratio Formula: Cr(A ∣B) = Cr(A∧B)
Cr(B)

This definition is sensible as long as conjunctions relate to their conjuncts
in the usual, truth-functional way. But conjunctions do not behave in the
usual, truth-functional way in our framework: impossible worlds show no
respect for classical truth-functional dependencies between conjunctions and
their conjuncts. In particular, A∧B need not be true just because A and B

are. Hence, the Ratio Formula makes little sense in our framework.
The stakes are high: without the Ratio Formula, the standard derivation

of Bayes’ theorem is blocked. Suddenly it looks like we are throwing out the
baby with the bathwater.

13A notable exception is Hájek (2003).
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But a fix is available. Instead of the Ratio Formula, we can define condi-
tional credences as follows:

(P8) M, w ⊧ Cr(A ∣B) ≤ x iff ∑Q P r(Q)
∑Q′ P r(Q′) ≤ x,

where w ∈ W P , Q = {v ∈ S ∶ M, v ⊧ A and M, v ⊧ B}, and Q′ = {v ∈ S ∶ M, v ⊧

B}. This definition captures much the same idea as the Ratio Formula: to
determine an agent’s credence of A conditional on B, we look at those B-
worlds that are doxastically possible for the agent and check which of those
worlds verify A. Furthermore, it is easily verified that (P8) and (P4) jointly
entail Bayes’ theorem. The danger is averted.

Our definition of conditional credence also allows us to establish a third
main result:

Theorem 3 (n-conditionality)
If A ⊢n

R B, then ⊧ ⟨n⟩(Cr(B ∣A) = 1).

According to n-conditionality, if A n-entails B, then an agent can become
certain of B conditional on A after having performed some n-step reasoning
process. For example, the agent can become certain that “it rains or snows”
conditional on “it rains” after some 1-step reasoning process (assuming that
R contains disjunction introduction).

We can think of n-conditionality as a non-ideal analogue of the following
Bayesian principle:

Classical Conditionality: If A entails B, then Cr(B ∣A) = 1.

This principle captures yet another way in which orthodox Bayesianism gives
rise to logical omniscience: intuitively, it describes agents as being certain
of all entailment relations. By contrast, n-conditionality carries no such
commitment. Indeed, for all n-conditionality says, agents need not be certain
of any entailment relations. Yet, n-conditionality allows us to retain a central
trait of logical competence: it describes agents as being in a position to
become certain of those entailment relations that lie within their cognitive
reach.

The second aspect of orthodox Bayesianism that we want to focus on is
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its algebraic structure. The story is familiar: by defining a Boolean algebra
on the set of possible worlds, we can understand logical operations in terms
of set-theoretic ones. For example, we can understand conjunction and dis-
junction in terms of intersection and union (where ‘∣A∣’ denotes the set of
possible worlds that verify A):

Classical Conjunction: ∣A ∧B∣ = ∣A∣ ∩ ∣B∣

Classical Disjunction: ∣A ∨B∣ = ∣A∣ ∪ ∣B∣

These principles do not generally hold in our framework. More specifically,
they hold at the level of possible worlds, but fail at the level of impossible
worlds. The reason, once again, is that impossible worlds show no respect
for classical, truth-functional dependencies between complex sentences and
their parts. For example, A ∨B need not be true just because A is.

However, we can still formulate non-ideal analogues to Classical Conjunc-
tion and Classical Disjunction (where ‘∣A∣n’ denotes the set of worlds in W

that have at least one n-expansion that verifies A):14

n-conjunction: ∣A ∧B∣n ⊆ ∣A∣n+1 ∩ ∣B∣n+1

∣A∣n ∩ ∣B∣n ⊆ ∣A ∧B∣n+1

n-disjunction: ∣A ∨B∣n ∩ ∣A∣n ⊆ ∣B∣n+1

∣A∣n ⊆ ∣A ∨B∣n+1

These principles show that our dynamic framework, while not truth-functional
in the classical sense, still allows us to associate set-theoretic properties with
various logical connectives; properties that nicely capture the roles that such
connectives play in our cognitive lives. This strikes us as an interesting result
in its own right.

14Here is a sketch of a proof of the first part of n-conjunction: suppose w ∈ ∣A ∧ B∣n,
for any w ∈W . Assuming that R contains standard introduction and elimination rules for
conjunction, ∣A∧B∣n ⊆ ∣A∣n+1 and ∣A∧B∣n ⊆ ∣B∣n+1. Hence, w ∈ ∣A∣n+1

∩ ∣B∣n+1. The other
subset relations can be established in similar ways.
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5 Concluding remarks

We began this paper with a critical discussion of three existing approaches to
the problem of logical omniscience in the Bayesian literature. Some propos-
als merely replaced logical omniscience with a different logical idealization;
others sacrificed all traits of logical competence on the altar of logical omni-
science. The collapse result made the waters hard to navigate. But in diag-
nosing why, a new ‘dynamic’ approach emerged: by enriching the Bayesian
framework with tools that allowed us to model what agents can and cannot
infer given their limited cognitive resources, hope remained to circumvent
collapse. We went on to develop this dynamic approach in formal detail, and
showed how the resulting Bayesian framework allows us to model agents who
are logically competent despite falling short of logical omniscience.

