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Summary

A brain computer interface (BCI) is an alternate channel of communication be-

tween the user and the computer, without having to go through the usual neuro-

muscular pathways. Using BCI, disabled patients can communicate with a com-

puter or control a prosthetic device just by modulating his/her brain activity. This

thesis focuses on two of the desirable capabilities of a usable and practical BCI sys-

tem - adaptation and control state detection. Adaptation is the ability of the BCI

system to adapt itself to incoming data to achieve goals such as higher information

transfer rate and lower training data requirement as compared to a non-adaptive

system. Control state detection refers to its ability to determine whether the user

is actively giving input. Such systems eliminate the need to follow the cues issued

by the computer, and allows the user to give input naturally (at will). However,

adaptation and control state detection are challenging tasks, and require the BCI

system to be able to extract more information from the data being classified.

A co-training based approach is introduced for constructing high-performance

classifiers for BCIs based on the P300 event-related potential (ERP), which were

trained from very little data. It uses two classifiers - Fisher’s linear discriminant

analysis (FLDA) and Bayesian linear discriminant analysis (BLDA), progressively

iv



Summary v

teaching each other to build a final classifier, which is robust and able to learn

effectively from unlabeled data. Detailed analysis of the performance is carried out

through extensive cross-validations, and it is shown that the proposed approach is

able to build high-performance classifiers from just a few minutes of labeled data

and by making efficient use of unlabeled data. The performance improvement is

shown to be even more significant in cases where the training data as well as the

number of trials that are averaged for detection of a character is low, both of

which are desired operational characteristics of a practical BCI system. Moreover,

the proposed method outperforms the self-training-based approaches where the

confident predictions of a classifier is used to retrain itself.

An asynchronous BCI system combining P300 and steady-state visually evoked

potentials (SSVEP) paradigms is also proposed. The information transfer is accom-

plished using P300 ERP and the control state detection is achieved using SSVEP,

overlaid on the P300 base system. Offline and online experiments have been per-

formed with ten subjects to validate the proposed system. It is shown to achieve

fast and accurate control state detection without significantly compromising the

performance. Techniques for improving the performance of the proposed techniques

are also suggested.
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Chapter 1
Introduction

1.1 Introduction to Brain Computer Interfaces

Severe neuromuscular disorders due to trauma, brain or spinal cord injury, brain-

stem stroke, muscular dystrophies, cerebral palsy, amyotrophic lateral sclerosis

(ALS), multiple sclerosis etc. can result in peripheral motor neuron inactivity.

Such patients typically experience a locked-in syndrome, rendering them unable

to communicate their intentions or emotions in the usual manner, in spite of hav-

ing a healthy brain. They require some device which has the ability to translate

thoughts into actions without any muscular involvement - a device which, till re-

cently, has always been themes of folklore and science fictions. Brain computer

interface (BCI) is all about an alternate channel of communication between the

user and the computer. A user can convey his intentions to the BCI by modu-

lating his brain activity, which is translated to useful commands for the device to

be controlled. Sitting in wheelchair, users might be able to browse the web, open

e-mails, play games, switch on lights, move a robotic arm and so on; the technol-

ogy has a list of applications which is virtually endless. They might even help the

old and disabled to interact with robots, in a future scenario where robots will be

1
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used as helpers to the old-aged and disabled. Such a device will help the patient

have a better quality of life, and less dependent on a dedicated helper. Thus BCI

hopes to provide a helping hand to patients who have permanent damage to the

neuromuscular system, which no medicine, at least with the present state of the

art, can hope to provide relief.

Apart from the utility in rehabilitation and assistive technologies, BCI also

has applications in virtual reality, gaming etc. For example, a user with a head

mounted device will be able to walk in a virtual environment by using his thought

alone. BCI can also prove to be a peripheral for computer systems, taking the

place of a conventional keyboard or a mouse. The user might be able to key in the

alphabets from a keypad or dial a telephone number or move the cursor and thus

browse the web. It can take the place of a joystick in gaming systems. The same

BCI system can also be used to constantly monitor the well being of a person, thus

adding utility with little or no extra cost.

Any device capable of recording the brain activity has the potential to be used in

BCI. The most common and seemingly the only commercially viable system is the

electrical activity of the brain, recorded by electrodes placed on the scalp, known

as electroencephalogram (EEG). EEG acquisition requires only relatively simple

and portable equipment, and does not require any invasive procedure. Various

EEG activity patterns such as P300 (evoked by a surprise stimulus), steady state

visually evoked potential1 (SSVEP, evoked by repetitive visual stimuli), motor

imagery (MI, associated with imagined limb movements) are used in BCIs.

The block diagram of a BCI system is shown in Fig. 1.1. The EEG is recorded

using electrodes placed on the scalp. The signal is amplified using an amplifier,

and then digitized using an analog to digital converter (ADC). The digitized signal

is input to a computer, which processes the data to recognize activity patterns,

1the usage steady state visual evoked potential is also popular in the literature
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Figure 1.1: Block diagram of a BCI system.

which are interpreted as useful commands. The computer also produces required

stimuli if the activity pattern needs to be evoked (which is the case for P300 and

SSVEP), or cues suggesting the user to start giving an input if the activity pattern

is spontaneous (such as motor imagery). The use of BCI system requires a training

phase. During the training, the information is fed back to the user as a visual (e.g:

movement of a cursor or bar on computer screen), auditory (a series of tones) or

any other easily perceptible form, to help the user learn to modulate his brain

activity so as to convey his intent. Training data is required for the computer as

well, so that algorithms for processing and classification can be optimized for the

user.

1.2 BCI Application Scenarios and State of the

Art

Over the past decade, the BCI technology has grown leaps and bounds and thou-

sands of BCI related publications have appeared in this period. Ultimately, the

technologies have to be incorporated into usable products. Commercial products
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from brands such as Emotiv, Neurosky etc. are available in the market. These

companies provide their software development kits as a framework for developers

to come up with interesting applications. There are a few free BCI frameworks such

as BCI2000 and OpenVibe available in open domain mostly aimed at researchers in

the field. To validate BCI feature extraction and classification methods, BCI com-

petitions were held in 2002, 2003, 2005 and 2008, with winning entries published in

special issues on IEEE Transactions on Biomedical Engineering and Transactions

on Neural Systems and Rehabilitation Engineering.

The most common application of BCIs is the speller, usually based on either

P300 or SSVEP. A speller usually has a virtual keyboard arranged as a matrix,

with keys depending on the application (6×6 alphabetic virtual keyboard being

the most popular). The rows and columns are highlighted in a pseudo-random

sequence (for P300) or using different frequencies / phases (for SSVEP systems).

For the P300 BCI, when the row or column containing character the user wants

to input is highlighted, a P300 response is produced. This can be used to find the

row and column containing the character, and hence the character itself. However,

some groups have proved that flashing of individual buttons might be better than

the row/column paradigm [3, 4]. For SSVEP, individual buttons have to flicker at

different frequncies and hence the number of characters that can be used is limited.

Another variant of the row-column paradigm is the Hex-O-Speller [5] intro-

duced by Blankertz et al. of the Berlin BCI group. The Hex-O-Speller selects

the character the user desires as a two-step process. First, it selects one of the 6

hexagons, which contains the desired character. The second step is to select the

desired character out of the 6 selected characters. This interface was presented at

the world’s largest IT fair - CeBIT 2006, achieves very good accuracy and can be

implemented using any potential offering a 2-state control (such as motor imagery

or P300).



1.3 Motivation and Objectives 5

Bayliss and Ballard [6] have created P300 based systems usable for navigating in

a virtual world. Several other groups have published results on using BCI systems

for virtual reality and gaming. Bin et al. have developed a BCI system which

allows the user to control a virtual helicopter continuously in a 3-D world through

intelligent control strategies using non-invasive BCI systems [7]. These show that

non-invasive BCIs can achieve a level of control which was previously thought to

be infeasible.

A high-performance 2-D cursor control combining the µ and β rhythms with

P300 and motor imagery was demonstrated by Guan et al. [8]. Another popular

application of BCI is in wheelchair, as it is likely that the main target beneficiaries

of BCIs are wheelchair bound patients. There have been several studies focusing

on the usability and performance of such BCIs [9,10]. Recently, a hybrid BCI with

a lot of desirable features have been proposed by Allison et al. [11].

As the world is moving to an era of mobile and hand-held devices, and with

technological convergence, there has been a recent interest in incorporating BCI

systems into mobile/embedded platforms [12] [13] [14].

1.3 Motivation and Objectives

Since extracting useful information from EEG is difficult, EEG based BCI systems

had not been getting much attention till the last decade. However, research in this

topic has geared up during the past few years, and the technology has seen tremen-

dous improvements. The development of a BCI system is highly multidisciplinary,

requiring inputs from neurology, electrophysiology, psychology, instrumentation,

signal processing, pattern recognition, and computer science.

The goal of all research is to devise faster, more accurate and easier to use

BCI systems, with a variety of applications; symbolizing the victory of brain over

muscles. The success of a BCI system depends on how effectively the EEG patterns
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are recognized and classified so that they reflect the intentions of the user. However,

achieving this goal while enabling the user to interact naturally with the computer

is a challenging task. In particular, the user should be able to

• operate the system with minimal training / calibration. The system should

be able to adapt to the user without requiring a large amount of intermittent

training data, thus reducing the “warm-up” time required for the user to start

operating the system. This requires devising efficient learning techniques so

that the system can adapt to the user faster and more efficiently (adaptation).

• give input at will, i.e., without waiting for the computer to dictate when

and whether an input can be/should be given. The system should be able

to detect whether the user is intending to give an input at all, i.e., the sys-

tem should be able to detect the control state (control state detection, and

a system capable of control state detection is termed as an asynchronous

system).

In this thesis, we propose techniques to achieve the two desirable characteris-

tics mentioned above - adaptation and control state detection. We base our study

on P300 and SSVEP based systems as they are easy to implement and requires

relatively less amount of training for the user. Also, the relatively high amplitudes

of P300 and SSVEP responses enable easy detection and thereby, high information

transfer rates (ITRs). Moreover, P300 interfaces have the advantage of applicabil-

ity to a wider range of patients.

1.4 Thesis Contributions and Organization

The main contributions in this thesis are :

• Development of a flexible BCI system in Visual C++ and Matlab. The

system is capable of working as a usual P300 interface in offline or online
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mode. An option for introducing a P300 flicker to induce SSVEP is also

present. This system exploits the power, speed an multi-threading capa-

bilities of C++, while the data processing algorithms are implemented in

Matlab which makes prototyping easier. The processing can be done another

computer to which the data is sent via transmission control protocol (TCP)/

internet protocol (IP). The system is well-integrated and works in real-time.

• A Co-training based technique for fast adaptation in a P300 BCI. The system

uses two classifiers which can learn from each other progressively, and thus

using unlabeled data efficiently to deliver high-performance classifiers from

very little training data. A detailed statistical analysis of the performance of

the proposed method is done on data from 5 subjects.

• A hybrid P300-SSVEP system is proposed where P300 is used for informa-

tion transfer, and the control state information obtained from SSVEP. Re-

sults from offline and online data from 10 subjects show that this system is

able to achieve good ITRs while having robust control state detection capa-

bility. Hence, we demonstrate that the use of hybrid systems is a promising

alternative for implementing asynchronous systems.

