147 research outputs found

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    Get PDF
    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)–(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI

    Adaptation in p300 and motor imagery-based BCI systems

    Get PDF
    Brain Computer Interface (BCI) is an alternative communication tool between human and computer. Motivation of BCI is to create a non-muscular communication environment for the use of external devices. Electroencephalography (EEG) signals are analyzed for understanding the user's intent in BCI systems. The nonstationary behavior of brain electrical activity (such as EEG), caused by changes in subject brain activities, environment conditions and calibration issues, is one of the main challenges of BCI systems. Another set of challenges involves limited amount of training data and subject-dependent characteristics of EEG. In this thesis, we suggest a semi-supervised adaptation approach for P300 based BCI speller systems to address these types of problems. The proposed approach is applied on a P300 speller which also incorporates a language model using Hidden Markov Models (HMM). The estimated labels from the classifier are used to retrain the classifier for adaptation. We have analyzed the effects of this adaptation approach on BCI systems with non-stationary EEG data and small size of training data. We propose to solve both problems by updating the BCI system with labels obtained from the classifier. We have shown that such an adaptation approach would improve BCI performance around 30% for systems with limited amount of training data, and 40% for transferring the system subject-to-subject. Moreover, we have investigated the potential use of error related potential (ErrP) signals in the P300-based BCI systems. The detection and classification of ErrP signals in BCI setting are presented along with the experimental analysis of ErrP

    A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI

    Get PDF
    This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods

    Adaptation in P300 braincomputer interfaces: A two-classifier cotraining approach

    Get PDF
    10.1109/TBME.2010.2058804IEEE Transactions on Biomedical Engineering57122927-2935IEBE

    SSL for Auditory ERP-Based BCI

    Get PDF
    A brain–computer interface (BCI) is a communication tool that analyzes neural activity and relays the translated commands to carry out actions. In recent years, semi-supervised learning (SSL) has attracted attention for visual event-related potential (ERP)-based BCIs and motor-imagery BCIs as an effective technique that can adapt to the variations in patterns among subjects and trials. The applications of the SSL techniques are expected to improve the performance of auditory ERP-based BCIs as well. However, there is no conclusive evidence supporting the positive effect of SSL techniques on auditory ERP-based BCIs. If the positive effect could be verified, it will be helpful for the BCI community. In this study, we assessed the effects of SSL techniques on two public auditory BCI datasets—AMUSE and PASS2D—using the following machine learning algorithms: step-wise linear discriminant analysis, shrinkage linear discriminant analysis, spatial temporal discriminant analysis, and least-squares support vector machine. These backbone classifiers were firstly trained by labeled data and incrementally updated by unlabeled data in every trial of testing data based on SSL approach. Although a few data of the datasets were negatively affected, most data were apparently improved by SSL in all cases. The overall accuracy was logarithmically increased with every additional unlabeled data. This study supports the positive effect of SSL techniques and encourages future researchers to apply them to auditory ERP-based BCIs
    corecore