Let us close by addressing a residual worry about our dynamic approach,
due to Berto & Jago (2019, §5.5). The worry goes as follows: while our
framework allows us to model what agents can infer given his cognitive re-
sources, it does not allow us to model what they should infer given those
resources (since the semantics for ‘[n](Cr(A) = x)’ is equivalent to that of
‘Cr(A) = x’). Yet it is the job of a theory of non-ideal rationality to tell us
how non-ideal agents should live their epistemic lives. After all, rationality
is a normative notion; not a descriptive one.

We want to offer two remarks in reply. First, it is worth noting that there
is at least a weak sense in which our framework is normative. If we accept
that ‘ought’ implies ‘can’ in the domain of epistemic rationality (which is
obviously a big ‘if’), then agents will not be required to live their epistemic
lives in ways that are incompatible with their cognitive abilities. Thus, in-
sofar as our dynamic framework allows us to represent an agent’s cognitive
abilities, it will at least arguably place negative requirements on how agents
ought to live their epistemic lives.

Second, and perhaps more importantly, we are doubtful that a formal
theory of non-ideal rationality should indeed place any positive demands
on which inferences ordinary agents should perform. After all, if an agent
performed every inference within her cognitive reach, she would end up ‘clut-
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tering her mind with trivialities,’ to use a rubric from Harman (1986, p. 12).
The situation seems analogous to that of evidence-gathering: if an agent
gathered every piece of evidence within her practical reach, she would most
likely end up with a massive pile of useless junk. Yet, it is presumably not
the task of formal epistemology to say which pieces of evidence, among the
practically feasible ones, the agent should gather. Likewise, we do not con-
sider it the task of our dynamic Bayesian framework to say which inferences,
among the epistemically feasible ones, agents should perform.
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Appendix

This appendix contains proofs of three main results of the paper. All defini-
tions can be found in §3. The results are repeated here for convenience.

Theorem 1 (n-preservation)
If A ⊢n

R B, then Cr(A) = x ⊧ ⟨n⟩(Cr(B) ≥ x).

Proof. Suppose that A ⊢n
R B and consider any pointed model, (M, w), such

that M, w ⊧ Cr(A) = x, where M = (W P , W I , f, V ) and w ∈ W P . We must
show that M, w ⊧ ⟨n⟩(Cr(B) ≥ x). We proceed by defining a suitable n-
accessible pointed model from (M, w). Let M ′ = (W ′P , W ′I , f ′, V ′) be a
model such that W ′P = W P , W ′I = W I , and V ′ = V . Since A ⊢n

R B, we can
let f ′ be an n-variation of (M, w) for which it holds that f ′(w) = (c, Prc),
where M ′, v ⊧ B, for all v ∈ {v′ ∈ c ∶ M ′, v′ ⊧ A}. By the definition of n-
accessibility, then, (M, w)

n
∼ (M ′, w). Since M, w ⊧ Cr(A) = x, (P4) tells us

that ∑Q Pr(Q) = x, where Q = {v ∈ S ∶ M, v ⊧ A}. Hence, ∑Q′ Prc(Q′) ≥ x,
where Q′ = {v ∈ c ∶ M ′, v ⊧ B}. By another application of (P4), M ′, w ⊧

Cr(B) ≥ x. So, by (P5), it follows that M, w ⊧ ⟨n⟩(Cr(B) ≥ x).
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Theorem 2 (n-certainty)
If ⊢n

R A, then ⊧ ⟨n⟩(Cr(A) = 1).

Proof. Suppose that ⊢n
R A and let (M, w) be any pointed model such that

M = (W P , W I , f, V ) and w ∈ W P . We must show that M, w ⊧ ⟨n⟩(Cr(A) =

1). We proceed by defining a suitable n-accessible pointed model from
(M, w). Let M ′ = (W ′P , W ′I , f ′, V ′) be a model such that W ′P = W P , W ′I =

W I , and V ′ = V . Since ⊢n
R A, we can let f ′ be an n-variation of (M, w) such

that f ′(w) = (c, Prc), where M ′, v ⊧ A, for all v ∈ c. Hence, ∑Q′ Prc(Q′) = 1,
where Q′ = {v ∈ c ∶ M ′, v ⊧ A}. By (P4), M ′, w′ ⊧ Cr(A) = 1. By the
definition of n-accessibility, (M, w)

n
∼ (M ′, w). So, by (P5), it follows that

M, w ⊧ ⟨n⟩(Cr(A) = 1).

Theorem 3 (n-conditionality)
If A ⊢n

R B, then ⊧ ⟨n⟩(Cr(B ∣A) = 1).

Proof. Suppose that A ⊢n
R B and let (M, w) be any pointed model such that

M = (W P , W I , f, V ) and w ∈ W P . We must show that M, w ⊧ ⟨n⟩(Cr(B ∣A) =

1). Let M ′ = (W ′P , W ′I , f ′, V ′) be a model such that W ′P = W P , W ′I = W I ,
and V ′ = V . Since A ⊢n

R B, we can let f ′ be an n-variation of (M, w) such that
f ′(w) = (c, Prc), where M ′, v ⊧ B, for all v ∈ {v′ ∈ c ∶ M ′, v′ ⊧ A}. Hence,
∑Q Prc(Q) = ∑Q′ Prc(Q′), where Q = {v ∈ c ∶ M ′, v ⊧ A and M ′, v ⊧ B}

and Q′ = {v′ ∈ c ∶ M ′, v′ ⊧ q}. By (P8), M ′, w ⊧ Cr(B ∣A) = 1. By the
definition of n-accessibility, (M, w)

n
∼ (M ′, w). So, by (P5), it follows that

M, w ⊧ ⟨n⟩(Cr(B ∣A) = 1).
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