The thesis is organized as follows :

Chapter 2 gives an overview of SSVEP and P300 BCIs, and the commonly

used feature extraction and classification methods. A review of the control state

detection and adaptation techniques reported in the literature, and the detailed

motivation for the present study is also given therein. A flexible P300/SSVEP sys-

tem developed, and its performance evaluation is presented in Chapter 3. Chapter

4 proposes and analyzes the performance of a co-training based method for deliv-

ering a fast adaptation in P300 BCI. Chapter 5 proposes a control state detection

technique in a P300 BCI with SSVEP based control state detection. Chapter 6
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concludes the thesis with discussions on implementation issues in real world appli-

cations, as well as numerous future directions / improvements.



Chapter 2
Brain Computer Interface : Overview

2.1 The Human Brain

The brain is arguably the most mysterious and complex organ in the human body.

It is estimated to have 80-120 billion neurons and is composed of 3 main parts –

Cerebrum, Cerebellum and Medualla. The Cerebrum is the largest and outermost

most part of the brain, which accounts for two-third of the weight of the brain.

It is composed of two hemispheres, and a thick band of nerve fibres known as the

Corpus callosum connecting them. The outer part of the cerebrum is known as

the cerebral cortex (grey matter), and is the place where the majority of the actual

information processing takes place. The cerebral cortex is mainly divided into 4

lobes (Fig. 2.1). The Frontal lobe is the front-most portion of cerebrum, involved in

decision making, problem solving, planning and motion. The Parietal lobe, which

is located posterior to the frontal lobe, is responsible for cognition, information

processing, pain, touch, etc. The Occipital lobe is the main visual processing part

of the brain, and is located inferior to the parietal lobe. The Temporal lobe, which

is found anterior to the occipital lobe handles auditory perception, language and

speech production. The Cerebellum is the area involved in balance, equilibrium

9
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Figure 2.1: Lobes of human brain (Adapted from Fig.728, Gray’s Anatomy [1]).

and movement co-ordination, relaying information between muscles and the area

in the cerebral cortex involved in muscle control. The Medulla Oblongata is the

portion of the brain controlling autonomic functions such as heart beat, digestion,

blood vessel function etc. It is also responsible for transferring messages from

various parts of the brain to the spinal cord.

2.1.1 Measuring brain activity

The firing of various neuronal groups in the brain causes measurable electric and

magnetic signals. The variation in oxygenation level of the blood can also be

detected using certain modalities. The activity thus measured provides insight

into the working of the brain and cognition and helps explore various physiological

/physophysical phenomena. Also, they give a means through which the user can

convey his intentions directly to a computer, i.e., for BCIs. A brief description of

the various techniques to explore the activity of the brain is given below, and their

applicability and relevance to BCIs is explained.



2.1 The Human Brain 11

EEG is the brain activity measured using electrodes placed on the scalp. It is

the most popular modality used in BCIs, owing to the fact that it is non-invasive

and recording systems are much cheaper. Also, the equipments involved are robust,

portable and is less demanding on safety precautions and operator skills. More-

over, it has very good temporal resolution, and hence enables a faster detection

of brain activities/responses. Owing to these advantages, most commercial BCI

applications use EEG. Since our work is based on EEG, a detailed description of

recording and analysis is given in the following sections.

Electrocorticogram (ECoG) is the electrical activity measured directly using

electrode arrays placed surgically on the cortex surface. This is similar to EEG

with respect to generation mechanism, but has much better spatial resolution due

to the reduced volume conduction effects and attenuation by the skull. Also,

ECoG is less prone to movement, muscle and eye artefacts. There have been a few

studies using ECoG for BCI, and the accuracy of control achieved with ECoG is

much better than BCIs. However, the obvious disadvantage of ECoG is that it is

invasive andrequires the skull to be opened for installing the electrodes. Hence it is

unlikely to get widespread acceptability except for a very small group of locked-in

patients or those with Parkinson’s disease.

Microelectrode Arrays measure the electrical activity from a single neuron or a

small group of neurons. Similar to ECoG, the electrodes are surgically inserted in

place. However, unlike ECoG, the needle electrodes are inserted into the cortex.

Due to the complexity and risks involved, this procedure is done mostly in exper-

iments on animals. A thorough exploration on human subjects is difficult and is

unlikely to be popular in the near future.

Magnetoencephalogram (MEG) is the measurement of very small changes in

magnetic field caused by intracellular currents of pyramidal neurons. The detection

of such small changes in magnetic field is technically challenging, and hence MEG
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equipment are generally expensive and bulky. An MEG based system is described

in [15].

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive modality

which measures the blood oxygenation level dependent (BOLD) signal. It gives an

indirect measure of neuronal activity through the so called haemodynamic response

(HDR), which depends on the level of oxygenation of blood. It is a 4D imaging

technique with a good spatial resolution. Though this is actually a desirable feature

for a BCI system, its cost is too high and prohibitive for use in a consumer product.

Moreover, its temporal resolution is a few 100s of milliseconds, which is quite

unacceptable for a BCI system. However, fMRI based systems and combinations

of EEG and fMRI based systems also have been reported in literature [16] [17].

Near Infra Red Spectroscopy (NIRS) is another non-invasive modality which

measures the haemodynamic activity of the brain. In NIRS, sources emitting light

in the near-infrared region is placed on the scalp. The intensity of the reflected

light varies according to the level of oxygenation, which gives an indication of the

brain activity. NIRS has a lower spatial and temporal resolution. Nevertheless,

BCIs based on NIRS have appeared in the literature [18]

From the above discussions, it can be inferred that though any device capable of

recording the brain activity has the potential to be used in BCI, the most practical

and seemingly the only commercially viable modality is the EEG. In the next

section, we describe EEG in detail.

2.2 Electroencephalogram (EEG)

EEG was discovered by Hans Berger in 1929. It is a widely used non-invasive

technique for studying the brain activity. Main clinical uses of EEG are in epilepsy

detection, sleep analysis, fatigue detection and in diagnosis of encephalopathies,

coma, brain death etc. EEG is an especially valuable tool where sub-millisecond
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temporal resolution is required, which is not possible with other techniques such

as fMRI, in spite of having relatively poor spatial resolution.

The pyramidal neurons in the grey matter of the cortex are thought to be the

principal source of electrical activity recorded by EEG. These neurons are well-

aligned and fire in synchrony. This activity is transmitted to the surface of the

scalp through volume conduction. The signals thus recorded is the spatial and

temporal summation of the potentials produced by various groups of pyramidal

neurons. The difference in electric potential caused across two electrodes can be

measured / recorded using an appropriate device, and is what constitutes the

EEG signal. EEG is usually recorded following the 10-20 system [19] of electrode

placement. This system provides a set of standard electrode positions which are

reasonably independent of various head geometries. The various electrode positions

in the 10-20 system are shown in Fig. 2.2. The 10-20 system has been extended

further to the 10-10 and 10-5 system for higher density recordings [20]. We use

only one channel which is not present in the basic 10-20 system - Oz. Elastic

electrode caps of various sizes are used for easy application of electrodes. The

electrodes used are typically Silver/Silver Chloride, though Tin electrodes are used

in cheaper recording setups. Some sort of conducting gel is typically used to

reduce the resistance between the scalp and the electrodes. Since the EEG signal

is usually of the order of a few micro volts, the signal is amplified using low noise

instrumentation amplifiers. The signals are then sampled and quantized to digital

form using sensitive analog-to-digital converters. The typical sampling rates used

are 256 Hz, 512 Hz and 1024 Hz. Since most of the EEG activity is below 100 Hz,

a sampling rate of 256 Hz might be sufficient for most practical applications, even

without an anti-aliasing filter (it can optionally be used, though low noise filters

tend to be costly). Each sample is usually represented using bits ranging from 8

to 32. A 3 second long raw EEG recorded at a sampling rate (Fs) of 256 Hz from
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Figure 2.2: Electrode position in the 10-20 system of recording [adapted from
http://www.beteredingen.nl (creative commons license)]). The channels used in our
experiments are in green color. A1 and A2 (yellow) are the reference electrodes. AFz (in
black color), is the ground.

Cz electrode is shown in Fig. 2.3a and the corresponding Fourier spectrum in Fig.

2.3b.

2.2.1 Different types of EEG activities

The EEG activities can be broadly classified into two - rhythmic (spontaneous) and

transient. Rythmic activities are due to synchronous oscillatory activities involving

groups of neurons. The important bands in EEG based on their frequencies are δ

(0.5-4 HZ), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz) and γ (26-100). The δ activity

is mostly seen in infants and adults in deep sleep or meditation. θ activity can be
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Figure 2.3: EEG signal and spectrum



2.2 Electroencephalogram (EEG) 16

seen in children and in adults while in normal sleep and drowsiness. α rhythms are

more prominent in the occipital region in a state of relaxation with eyes closed, and

without information processing involving concentration. β is associated with alert-

ness and active concentration. γ reflects cross-modal sensory perception (involving

fusion of information from different senses), higher-level cognition and short-term

memory matching.

Event related potentials (ERPs) are the spatio-temporal patterns in EEG (the

modality can be anything, though we are considering only ERPs in EEG in this

context), formed in response to an event, and usually time-locked to the event (for

example, surprise or initiation/imagination of movement). ERPs have historically

had many clinical utilities, and are the most important brain activity pattern for

BCIs. They are described in more detail in the following section.

2.2.2 EEG activities used in BCIs

Some well known and well studied EEG patterns used in BCI are described below.

P300 : It is a positive deflection in EEG, peaking approximately 300 ms after

the presentation of a rare, task-relevant stimuli (popularly known as the oddball

paradigm) [21]. As this work mostly involves P300, more details about this ERP

is given in Section 2.3.1.

SSVEPs : These are oscillations observed at occipital regions, induced by a

periodic stimuli. The observed oscillations will have responses of the same fre-

quency and its harmonics. This can be exploited in BCIs by requiring the user to

concentrate on the desired input (which can, for example, be a number pad or a

keyboard). By processing the EEG, the desired input can be found out [22].

ERPs based on MI : When a person is about to perform a motor function, the

group of neurons in the contralateral hemisphere of the brain fires, and the am-

plitude of the measurable electrical activity reduces. This is called event related
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desynchronization (ERD). They are most prominent in frontal and parietal loca-

tions and can be detected using µ1 and β rhythms. This activity shows a strong

contralateral dominance (i.e., if the movement of left limb is imagined, then the

right part of the brain shows a larger amplitude for the rhythms than the left).

This feature is exploited in BCIs [23]. Interestingly, it has been shown that this

phenomenon is seen even when only an imagination of movement is done, and thus

even disabled people can use BCI based on motor imagery.

Slow cortical potentials (SCP): These are slow, non-movement related potentials

which reflect changes in cortical polarization of EEG. It has been shown that control

over SCPs can be achieved by practice, and hence can be used in BCI [24].

The intent of the user can be conveyed by different means such as self-regulation

of EEG (µ and β rhythms), oddball paradigm (P300), or evoked responses (e.g:

visually evoked potentials, VEPs). The extracted information is then translated

and used for the control of the target equipment according to the user’s intent.

Owing to factors described in Section 1.3, the systems described in this thesis

utilizes P300 and SSVEP ERPs. Hence, we describe P300 and SSVEP phenomena

and their detection in the following sections.

2.3 P300 and SSVEP based BCIs

2.3.1 P300 - Overview

P300 was first observed by Sutton in 1965 [25]. It is a positive deflection in EEG,

observed about 300ms after the subject is present with an oddball paradigm, i.e.,

when the subject is experiencing a relatively rare stimulus among a sequence of

more frequent stimuli. P300 is a result of conscious processing of stimuli, and hence

1An EEG rhythm in the α band, produced by motor cortex when when there is no hand/arm
movement
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is classified as an endogenous ERP. Various factors affecting the P300 have been

extensively studied. P300 has a significant clinical utility, as the peak amplitudes

and latencies (which is the time delay between the presentation of stimulus and

the peak of P300 response) are found to be influenced by the mental state of

the patient and presence of cognitive disorders like Schizophrenia and Alzheimer’s

disease. It is actually a composite signal, with 2 main subcomponents - P3a and

P3b. The former is elicited when the subject pays little attention to the stimuli and

is mostly observed in the fronto-central regions whereas P3b is elicited when the

subject is given a task-relevant stimuli (for example, when the subject is required

to count the number of occurrences of a particular type of stimulus). P3b is mostly

observed around the centro-parietal region. P300 is believed to be due to the firing

of neurons as a result of high-level, conscious information processing, though the

exact cause is still debated.

2.3.2 P300 BCIs

The amplitude of the P300 is relatively higher than most other ERPs, and it is

easier to elicit. Owing to these advantages, P300 based BCIs are getting increased

attention. A number of BCI groups are using P300 based BCIs, and the results

reported have been encouraging [3, 26, 27]. The most popular paradigm in P300

based BCIs is the speller [21]. Though P300 can be produced by auditory and tac-

tile stimuli, visual P300 is, by far, the most popular in choice for BCI applications.

Figure 2.4 shows the response for target (surprise) and non-target stimuli. A clear

peak in amplitude can be seen at around 300 ms after the presentation of a target

stimuli, whereas it is absent for a non-target stimuli.

A user of the P300 interface is typically required to concentrate on the object

to be selected, and to silently count the number of times it blinks. This causes the

P300 to be evoked at each blink of the desired object. In a speller paradigm, rows
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Figure 2.4: Response for target and non-target stimuli (low-pass filtered with a cut-off
frequency of 12 Hz).

and columns of an on-screen keyboard (usually in the shape of a square matrix)

are highlighted in a pseudo-random sequence such that each row and each column

is highlighted once in every round (see Fig. 2.5). The diagram of a P300 speller

(6×6) is given in Fig. 2.6. Once the row and column the user is concentrating on

is accomplished, the character selection is complete (for example, character ‘Y’ is

selected when a P300 is elicited after illumination of the 5th row and 1st column).

The P300 signal usually requires averaging of several trials to increase the signal

to noise ratio (SNR) required for reliable detection. For selecting an object, the

user will have to concentrate on it for several blinks. The EEG data associated with

the flashing of one button, and that associated with one complete cycle of flashings

are called epoch and round, respectively in this thesis. The lesser the number of

rounds required to select a character, the more efficient the BCI is and better is

the information transfer rate. The goal of all signal processing and classification
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Figure 2.5: The P300 speller interface. The target character during the training phase
is ‘Y’, which is yellow in color.

Figure 2.6: P300 speller operation (adapted from [2]).
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algorithms are to enable faithful detection of P300 in a minimum number of rounds.

See Section 2.6.1 for more details on the performance measures of BCIs.

There were studies involving the effect of matrix sizes on BCIs and conclusion

in the study by Allison et al. [28] was that the increase in matrix size increases

the amplitude of the P300 signal. However, as the interval between successive

stimuli increases, the communication rate will be reduced, though the number of

bits conveyed per symbol is increased.

2.3.3 SSVEP - Overview

SSVEP is a potential produced by the brain in response to repetitive periodic

visual stimulus. When the subject attends to a flickering stimulus of a certain

frequency in the range of 3-75 Hz, a detectable signal of the same frequency and

its harmonics are produced by the brain, predominantly at the occipital region [29].

Researchers have developed robust SSVEP-based BCI systems capable of reaching

ITRs of up to 58±9.6 bits/minute using an interface with several stimuli, each

flickering at a different frequency [30]. This is much faster than the rates reported

for P300 based BCIs, which are usually less than 40 bits/minute [31–33]. SSVEP

is usually very precise about the stimulus frequency. Gao et al. reported the

possibility of distinguishing two stimuli with frequency difference of just 0.2 Hz [34].

Fig.2.7 shows the EEG spectrum with and without SSVEP, with the stimulus

frequency being 17.7 Hz for eliciting SSVEP. A clear peak can be seen at the

stimulus frequency in Fig.2.7b. The peak at 50 Hz is the power line noise and can

be seen in both figures. The simplest method to detection SSVEP is thresholding

of the amplitude of the signal’s Fourier spectrum. Various techniques for enhanced

detection of SSVEP can be found in [35–38].
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Figure 2.7: EEG spectrum with and without SSVEP. The stimulus frequency is 17.7
Hz. The higher amplitude at around 10 Hz in the absence of SSVEP is due to higher
alpha activity with the subject having eyes closed. FS=256 Hz, and drift is removed by
high-pass filtering with 0.5 Hz cut-off.
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2.3.4 Challenges in detection and classification of P300 and

SSVEP

• Low SNR: The SNR of the P300 responses are usually very low, typically

less than 0 dB. This makes the detection process very challenging. The noise

overlaps with the desired signal significantly even within the same band.

Moreover, the noise is not completely uncorrelated with the P300 or SSVEP,

which makes the problem even more challenging.

• Latency Jitter : One of the major challenges in P300 detection is the problem

of latency jitter. The latency of the P300 signals is again, dependent on a lot

of factors. A classifier trained for one subject will not be optimum for another

or even for the same subject, at a different point of time. Some approaches to

adapt the classifier in an unsupervised or semi-supervised manner according

to the training data has been suggested. Various approaches include use of

Kalman filters or variants of it [39], semi-supervised updation of classifier

etc [40].

• Non-linearity and non-stationarity : Many of the signal pre-processing and

classification techniques require the signals to be stationary. Latency jitter,

apart from other factors such as drying up of electrode gel, changes in atten-

tion and habituation of the stimulation paradigm causes differences in the

nature of single trial responses, reducing the effectiveness of pre-processing

and classification methods optimized at an earlier point in time. Many pre-

processing techniques such as principal component analysis (PCA) and in-

dependent component analysis (ICA) makes the assumption that the EEG

sources are point sources and that the scalp forms a linear conductor, which

is not that accurate. The result is that the signals at the electrodes might be

non-linearly related to the actual signal, which again reduces the effectiveness
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of P300 extraction and classification.

• BCI illiteracy : It has been reported by almost all BCI groups that any

particular type of BCI cannot be operated by a non-negligible fraction of

the population. This is known to be independent of age, sex and other

factors [41–43].

2.4 Preprocessing

The recorded EEG signal is usually corrupted by unwanted signals such as :

• Artefacts : Various non-cerebral sources which produce electrical activity such

as eye-movements (electrooculogram, EOG), heart-beat (electrocardiogram,

ECG) and muscle movements causes large deviations in the measured EEG

from the original signal produced by the brain.

• Measurement noise: It is introduced by the recording equipment due to

quantization, linearity imperfections, shot noise from the amplifier, power

line noise, the ever-present Gaussian noise etc. The effect of power line noise

(50 Hz) can be seen in Fig. 2.7.

Preprocessing of the signals is necessary to remove these artefacts before being

used for feature extraction/classification. Since the signal from the preprocessing

stage is used for feature extraction and classification, it has a profound effect on

the effectiveness of the performance of the BCI system. Out of these artefacts,

electrooculogram (EOG, caused due to eye movements) is the one which is more

frequently present, and having amplitudes much larger than the signals of interest.

A variety of methods have been proposed in the literature to detect and correct

these artefacts or to reject portions of the data corrupted by the artefact. They

can mainly be classified into 4 types :
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• Filtering based methods : Filtering based methods work on the principle of

adaptive noise cancelation. The recorded EOG signals (or the signals from

the electrodes FP1 and FP2) are used as the desired signal for an adaptive fil-

ter. The scalp is considered to be a linear or non-linear filter, and we attempt

to model this filter so that the component of EOG arriving at a particular

electrode can be estimated and subtracted to remove it [44]. Filtering is also

useful for removing band-specific noises such as the power line noise.

• Component based methods : Component based methods attempt to find out

the spatial pattern of the corrupting artefact signal, and removes it. The

popular component based methods are principal component analysis (PCA)

and independent component analysis (ICA). The former finds the directions

along which the variance is maximum, which usually corresponds to the arte-

fact signal, which is extracted and removed. ICA attempts to find a linear

mixing matrix, and removes the component which is likely to be the artefact

signal (identified by some postprocessing technique, such as thresholding or

based on spatial patterns of the component). These techniques are detailed

in the next section.

• Regression based techniques : This is a simple technique in which we find the

regression coefficients of the EOG signal on each electrodes, which is used to

remove the EOG artefacts.

• Thresholding based techniques : Here, the artefacts are detected by a simple

amplitude thresholding. The procedure is frequently referred to as wind-

sorizing in the literature. The top and bottom 5 percentiles of the ampli-

tudes (outliers) are assumed to be from artefacts and is clipped. Though

this method is very simple, it has been shown to give reasonably good per-

formance in BCI [2]. Hence, we used only thresholding in our analysis.
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2.5 Feature extraction

In pattern recognition problems, there might be numerous features that can be

used to separate the data into a fixed number of classes, and together they form

the pattern vector. For a well performing pattern recognition system, the training

data requirement increases with the dimensionality of the pattern vector (curse of

dimensionality) [45]. Not all features may be relevant to the classification, and

hence we can avoid using unwanted features. Removing features that does not

contribute to the classification may, in fact improve the classification accuracy and

reduce the training data requirement. Hence, feature extraction can be described

as the process of extracting relevant features (from the recorded EEG signal, for

BCI) to be fed into the classifier. A good overview of the signal processing/feature

extraction methods employed in BCI can be found in [46]. For EEG, feature extrac-

tion can be spatial, temporal or spectral. Spatial feature extraction usually refers

to selecting specific channels and/or finding linear combinations of channels which

will enable an easy detection of signals of interest. In temporal feature extraction,

we select specific time segments or parameters extracted from the time series as

features. Spectral feature extraction refers to extracting features in the frequency

domain such as band powers. It is not a popular method in P300 processing, as

P300 has a high variability in its spectrum, whereas for SSVEP detection, spectral

methods are very effective.

2.5.1 Spatial feature extraction

Projecting the vectors into lower dimensional spaces usually enables the implemen-

tation of the system using less training data. The generalized problem formulation

for feature selection/dimensionality reduction is as follows - given an n×d pattern

matrix Xr, derive an n×m pattern matrix Yr, such that m ≤ d, and Yr = WrXr,

where Wr is a d×m transformation matrix. The main spatial (component based)
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feature extraction methods commonly used in BCIs are :

(i) PCA: It decomposes the signals into mutually orthogonal components with

an ordering dependent on their respective variances. Hence, the signals of interests

need to be of relatively high variance to avoid loss of information relevant for

classification. In PCA, the matrix Wr is a d×m transformation matrix, which

has columns being eigenvectors corresponding to the m largest eigenvalues of the

correlation matrix of Xr, given by

Σr
x = XrXrT (2.1)

The assumption that the P300 components have relatively high variance is not

always valid, yet PCA is still used for dimensionality reduction before further

feature extraction/classification [47]. PCA can also be calculated using Singular

Value Decomposition (SVD) [45].

(ii) ICA: Compared to PCA which transforms the data to maximize the vari-

ance or signal energy, ICA tries to find the statistically independent components

either in the spatial or in the temporal domain. This is a stronger constraint than

decorrelation. The mixing process can be represented as Xr = AS, where A is the

unknown mixing matrix to be estimated and S is the source matrix. We need to

find an estimate of the mixing matrix, Wr ≈ A−1 and hence, the source matrix,

Yr ≈ S.

The solution to this problem involves the measure of statistical independence,

which determines a practical algorithm for the solution. The most commonly

used methods are based on maximizing non-Gaussianity (kurtosis, negentropy) or

maximizing the joint entropy of the output or by tensorial methods [48].

Both PCA and ICA can be implemented spatially as well as temporally, though

spatial independence is a more popular criterion in BCI context. It is a common

practice (and mandatory for fastICA) to reduce the dimensionality (for example,
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by PCA) and to do whitening (making the components uncorrelated and their

variances to be unity) and centering (making mean to be 0).

(iii) Common Spatial Patterns (CSP): Common spatial pattern algorithms are

popular spatial feature extraction methods for MI based BCIs where the two classes

can be discriminated based on difference in band powers in the two hemispheres

of the brain (contra-lateral dominance). These methods aim to find a projection

direction which maximizes the variance of signals from one class while minimiz-

ing the variance of those from the other class. This maximization is usually done

through solving an eigenvalue problem. However, since P300 or SSVEP do not ex-

hibit a definitive contra-lateral dominance, such techniques are not used in SSVEP

or P300 BCIs and are not explained in detail in this thesis.

2.5.2 Temporal feature extraction

Temporal feature extraction is popularly used for potentials such as P300 which are

more reliably detected using time domain feature [49]. Various feature extraction

operations done in time domain are

(i) Filtering and downsampling : BCI systems focus on one or more of specific

EEG activities, which are usually bandlimited. The first step in feature extraction

is bandpass filtering of the signals. In addition to removal of out of band noises,

drifts and trends, bandpass filtering also enables the downsampling of the signal,

which reduces the computational burden and pattern size. This is especially ad-

vantageous if the feature vector is a time series (which is mostly the case with

P300).

(ii) Time domain features for P300(peak picking, area picking): The easiest

way to detect P300 is to find the peak amplitude within a trial or the area of time

series corresponding to a trial and use it for classification. In area picking, the

total area in the region around 300 ms after the stimuli presentation is used as
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the feature. The disadvantage of these methods is that it is very prone to decision

errors, especially if the data is very noisy.

(iii) Time Domain features for SSVEP : While most of the SSVEP detection

techniques are frequency based, there have been time-domain approaches too which

have yielded very good detection results. In [50], the authors have used a time

domain method which they call stimulus-locked inter-trace correlation (SLIC)

method. The time domain method is suitable for detection of VEPs which are

evoked by random or irregular stimuli as well, provided there is a reasonable phase

lock between the stimuli and the response. A prior knowledge of the stimuli pattern

and precise knowledge of the experimental conditions are not required. The data

recorded from the channel PO2 was segmented into multiple traces (stimuli-locked

time-series), each starting with a stimulus. They were correlated in pairs, and the

median correlation was used as a feature in classification.

2.5.3 Spatio-Spectral feature extraction

Canonical Correlation Analysis (CCA): A popular and arguably one of the best

SSVEP feature extraction method is based on CCA as proposed by Gao et al. [34].

The CCA method tries to find projections where two multidimensional random

variables Xr and Ys such that the correlation ρ(yr,ys) between the projected

quantities yr = wrTXr and ys = wsTYs is maximized.

The reference signalYs = [sin(2πfstt)cos(2πfstt) . . . sin(2πNfstt)cos(2πNfstt)]
T ,

where fst is the stimulus frequency, nh is the number of harmonics to be considered

and t is the time. The optimum projection vectors can be found through eigenvalue

based methods. The correlation coefficient can help identify the sinusoids present

in the waveform, and hence we can detect the character user desires to input. The

features extracted by CCA is proportional to the power of the signal obtained from

spatio-temporal filtering.
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2.5.4 Power spectral density (PSD) based techniques

PSD based techniques are the traditional feature extraction/detection techniques

for SSVEP based BCI. The PSD is estimated using a windowed time series using

fast Fourier transform (FFT). The FFT from the frequency ranges used in the

SSVEP-BCI system is compared and the frequency with the largest PSD is selected.

PSD based techniques are simple yet popular for SSVEP detection, as the stimulus

frequency and their harmonics will have a noticeable increase in power when the

user is focusing on the stimuli.

2.6 Classification algorithms

A comprehensive review of classification algorithms used in BCI is given in [49].

For P300 based BCIs, the problem reduces to a binary classification problem (P300

is present or not). The purpose of the classification algorithms are such that given

the training samples {X,y}, where X is the feature vector having n samples (i.e.,

X = {x1,x2, . . . ,xl,xl+1, . . . ,xn}), each being a column vector of length g (g = m

if dimensionality reduction is done; g = d and X = Xr otherwise), and y (of the

form y = {y1, y2, . . . , yn} is a label vector of length n, with only l values (labels)

known. The classification problem can be defined as : Given {(xi, yi)}
n

i=l+1, find

the optimum values of the weight vector w such that the true labels of the test

samples can be predicted from yi = wTxi, by some simple operation. For P300

detection, yi over a few rounds are summed, and the object corresponding to the

maximum sum is chosen as the prediction.

(i) Fisher’s linear discriminant analysis (FLDA): FLDA is a popular method

for finding a linear boundary between classes. FLDA is actually a feature reduction

technique, but in the context of BCI systems where the number of classes is 2,

FLDA serves as a classification technique. In FLDA, the data is projected to a
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lower dimension such that the projected means of classes are far apart, while the

spread of the projected data is small (Fisher’s criterion). This can be realized by

optimizing a cost function related to the within-class scatter matrix (Sw) and the

between-class scatter matrix (Sb), which are defined as

Sw =

nc
∑

k=1

∑

xj∈ck

(xj −mk)(xj −mk)
T (2.2)

Sb =
nc
∑

k=1

nk(mk −m)(mk −m)T (2.3)

where xj ; j = 1, 2, . . . , l are the training data vectors, ck denotes the kth class,

mk is the mean of samples belonging to the kth class, m is the global mean, nc

is the number of classes (nc=2 in our classification, denoting either the presence

or the absence of P300), and nk is the number of samples in the kth class. In

FLDA, the problem is to find a projection vector w = [w1, w2, . . . , wg]
T such that

the projection

y = wTX (2.4)

maximizes the criterion function Jp(w) defined as

Jp(w) =
det(wTSbw)

det(wTSww)
. (2.5)

The solution [45] is to choose w satisfying the eigen equation

S−1
w Sbw = λw, (2.6)

if S−1
w exists, λ being the only non-zero eigenvalue [45] of S−1

w Sb. Once w is esti-

mated, the classifier design is complete and the output for a single feature vector
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(xj) is the scalar

yj = wTxj . (2.7)

Reliable detection of the P300 usually requires several rounds (a round is the

data associated with one complete cycle of row and column flashings [51]) of stimu-

lus presentations. In each round, the scores for all rows and columns are calculated

(using Eq.(2.7)). The scores are typically averaged over a fixed number of rounds

(denoted by nR). The symbol at the intersection of the row and the column hav-

ing the maximum of the averaged scores is the predicted character. This scheme

performs a multi-class classification, even though the underlying classifications are

binary. This scheme is applicable for the methods described in the following sec-

tions too.

(ii) Support Vector Machines (SVM): SVMs try to build a linear classifier such

that the margin of the classifier from the points nearest to the class boundary are

maximally separated. These points acts as the support vectors to the classifier.

These vectors can be obtained by solving a quadratic optimization problem. Given

the training samples {(xi, yi)}
l

i=1, find the optimum values of the weight vector w,

and bias b such that they satisfy the constraints

yi
(

wTxi + b
)

≥ 1 for i = 1, 2, ....l (2.8)

and the weight vector w minimizes the cost function:

φ (w) =
1

2
wTw (2.9)

which is usually done by a quadratic optimization procedure. Similar to the case

with FLDA, the output is yi = wTxi + b; i = l + 1...n. This value is summed

over a number of trials and the symbol with maximum sum is selected. SVMs are

widely used in P300 classification due to their simplicity in the classification phase
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(training phase, however, is computationally intensive).

(iii) Kernel Machines : Kernel machines use a non-linear kernel to project the

data non-linearly into a higher-dimensional space. This increases the discriminabil-

ity of the data provided the kernel function and the hyperparameters are properly

selected. The kernel trick can be applied to linear classifiers to accomplish non-

linear classification [52]. SVMs are frequently used with kernels in many practical

applications. However, due to the higher dimensionality of the feature space, BCI

applications frequently use a linear kernel.

(iv) Neural Networks : Neural networks are a class of networks inspired from

the working of biological neurons. A feed-forward neural network typically has

an input layer, one or more hidden layers, and an output layer. Each neuron

calculates the weighted sum of the inputs from previous stages, and calculates the

output through an activation function from the output of the previous stages. They

are trained either by back-propagation algorithm or with evolutionary algorithms.

Radial basis function neural networks, on the other hand, calculates the output

as a weighted sum of outputs of hidden layers, which are basically radial basis

functions. They are usually trained by a least-square algorithm [52]. For reasons

similar to that of kernel methods (high data dimensionality), neural networks are

relatively less popular in the BCI literature.

(v) Ensemble of Classifiers : Usually, it is advantageous to train a number of

classes, each to a specific set of data. The class prediction is made based on the

outputs of a number of classifiers. This method is called classifier ensembles. As

can be seen from [53], classifier ensembles give very good results.

(vi) Bayesian Classifiers : Bayesian classifiers are ideally the optimum classi-

fiers, but the determination of the perfect model is infeasible in most applications.

A convenient method is to use Bayesian learning to obtain a regularized linear

classifier. More details about this method can be found in [2]. The effectiveness of
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Bayesian classifiers for BCI is clearly demonstrated in [2] and [54].

2.6.1 Evaluation criteria for BCIs

Depending on the type of BCI, several evaluation criteria have been proposed.

A detailed overview is given in [55]. However, since BCI is a communication

system, the ITR is also an important figure of merit. Bit rate increases with

the classification accuracy (ratio of number of correct classifications to the total

number of classifications), and decreases with the number of rounds required for

correct classification. Based on the suggestion of Wolpaw et al. [55,56], the formula

for information per detected symbol is calculated as

B[bits] = log2(n
s)+CA · log2(CA) + (1−CA) · log2

[

(1−CA)

(ns−1)

]

, (2.10)

where ns is the number of equiprobable symbols (36 in our speller paradigm; as

there are 6 rows and 6 columns) and CA is the classification accuracy (the ratio

of correct symbols detected to the total number of symbols being classified). It is

assumed that CA is uniform among classes.

If the online system involves a provision to correct a wrong input, then the

number of bit finally input is the correct number of bits, and ITR can be calculated

by dividing it with the time taken. If error correction facility, such as a delete or

a backspace button [57] is not available (which is the case with our system), the

number of bits detected per detected symbol is calculated as Eq.(2.11). Another

option is to find the number of characters communicated = (number of correct

detections – number of wrong detections). This is to account for the extra character

to be input to inform the system of a wrong entry. However, this method has not

been used, as a wrong detection need not necessarily carry a completely negative

information, and systems with correction using a dictionary can still make use
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of the detection to guess which is the closest word (for example, in a T9 like

system) [58, 59].

Given the inter-stimulus interval (ISI, the interval between 2 consecutive stim-

ulus presentations, in seconds) and the inter-character gap (ICG, the time gap

between 2 consecutive blocks, in seconds), ITR (in bits/min) is calculated as

ITR =
B[bits]

nR × ISI× 12 + ICG
× 60, (2.11)

where nR is the number of rounds required for the detection of a character. The

CA by chance is 0.0278 (1/36, or 2.78%), and the corresponding ITR is 0, from

the above equation.

2.7 Adaptation

The presence or absence of P300 is typically detected with the help of a classifier,

which is trained using some data for which the labels are known [49] [46]. The

labeled data for this purpose is obtained through a training process. Given the

inter and intra-personal variations in EEG, the training time is several tens of

minutes to obtain satisfactory performance [55]. Also, the classifier trained for a

particular user may not be valid for him/her over time, and even less likely for

other users. The requirement of long training time is tiring on the part of the user,

and hence there is a strong motivation for developing BCI systems which require

only little training data. The main reasons for non-stationarity in EEG potentials

are :

Cognitive changes : Cognitive changes are those changes which occur in the

human brain over time, not necessarily related to the task being performed. This

can be due to fatigue, attention and motivation level changes etc.

Adaptation on the part of the user : In general, the operation of a BCI system is
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the interaction between two systems which can learn : the computer/algorithm and

the human. In the course of using the BCI system, the human subject might learn

or adapt to the BCI system, and the features related to the potential of interest

in his EEG might change. This can render the classifier incapable of detecting the

potential/signal of interest effectively.

Recording related factors : The electrode gels typically used in EEG record-

ing (which act as a conducting medium between the electrode and the scalp)are

susceptible to drying which increases its resistivity. Also, electrodes other than

those made of silver or gold are susceptible to polarization, which can also af-

fect the signal quality adversely. This is especially the case for low-cost consumer

grade systems. The drying / polarization can cause intra-session non-stationarity,

whereas differences in the positioning of the electrodes / sensors used can cause

inter-session non-linearity.

Hence, the fact is that the BCI system, even after the tiring training process,

can be used only for short periods of time. For yielding good classification perfor-

mance, the system typically requires re-training which adds to the user frustration.

These long and intermittent training requirements reduce the attractiveness of BCI

as an alternate channel of communication. Hence, building good classifiers from

shorter training sessions has become a topic of great interest to the BCI research

community. Such an adaptive BCI has become an active field of research and

encouraging results have been reported by various groups [33, 40, 54, 60]. Various

methods to deal with non-stationarity have been reported in the literature which

includes retraining using a full set of new training data, adaptation using a small

amount of training data, and semi-supervised learning techniques. The fundamen-

tal questions to be answered in this context are (i) what to adapt (ii) when to adapt

and (iii) how to adapt [61], which are briefly discussed in the following sections.
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2.7.1 What to adapt

Paradigm: One option is to adapt the key parameters of the paradigm itself, such

as nR, ISI etc. BCI systems where the nR was modified adaptively to obtain

increased ITRs are reported in [33] and [31]. In [28], Allison et al. demonstrated

that the discriminability of the P300 signal (for a speller) varies with matrix sizes

and ISIs. This shows that the interface itself can potentially be varied to achieve

best performance for a specific user. It is difficult to statistically analyze the

advantage brought in through paradigm adaptation, as it will require extensive

experimentation with a number of subjects.

Classifier : There have been a number of studies proposing to adapt the classifier

itself. This method has been the most popular in BCI community, mostly owing

to the fact that such studies can be conducted offline though various validation

schemes. Several such studies have been reported in [54, 61–64]. Due to practical

reasons, our work also involves adapting the classifier, and a more detailed picture

is presented in Section 2.7.3.

Features : Another option is to decide/adapt features to be used in classification

intermittently. Various methods to adaptively extract relevant spatial patterns (for

MI based BCI) have been reported in [65] and [66]. In [67], Li et al. proposes an

algorithm which can do both feature and classifier adaptation in an adaptive MI

based BCI.

2.7.2 When to adapt

Systems with a correction input : For certain systems with error correction, the

criterion for whether to adapt can be made by analyzing the number of corrections

performed by the patient. For example, in a speller with a backspace button, the

number of times the backspace button is input could be a measure of the accuracy

of the classifier. However, if the classification accuracy is very low, this might not
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be an option as the backspace/delete character themselves might not be detected

properly. In this case, the system might not be able to “suggest” a re-training,

and will have to be manually initiated.

Another option to identify errors in detection is through error potentials (ErrP).

ErrP is produced by the user as a reaction to his/her own mistakes. ErrP can be

detected fairly well even with a single trial. The information from the ErrP can

be used to decide the error rate of the interface, and can also provide correction

information in some cases [68]. Buttfield et al. [69] demonstrated that the error

made by the BCI interface can also cause elicitation of a version of ErrP. They have

demonstrated the use of an adaptation scheme based on ErrP for a motor-imagery

based BCI, with promising results. In a very recent article, Combaz et al. [70] has

demonstrated improving the performance of a P300 speller by incorporating ErrP

information. They achieved upto 15% improvement in the classification accuracy

by selecting the symbol with the next best classifier score in event of a ErrP de-

tection. However, their work did not explicitly adapt the classifier or the interface.

They have suggested ways to adapt the paradigm by using a few extra rounds of

EEG to update the classifier scores when an error is detected.

Using classifier confidence criterion : Classifier confidence criterion can tell us

the confidence with which the classifier labels the inputs. The usual (and rea-

sonable) assumption is that the higher the confidence, the higher the chance that

the classification is correct. However, this confidence criterion can be classifier

and paradigm dependent. For example, for a left-right classification problem, the

confidence criterion might be the mean of differences in scores for left and right

detections. For a speller paradigm, the confidence criterion should be a measure

of prominence of the maximum score among the scores for rows and columns.

While evaluating the confidence of a larger set of data, criterion such as Fisher

scores [63] or Raleigh coefficients [67] might be more appropriate. However, they
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are not meaningful for smaller data segments such as that for a single round. In the

next chapter, we have introduced the z-score of the character with the maximum

row/column score within a round as a criterion in P300.

2.7.3 How to adapt

One way to improve the performance is to have improved feature extraction and

classification techniques which can reduce the effects of non-stationarity (by elimi-

nating features which vary with time), and the other is to render the classifier able

to adjust itself based on new labeled or unlabeled data. The various methods to

adapt the classifier are given below.

Retraining : This is the simplest and most direct way of dealing with non-

stationarity. Any time when it is deemed that the classification accuracy has

fallen below a threshold, the complete training process can be repeated. While not

efficient in most circumstances, this might be preferable if the current classifier has

limited ability to classify the data reliably due to prolonged non-stationarity.

Adaptation based on intermittent labeled samples (active learning) : This is

another option where we can feed in intermittent samples with known labels which

can act as calibration inputs to the classifier. The classifier can correct/adapt itself

in such a way that some cost function based on both the initial training samples

as well as the calibration samples is minimized. However, this requires careful

choice of calibration data, which is done through some efficient strategy to query

for the labels. In [71], Zhao et al. adopt a strategy whereby the samples chosen

for query will have maximum uncertainty (entropy) about its own label, while the

certainty of labels for the rest of the test samples will be maximized once its true

label is known. Their method achieves an accuracy comparable to fully supervised

classifiers while requiring labels of only about half (70 out of 143) of the trials.
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ErrP, as described in Section 2.7.2 [69], could also serve the purpose of in-

termittent labeled samples in 2-class classification problems. This has the added

advantage that queries are not explicitly made, and hence generating additional

labels does not add to the training overhead.

Semi-supervised learning : Another option to deal with non-stationary nature

of EEG patterns useful in BCI is to use the information from unlabeled data to

improve the classifier gradually. In semi-supervised learning, the initial classifier

is trained using (limited) labeled data, which adapts itself efficiently based on

the incoming (unlabeled) data. Semi-supervised techniques can be classified as

inductive or transductive depending on whether the data being labeled affects the

decision boundary or not. In recent years, many groups have published encouraging

results on adaptation, though most of the studies have been on motor imagery

based BCIs. Some of these works are reviewed below.

(a) Transductive methods : The labels of the new incoming data are not avail-

able for adaptation of the classifiers in BCIs, unlike in active learning scenarios [72].

This necessitates the classifier being able to adapt the classification boundary

blindly from the incoming data. Transductive and semi-supervised algorithms have

been recently used as alternatives to the strenuous training effort required on the

part of the user. Transductive algorithms classify the unlabeled data by optimizing

a joint function of labeled and unlabeled data. A transductive version of support

vector machines (SVMs), which aligns the classification boundary maximally away

from the unlabeled data has been proposed for use in BCI systems [62]. Unlike

a standard SVM, the optimization problem for transductive SVM is non-convex.

This requires complex numerical routines, and there is no guarantee of the solution

being a global optimum. On the other hand, usual semi-supervised algorithms de-

fine a classifier as a function for which an unlabeled data is essentially test data -

the posterior probabilities of data being labeled are independent.
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(b) Inductive methods : In inductive methods, the current data being labeled

does not affect the classification boundary during the classification process (the

unlabeled data will be used to adapt the classifier only after their labels are es-

timated). The main advantage of inductive methods over transductive methods

is that the classification itself is relatively inexpensive with respect to computa-

tional complexity. This leads to BCI systems with a faster response. In a real-time

BCI system, the time between classifications (i.e., while the data corresponding to

the next character is recorded) can be used for adaptation. Some works report-

ing the use of inductive semi-supervised techniques are reviewed in the following

paragraphs.

A widely used semi-supervised technique is self-training, which uses the most

confident predictions from the classifier for additional labeled data [63]. In [64],

authors present an SVM based adaptation technique which uses a Gaussian kernel

and updates the classification boundary using an incremental model. Different

Gaussian approximation methods to classify a data which outperforms SVM based

and k-nearest neighbor (KNN) based methods are presented in [73]. The authors

have used a Gaussian process classifier to adaptively classify the signals based on

a Gaussian process model. The advantage of a Gaussian process classifier is that

the tradeoff between the data-fit and penalty parameters is automatic. Hasan et

al. [74] proposed a Gaussian mixture model based adaptation for BCI. In Gaussian

mixture models, the data is assumed to be a multi-dimensional Gaussian, and an

expectation maximization procedure is usually used to find out the means and

the correlation matrix. Once these two are found for all the classes, finding the

classification boundary is straight-forward.

In [61], a semi-supervised version of LDA is presented where the the Bayesian

or LDA classifiers are adapted based on labels predicted from unlabeled data (for

P300 interfaces). The means and standard deviations of the LDA classifier are



2.7 Adaptation 42

updated iteratively based on the predictions given by the boundary derived from

the previous estimates. Another recent work on LDA based adaptation can be

found in [75], using similar techniques for motor imagery based data. Skykasek

et al. developed a BCI system using a variational Bayesian Kalman filtering. An

a-posteriori estimate of labels from a Bayesian classifier is used in the adaptation

of the classifier [54].

Another technique used in motor-imagery based BCIs is the covariate-shift

adaptation [76]. Covariate shift adaptation works on the assumption that the

distribution of inputs changes, while the conditional distribution of output given

the input is unchanged. To reduce the instability of the technique due to large

variances, the authors combine it with bootstrap aggregating (bagging) to reduce

inconsistencies in view of covariate shift. Feature extraction was done by CSP. The

new parameters of the classifier are found using importance-weighted LDA. Some

works use a forgetting factor to limit the amount of data to be processed [54, 75]

at each update.

In [63], Li et al. introduced a P300 BCI system using semi-supervised SVMs.

They used the confident predictions of the classifier to update it. The disadvantage

of this method is that SVMs are computationally complex since it involves solving

a quadratic programming problem. This updation has to be performed in frequent

intervals, which makes it progressively computationally intense. In a recent paper,

Chen et al. used a boosting based scheme to achieve efficient semi-supervised learn-

ing [77], under the assumption that the feature distribution is smooth, clustered

and lie in a manifold. They proved the superiority of their technique on several

real-world datasets, including BCI.

In [78], an interesting method using inter-subject information and online adap-

tation is performed. The prior information regarding the characteristics of the

P300 signal is obtained from the data from a vast pool of subjects. The average
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classifier is used to build a preliminary subject specific classifier. This classifier was

further adapted online using the incoming test data. The results from 10 subjects

in online adaptation experiments showed that a subject can start using a P300

BCI with virtually no training.

All these studies show that good performance classifiers can be obtained even

with little training data using efficient adaptation techniques. However, many of

the methods are computationally complex, and uses predictions of the classifier to

update itself. In Chapter 4, we propose a technique based on co-training, where

we have two classifiers learning from each other, resulting in a faster adaptation

through more efficient use of unlabeled data.

2.8 Control State Detection

Control state detection helps deal with the Midas Touch effect (BCI system get-

ting activated even though the user is not intending it) associated with BCIs. In

practical scenarios, a BCI system cannot expect the user to be giving input always

- the BCI system should be able to detect if the user intents to issue a command,

and should recognize that command. As it allows the user to give input at will,

asynchronous BCIs are a more natural way of interacting with a machine. This in-

creases the usability of BCI tremendously. However, asynchronous BCIs are much

more demanding on signal processing and classification techniques. The state at

which the user is actively giving input is called the control state whereas the state

in which the user is idle is called non-control state. The challenge is in detecting

if the user is in control state. Once the user is detected to be in control state, the

system has to recognize the specific command the user is trying to input.

The performance of the system can be evaluated in terms of the false positive

rate (FPR) and true positive rate (TPR). The FPR is the rate at which a non-

control state is detected as a control state by the system whereas TPR is the
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rate at which control state is detected as a control state. The goal of all research

is to achieve a better tradeoff between these two quantities. The exact point of

operation is application dependent. In applications such as a wheelchair where

an unwanted triggering of the system can have undesired consequences, the FPRs

have to be extremely low (<2%). However, for applications such a speller, a higher

FPRs might be tolerable to have improved TPRs. This can also be made adaptive

/ user selectable / modifiable.

Asynchronous BCI has become an active field of research and encouraging re-

sults have been reported by various groups [79–81]. Recognizing the importance

of asynchronous operation, one of the datasets in the BCI competition 2007 was

based on self-paced motor imagery. The challenge was to identify ERPs from

the continuous stream of data without cues (i.e., from a continuous stream of

data [82]). Asynchronous BCIs were pioneered by Mason and Birch at Neil Squire

foundation [83–85]. They have been involved in assistive technologies for the last

2 decades and have made numerous contributions to the terminology, standardiza-

tion and evaluation of asynchronous BCIs. They developed several asynchronous

BCIs [79, 80, 83, 84]. Their primary focus has been the development of a low-

frequency asynchronous switch design (LF-ASD). Their initial design was based

on voluntary movement-related potentials (VMRP). The relative power increase

in the 1-4 Hz band over SMA and MI corticalareas was used to accomplish the

switching action. They were able to achieve >94% accuracy with a false alarm

rate of 20-30%, and a TPR of 60% at FPR of 2-3%. They reported improvements

to the basic switch in a series of publications [79, 80, 86]. However, most of the

systems/schemes they developed caters to only a switching action with negligible

actual information transfer. Such a system, while being sufficient for applications

like wheelchair control, is not good enough for computer interactive application

such as a browser or a speller.
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In [87], the authors describe an SSVEP system with control-state detection

capability. They use a threshold of SSVEP band powers to detect if the user is

gazing at one of the 4 possible stimuli. They use a sliding window of 2s length, with

estimations done once every 250 ms to check for a valid detection. Frequency in the

range 37-40 Hz were used. Control state classification accuracies of 65-100% were

obtained for the 6 subjects who participated in this study, with ITRs ranging from

9.4 to 45 bits/min. [88] proposes an inhibitor that keeps the BCI system turned

off till specific conditions are met. They detect the initiation of control state when

certain brain activity conditions are met (for example, stability in β band). They

show that it enhances the usability of the BCI system. An asynchronous speller

based on imagined hand and foot movements was proposed in [89].

However, very few P300-based asynchronous systems have been reported. Zhang

et al. developed an asynchronous P300 speller which is able to communicate at

an average of 20 bits/min, and an FPR of 1 event/min [51]. They achieved asyn-

chronous control by setting a threshold for the likelihood derived from a probabilis-

tic model of P300 classifier scores. Another work on asynchronous P300 interfaces

has been recently reported in [90]. They also use a threshold based system for

distinguishing between control state and non-control state. The non-control state

tasks include watching and listening to a movie, computation and fixating on a

cross hair at the screen center. The methodology used for discrimination of control

and non-control states is based on the statistical distribution of classifier scores,

similar to that in [51], with the threshold determined from the analysis of offline

data collected from subjects. Nevertheless, P300-only systems are still vulnerable

to environmental factors. For example, a very loud sound can cause a strong P3a

to be elicited, which might generate a classifier score well above usual thresholds.

This might inadvertently activate the system, with undesirable consequences. To

minimize such false activations, the detection thresholds will have to be kept very
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high, which might make the system hard to activate.

In Chapter 5, a hybrid system has been proposed, which uses different po-

tentials for control state detection (SSVEP) and data transfer (P300). Since two

relatively independent responses are used, the control state detection is not af-

fected by the statistics of the P300 signal. The system is likely to be less subject

to non-stationarity effects and environmental conditions, and hence, provides a

robust control state detection.



Chapter 3
BCI System Implementation

3.1 System Architecture

A custom, flexible BCI system developed for performing the experiments detailed

in the subsequent chapters is described in this chapter. This system can perform

as a canonical P300 speller in the offline as well as online modes, and can be

hybridized with SSVEP to impart desirable features.

The BCI system makes use of a 24 channel EEG acquisition device from ANT-

Neuro. The EEG signal is recorded using Ag/AgCl electrodes. The amplifier

supports all the 19 channels in the standard 10-20 system, and 4 additional chan-

nels. The recorded signal is amplified by a factor of 1000 by the amplifier (common

mode rejection ratio > 110dB). The amplified signal is digitized by sampling at

rates (Fs) of 256 Hz, 512 Hz or 1024 Hz, with a resolution of 22 bits (71.5 nV /

bit). The device is connected to the USB port of the PC though an optical fibre

interface. A photograph of a user operating our BCI system is shown in Fig.3.1.

The system is implemented as a multi-threaded program implemented in Visual

C++. ANT’s neurofeedback toolbox [91] provides an ActiveX control for commu-

nication with the acquisition device. Our program acts as the ActiveX client, using

47
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Figure 3.1: A user operating the BCI system
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the interface methods to control the acquisition device. Every 250ms, the ActiveX

interface triggers a callback function, which is used to obtain a packet of data.

The interface which is the speller paradigm [21] is handled by a second thread.

The interface is implemented using SFML (Simple and Fast Multimedia Library) -

a multimedia library providing hardware accelerated graphics using OpenGL as the

back-end. For the display, we used a 19-inch CRT monitor with a vertical refresh

rate of 120 Hz. The speller consists of 36 characters, arranged as a 6×6 matrix

with characters A-Z and 0-9. Rows and columns are highlighted in a random order

such that all rows and columns are highlighted once in every round. An area of size

1024x768 pixels was used for the display. Once a character is recognized by the

system, it is displayed on the bottom of the window (only in online experiments).

There is also a provision to show the desired character to be input in a separate

color so that the user does not have to remember it. After each round, the order

(the order of highlighting of rows/columns) and timing (the precise times at which

each blink took place) information is also stored.

A third thread sends the data along with a time-stamp to a data processing unit

(running on the same/another computer) through TCP/IP. After the completion

of each round, a packet containing the highlighting order/timing information is

also sent. To ensure precise timing, all the time-stamps are recorded from the

same timer. A fourth thread waits for decisions (again received through TCP/IP

from the processing unit) and passes it to the display interface.

The data processing unit is also based on VC++, interacting with Matlab

through an ActiveX interface. The program receives the data through TCP/IP,

and passes it to Matlab, which stores the data and processes it in real-time using

various pre-processing, feature extraction and classification algorithms. Matlab

passes the class information (detected character) back to the C++ program, which

relays it to the display program.
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3.2 Performance Analysis of the Basic System

3.2.1 Experimental setup

EEG from 7 channels (Cz, C3, C4, Pz, P3, P4 and Oz) were recorded following

the standard 10-20 system at a sampling rate of 256 Hz. Electrode AFz was used

as the ground, and linked-ear was used as the reference. All electrodes used were

passive and unshielded, and the impedances were kept below 10KΩ throughout

the experiment. The experiment was conducted in a laboratory environment, with

sound absorbent screens to enable the user to concentrate better, and without

electro-magnetic shielding.

Off-line experiments were conducted on five healthy subjects aged 22-27; four

males and one female. Subjects 1 and 4 had some prior experience with P300 BCIs

whereas the other three were BCI-naive. Each subject performed an experiment

of 72 characters, each repeated for 20 rounds, with an ISI of 175 ms. An ICG of

1 second was provided to enable the subject to shift his/her attention to the next

character. In our experiments, the target character was highlighted so that the

user does not have to memorize any character order. It also helps to minimize the

possibility of character positional biases in the P300 signal by allowing the usage

of random characters as targets.

3.2.2 Data Analysis

As most of the discriminant information in the P300 resides in lower-frequencies,

the collected data is zero-phase (forward-backward) bandpass filtered between 0.5

Hz and 12 Hz using a Butterworth filter of order 3. To reduce the feature size, it

is down-sampled to 32 Hz, and the data for a duration of 0.7 seconds (23 samples)

from the start of the stimulus is considered to belong to that particular epoch. A

161-dimensional feature vector is constructed by the concatenation of the data thus



3.2 Performance Analysis of the Basic System 51

obtained, from all the 7 channels. For cross validation, we consider the 1440 rounds

as composed of 144 characters with 10 rounds/character. The optimum number of

rounds to be chosen is usually a trade-off between the classification accuracy and

the ITR, and varies from person to person. Performance evaluations with nR = 1

to 10 were done, and the corresponding bit rates were calculated.

Results for only 3 subjects using FLDA classifier are presented in this chapter.

The 144 characters were split into 4 continuous sections of 36 characters each. The

data from one section (360 rounds) was used for training the classifier. Data from

the other three sections were used as the test data. This process was repeated

for all the sections and averaged, thus performing a 4-fold cross-validation. For

each iteration, classification accuracy was determined for nR values from 1 to 10,

and the corresponding ITRs were calculated as described using Eq. (2.10) and

Eq.(2.11).

3.2.3 Results

Figures 3.2, 3.3 and 3.4 show the cross-validation accuracies and bit-rates for the

3 subjects. The subjectivity in trade-off between classification accuracy and ITRs

can be clearly seen from these figures. When nR = 1 (3.1s for detecting a character),

Subject 2 is able to achieve an ITR of 48.38 bits/min at an accuracy of 66%. The

mean ITR is 38.69 and the mean accuracy is 57%. A mean accuracy of 77% is

achieved when nR = 2, the corresponding ITR being 37.35 bits/min. The mean

accuracy increases further to 86% when nR = 3, at the expense of ITR, which

drops to 32 bits/min. For computer-interaction applications, this accuracy should

be good enough. For applications such as wheel chair direction control too, a

reasonably fast response is desirable, and nR = 3 might be a good compromise

between speed and accuracy. However, for issuing a command such as the one to

start a wheelchair, a higher accuracy is desirable, as a false start can have very
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Table 3.1: State of the art P300 BCIs

ITR Accuracy Publication Highlight
23.3 79.5% Hilit et al., 2004 [27] Maximum likelihood (ML) classifier.
29.3 >95% Hoffman et al., 2007 [2] Does not use row/column paradigm.
29.4 87.5% Lenhardt et al., 2008 [33] Adaptive LDA with interface adaptation.
26.7 96% Jin et al., 2011 [92] Hybrid interface - P300 + VEP.
46.4 90% Frye et al., 2011 [32] Modified calibration technique.
37 98% Jin et al., 2011 [31] Adaptive flashing patterns (rounds).
32 86% Current basic system

undesirable consequences. When nR = 10, a very high accuracy of 98% could be

achieved, though the ITR is only 13.5 bits/min. It should be noted that 22s is

required to input a command (character) in this case. The results of our basic

non-adaptive system is comparable to that of the state of the art BCI systems as

shown in Table. 3.1.
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Figure 3.2: Cross-validation results for subject 1.

However, the base system described here does not have the capabilities for

adaptation and control state detection. Techniques developed for imparting these

to the system are described in the following chapters.
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Figure 3.3: Cross-validation results for subject 2.
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Figure 3.4: Cross-validation results for subject 3.



Chapter 4
A Two-Classifier Co-Training Approach

for Adaptation in P300 BCIs

4.1 Introduction

A co-training based method for fast adaptation in a P300 BCI is introduced in this

chapter. Classical co-training, pioneered by Blum and Mitchell [93] is a popular

method for semi-supervised learning. This method requires two redundant and

sufficient views of the data, i.e., two sets of independent features both of which

have the classification information. In co-training, the most confident predictions

by a classifier trained on one view (one set of features) is used to train the other,

and vice versa. This dual-view requirements cannot be met in most practical sce-

narios, including BCI. Goldman and Zhou [94] later showed that labels generated

through two different classification methods using same features can also be used

to generate additional data, thus doing away with the multi-view requirement.

Such a two-classifier co-training based approach is introduced here to reduce the

training effort, combining FLDA and the Bayesian linear discriminant analysis

(BLDA). The algorithm exploits the difference between the classifiers to generate

54
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different labels for the data. Recently, a mathematical reasoning for the success of

co-training style algorithms were given by Zhou et al. [95]. They proved that the

success of co-training based algorithms is higher when the difference between the

classifiers is maximized [96].

The proposed method is described in Section 4.2. Section 4.3 details the exper-

iments and data analysis, followed by results and discussions in Section 4.4. The

chapter is concluded with some remarks in Section 4.6.

4.2 Co-Training Method

Let the data from the jth trial, xj = [x1j , x2j , . . . , xgj ]
T be the feature vector of

length g for the classification problem, with xij ’s, i = 1, 2, . . . , g denoting the

individual features and let yj ∈ {−1, 1} be the corresponding labels. Let X =

{x1,x2, . . . ,xl,xl+1, . . . ,xn} be the set of all n data points in feature space, of which

l points have known labels given by, Y = {y1, y2, . . . , yl}. The semi-supervised

classification problem can be defined as follows: Given the data set S = L ∪ U ,

where L = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ X × Y is the labeled data set and

U = {xl+1,xl+2, . . . ,xn} ⊂ X is the unlabeled data set, find a mapping h∗ ∈ H

which holds for the entire S and gives a perfect generalization, where H : X → Y

denotes the set of all classifiers. This will be hard to realize in most practical

applications where the data is generally noisy; also for small l, the mapping will be

less accurate. Co-training method uses two initial classifiers, namely h0
1 ∈ H and

h0
2 ∈ H , trained on L, and iteratively updates them, with hi+1

1 and hi+1
2 hopefully

providing a better mapping than hi
1 and hi

2, where i is the iteration number.

The algorithm can be summarized as follows: Given the initial training data

(L) and the unlabeled data (U),

1. Obtain the initial classifiers h0
1 and h0

2, using the training data L0
1 = L0

2 = L;
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and set i = 1.

2. Take u number of unlabeled instances from U , and label them using hi−1
1 and

hi−1
2 .

3. Construct a new labeled set Li
1 by combining Li−1

1 and the labeled data given

by hi−1
2 , and Li

2 by combining Li−1
2 and the labeled data given by hi−1

1 in the

previous step.

4. Obtain the updated classifiers hi
1 and hi

2 using Li
1 and Li

2. In certain cases,

only a fraction of the most confident among the u labels predicted by each

classifier is used for updating.

5. Increment i and repeat steps 2 to 5 till stopping criterion is met.

6. Stop the training if all the unlabeled data has been classified or if the confi-

dence improvement due to the addition of unlabeled data is minimal.

Several classifiers for classification of P300 have been reported in the literature

which include FLDA [97], SVM [53], BLDA [2, 98] etc. The classifiers used (for

implementing hi
1’s and hi

2’s, respectively) are BLDA and FLDA for the following

reasons:

• In the preliminary experiments, BLDA and FLDA gave very good accuracies.

Some studies have reported that the algorithms give accuracies comparable

to that of SVMs [99].

• Both are computationally simple and do not require complex cross-validation

procedures for tuning their hyper-parameters. Although BLDA uses a data

dependant expectation-maximization type algorithm for hyper-parameter op-

timization, the empirical complexity was found to be very low, especially as

compared to competing classifiers like SVMs.
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• The two classifiers gave reasonably different separating planes, which is a cru-

cial factor in co-training approaches. Since BLDA uses an entirely different

optimization method, the biases of the two algorithms are different. Such a

diversity is crucial from the point of co-training. In our experiments, it was

observed that reasonable diversity was maintained, though it is inevitable

that the classifiers produce closer and closer predictions as the co-training

proceeds with more and more unlabeled samples.

A detailed description of FLDA can be found in Section 2.6. A brief description

of the BLDA algorithm is given below.

4.2.1 BLDA

BLDA uses an entirely different approach for optimizing the weights. Instead of

committing a particular value of the projection vector, it creates the posterior

distribution using the Bayesian criterion. The BLDA implemented in this work is

similar to the one described in [2]. More general descriptions of this method can

be found in [100] and [101]. The basic assumption in BLDA is that the regression

targets

y = wTX+ n, (4.1)

where n is the noise vector. For simplicity and mathematical tractability, the noise

is assumed to be Gaussian. Therefore, the likelihood function can be written as

p(D|β ′,w) =

(

β ′

2π

)
l
2

e−
β′

2
||wTX−y||2, (4.2)

where D denotes the pair (X,y), β ′ denotes the inverse variance of noise, and l is

the number of examples in the training set. For Bayesian inference, we specify a

prior distribution for the weight vector w. The expression for the prior distribution
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(which is assumed to be Gaussian) is

p(w/α′) =

g
∏

i=1

(

α′
i

2π

)
1

2

e−
1

2
(wT I′(α′)w), (4.3)

where α′
i’s are the hyper-parameters (which signifies the inverse relevance of each

feature), and I′(α′) is a g × g dimensional square matrix, with α′
i’s along the

diagonal.

Using Bayes theorem, it can be shown [2] that the posterior is also a Gaussian,

with mean (m′) and the covariance (C) given by

C = β ′
(

β ′XXT + I′(α′)
)−1

, (4.4a)

m′ = β ′CXy. (4.4b)

The predictive distribution of the target y′ for previously unseen x′ is also Gaussian,

the mean (µ′) and variance (σ′2) of which is given by

µ′ = m′Tx′, (4.5a)

σ′2 =
1

β ′
+ x′TCx′, (4.5b)

of which only the mean is being used for the class predictions. The likelihood,

p(D|β ′, α′) is given by marginalizing Eq.(4.2) as

p(D|β ′, α′) =

∫

p(D|β ′,w)p(w|α′)dw. (4.6)



4.2 Co-Training Method 59

The update equations for α′ and β ′ are obtained by maximizing the log likeli-

hood, and setting the partial derivatives with respect to α′ and β ′ to 0 as

α′
i =

1

cii +m′
i
2 , (4.7a)

β ′ =
g

tr(XXT )C+ ||m′TX− y||2
, (4.7b)

where cii’s are the diagonal elements of C, m′
i’s are the elements of m′, and tr(·)

denotes the trace of matrix. Eqs. (4.4a), (4.4b) and Eqs. (4.7a), (4.7b) form a set

of coupled equations, which can be iterated to optimize the values of α′ and β ′.

Once the optimization is complete, mean of the posterior (m′) given by Eq.(4.4b)

is taken as the optimum value of w. The character detection then proceeds in a

manner similar to that with FLDA.

Depending on the semi-supervised strategy employed and the classifier giving

the final output, we have the following four different classifiers:

1. self-training BLDA (SBLDA)

2. self-training FLDA (SLDA)

3. co-training BLDA (CBLDA) - in which the output is taken from BLDA

classifier which is co-trained with FLDA

4. co-training FLDA (CLDA) - in which the output is taken from FLDA clas-

sifier which is co-trained with BLDA

Performance analysis of these four algorithms are given in Section 4.4.

4.2.2 Confidence Criterion

The co-training process is repeated once 100 rounds of fresh unlabeled data is

made available to the classifier, as it was empirically found to give reasonably
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good performances while avoiding frequent updating of the classifier. The fraction

of the classified data that is being added to the training data in each iteration of

the algorithm is determined by a confidence criterion. In our work, the z-score

defined in Eq.(4.8) is the metric used for calculating the confidence of predictions.

The z-score corresponding to the ith character is given as

zi =
ymax,i − ymean,i

σyi

, (4.8)

where ymax,i, ymean,i and σyi are the maximum, mean and the standard deviation

respectively of the averaged scores corresponding to the rows/columns associated

with the ith character detection.

4.2.3 Evaluation Criteria

The BCI performance evaluation was done as described in Section 2.6.1. The ef-

fective number of bits detected is calculated using Eq. (2.10). The information

transfer rate is calculated using Eq. (2.11). Statistical significance tests were con-

ducted to facilitate a conclusive interpretation of the results obtained. A lilliefors

test on random ensembles of classification accuracies revealed that its distribution

is not always Gaussian, and hence t-test is not appropriate [102]. Hence, for all

the comparisons on classification accuracies done in this chapter, the sign test,

which makes little assumptions regarding the data distribution, is used. Sign test

is performed as follows :

ntrue =
1

2

(

niter −

niter
∑

i=1

sgn
(

CAi
1 − CAi

2

)

)

, (4.9)

where CAi
1 and CAi

2 are the classification accuracies for method 1 and method 2

respectively and niter is the number of cross-validation iterations. The one-tailed

p-value [102] (for the null hypothesis that method 1 does not yield a better median
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accuracy than method 2) is calculated using the binomial cumulative distribution

function (CDF), with ntrue trials turning out to be true, out of the niter binomial

trials.

4.3 Data Recording and Analysis

4.3.1 Off-line Experiments

Details of experiments and pre-processing are described in Section. 3.2. Each of

the 5 subjects underwent a session of 72 characters. An ISI of 175 ms was used, and

each character was repeated for 20 rounds. Having 20 rounds/character enables

analysis using nR = 1,2,4,5,10 and 20. However, results for analysis using nR = 1

and 2 only are presented in this chapter.

4.3.2 Cross-Validation

To evaluate the performance of co-training, an extensive cross-validation analy-

sis is carried out. First, the data is shuffled 100 (niter) times randomly with the

constraint that the data for any one character is kept together, to obtain 100 dif-

ferent data ensembles. For each ensemble, first l rounds of training data is used

to train an initial classifier. The rest of the data is treated as unlabeled data and

is progressively added in batches of 100, and the self/co-training algorithms are

applied. The means, standard deviations and p-values are calculated as appro-

priate using the results from the 100 ensembles. This scheme gives us a realistic

measure of the performance of the algorithm and has been used in many previous

works involving semi-supervised learning [96]. The disadvantage of such a scheme

is that the scrambling of data forces the algorithm to ignore any adaptation ef-

fects. However, taking it into consideration would make the data requirement for

performance analysis impractically huge. The validation scheme is applied for all
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(l, nR) combinations, maintaining the same orders of permutations of the data in

each case.

4.4 Results and Discussion

The algorithms were run for eight different configurations of the initial training

data (l) and the number of rounds (nR) used for the detection of each character.

They are (l, nR) - (40, 1), (60, 1), (60, 2), and (300, 2). The measure that is

used to determine the most confident instances for re-training the classifier is the

z-score, given in Eq.(4.8). Analysis of self-training and co-training using 50%,

75% and 100% of the most confident predictions for updating the classifier was

done. A sample result when l = 60 and nR = 2, averaged over all the subjects

is given in Fig. 4.1. The results clearly demonstrate a better performance when

all the labels are used for re-training the classifiers. The statistical significance of

this conclusion is established from the low p-values for the null hypothesis that

using all the classifier predictions for self/co-training is not beneficial. A similar

trend was observed for other configurations of (l, nR) as well, for both self and

co-training. Hence, all the results presented henceforth uses 100% of the classifier

predictions for self/co-training.

The cross-validated results for the 4 algorithms (SBLDA, SLDA, CBLDA,

CLDA) are summarized in Figs. 4.2 - 4.8. In most of the discussions that fol-

lows, only SBLDA and CBLDA are included, as these almost always gave better

results than their FLDA based counterparts, the SLDA and CLDA. Also, since our

work is meant to highlight semi-supervised learning in general, and co-training in

particular, such a comparison would be more appropriate.



4.4 Results and Discussion 63

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

Rounds of unlabeled data

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

/ p
−

va
lu

e

 

 

100%
75%
50%
P75
P50

(a) Co-training

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

Rounds of unlabeled data

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

/ p
−

va
lu

e

 

 

100%
75%
50%
P75
P50

(b) Self-training

Figure 4.1: Classification accuracy vs. rounds of unlabeled data for different percentages
of classifier predictions used in self/co-training, for l=60 and nR = 2. P75 and P50
denotes the p-values for similar performance of 75% and 50% of most confident classifier
predictions as compared to using 100%.

4.4.1 Effect of Training Data

It can be seen from the results that the increase in proportion of unlabeled data

leads to a significant increase in the classification accuracy, especially in situations

where relatively low amount of labeled data is available. This could be expected,

as empirical studies have shown that the classification accuracy increases exponen-

tially with labeled data and linearly with unlabeled data [103]. These results can

be observed in Fig. 4.2. For all the five subjects, it can be observed that when the

labeled data is sufficient, addition of unlabeled data does not improve the classifier

performance. For all the subjects, approximately 200 rounds of data was enough

to learn a classifier which could not be improved further by semi-supervised learn-

ing, and the classification accuracy using CBLDA bettered that of SBLDA in most

cases.
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(b) Subject 2
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(c) Subject 3
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(d) Subject 4
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(e) Subject 5
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(f) Magnified version of data in the rectangle in
Fig. 4.2(e)

Figure 4.2: Classification accuracy of CBLDA, SBLDA and fully supervised BLDA for
various l (for nR = 2), along with the bars for ±σ (population standard deviations,
standard error of mean is ±0.1× σ).
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(a) l = 40, nR=1
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(b) l = 60, nR=1
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(c) l = 60, nR=2
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(d) l = 300, nR=2
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(e) Magnified version of data in the
rectangle in Fig. 4.3(c)
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Figure 4.3: Classification accuracy vs. rounds of unlabeled data for subject 1 for various
l and nR.
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(a) l = 40, nR=1
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(b) l = 60, nR=1
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(c) l = 60, nR=2
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(d) l = 300, nR=2

Figure 4.4: Classification accuracy vs. rounds of unlabeled data for subject 2 for various
l and nR.
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(a) l = 40, nR=1
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(b) l = 60, nR=1
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(c) l = 60, nR=2
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(d) l = 300, nR=2

Figure 4.5: Classification accuracy vs. rounds of unlabeled data for subject 3 for various
l and nR.
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(a) l = 40, nR=1
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(b) l = 60, nR=1
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(c) l = 60, nR=2
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(d) l = 300, nR=2

Figure 4.6: Classification accuracy vs. rounds of unlabeled data for subject 4 for various
l and nR.
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(a) l = 40, nR=1
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(b) l = 60, nR=1
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(c) l = 60, nR=2
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(d) l = 300, nR=2
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(e) Magnified version of data in the rectangle in
Fig. 4.7(d)

Figure 4.7: Classification accuracy vs. rounds of unlabeled data for subject 5 for various
l and nR.
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4.4.2 Effect of Unlabeled Data

The effect of unlabeled data can be seen from Figs. 4.3-4.7 for various configura-

tions of l and nR. It can be seen that in most cases, the addition of unlabeled data

helps increase the accuracy. However, as the ratio of unlabeled data to labeled data

increases, the performance improvement decreases and gradually becomes minimal.

A mathematical reasoning for this effect can be found in [95]. It can be seen in

Figs. 4.3d, 4.4d, 4.5d, 4.6d and 4.7d that the addition of unlabeled data when

sufficient training data is available does not improve the classification performance

of the system. For subject 1 and 5, when l= 300 (Figs. 4.3f and 4.7e), addition of

unlabeled data in fact degrades the performance. This effect has been reported on

semi-supervised learning on different datasets by Cohen et al. [104].

In cases where there is an improvement, CBLDA almost always gives a better

improvement over SBLDA. It can be seen from Figs. 4.3 - 4.7 that the perfor-

mance of CBLDA is significantly (P<0.05) better than SBLDA for all subjects

except when l=300, in which case semi-supervised learning offered no significant

improvement over fully supervised classification. For the configuration (l = 40,

nR = 1), CBLDA gives a performance improvement of 13.2 bits/min more than

supervised classifiers, and 1.7 bits/min more than SBLDA for subject 1; and 16.4

bits/min more than supervised classifiers, and 1.2 bits/min more than SBLDA for

subject 2. The improvement is 21.0 and 17.2 bits/min over supervised classifiers,

and 1.5 bits/min and 1.4 bits/min over SBLDA for subject 3 and 4 respectively. For

subject 5, the algorithm achieved an increase of 18.5 bits/min over supervised clas-

sifiers and 1.6 bits/min over SBLDA. From these results, we can see that CBLDA

outperforms SBLDA in most situations, though the actual amount of increase is

not large. The final bit rates averaged over all the subjects is approximately 37

bits/min; which is 17 bits/min more than the initial classification accuracy. This

was achieved with just 40 rounds of labeled data, which corresponds to a training
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Subject p-Mean p-Fin
Sub 1 0.005 0.210
Sub 2 0.109 0.207 (sign)
Sub 3 0.018 0.260 (sign)
Sub 4 0.002 0.163
Sub 5 0.003 0.448

Table 4.1: Table showing p-values for CBLDA vs SBLDA for (300,2). p(Mean) and
p(Fin) are the p-values given by t-test (and sign test for cases where distributions are
found to be non-Gaussian through lilliefors test) for the comparison of mean and final
values respectively for CBLDA vs SBLDA. Cases where CBLDA is significantly better
than SBLDA are highlighted.

time of about 90 seconds. This compares favorably with most state of the art

BCI systems, where average bit rates of 30-40 bits/min are achieved with several

minutes of training data (please refer to Table. 3.1).

If unlabeled data was detrimental to classification performance (4th group in

Fig. 4.8 for all subjects except subject 2), CBLDA reduced the initial accuracy

only slightly as compared to SBLDA in most cases. Such a degradation can be

observed in subjects 1 and 5 with the addition of unlabeled data when l = 300.

Table. 4.1 shows the t-test derived p-values (and sign test for cases where the

distribution is non-Gaussian) obtained for comparison of CBLDA vs SBLDA for

the mean and final ITRs achieved. It can be seen that CBLDA delivers mean

ITRs which are significantly better for all except Subject 2. However, the final

ITRs achieved by both algorithms are comparable, which could be due to the

degradation of co-training to self-training.

4.4.3 Stability

The stability of SBLDA and CBLDA are dependent on the initial training data

used. As it follows a clustering-like approach where the previous results themselves

update the distribution estimates / model parameters, the analysis is not mathe-

matically tractable. Empirical studies have shown that if the model assumptions
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(a) Subject 1
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(b) Subject 2
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(c) Subject 3
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(d) Subject 4
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Figure 4.8: Bar chart showing the bit rates for various configurations of l and nR. The
initial bit rate (Init.); as well as the mean (Mean.) and final bit rates (Fin.) achieved
are shown for each (l, nR) configuration and for each subject. Please note that the error
bars represent population standard deviations (±σ), standard error of mean is ±0.1×σ.



4.4 Results and Discussion 73

are correct and the information given by the initial training data is representative of

the population, semi-supervised methods are likely to improve performance [105].

However, if the initial training data used is insufficient to train an informative clas-

sifier, divergence is likely. This could especially be the case for subjects who are

not able-bodied, where the initial training data might give a less reliable classifier.

4.4.4 Subjectivity

The algorithm is found to have effective performance enhancement in all the five

subjects. We can observe from the results that the algorithm is especially effective

for subject 3, even when l is 40 and nR is 1, which corresponds to a training time of

less than 2 minutes. This could be due to the fact that subject 3 produces stronger

P300 (which can be inferred from the fact that subject 3 gives the best performance

with supervised classifiers, as can be seen from Fig.4.2, and the prediction by

both the classifiers are reasonably good. Consequently, the possibility of errors

reinforcing themselves catastrophically is minimized, especially in cases where the

training data is low.

For subject 2, the performance of CBLDA was not significantly better than that

of SBLDA (Fig. 4.4c) when l = 60, nR = 2. For subject 1, when the training data

is sufficient, degradation of accuracy with addition of unlabeled data is even more

prominent (Fig. 4.3d), as compared to subjects 2, 3 and 4 (Figs. 4.4d, 4.5d and

4.6d). Subject 2 always had an increase in performance even when training data

was abundant (Fig. 4.4d). For other configurations, the enhancement of accuracy

in subjects 2, 3 and 4 are found to be consistently better than subject 1. These

are reflected in the ITRs as well. From these results, it can be concluded that the

semi-supervised learning is even more effective for subjects with a stronger P300,

especially when there is a scarcity of training data.
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4.4.5 Computational Complexity

Both self-training and co-training are generalized methods, and the exact complex-

ity depends on the particular classification algorithms used in their realization. For

self-training, the complexity is related to the complexity of the specific classifier

used, whereas for co-training, it is determined by the sum of the complexities of the

two classifiers used. FLDA and LDA mostly involves covariance matrix and eigen-

value calculations, which have a complexity of O(l× g2), where l is the number of

labelled data points and g is the length of the feature vector. FLDA takes a variable

number of steps to converge (typically 15-50), and is data dependent. In both self

and co-training, as more and more unlabeled data is added, complexity increases,

as the classifier has to be re-trained from a bigger pool of data. One FLDA and

LDA operation is required every 100 rounds ( 3-5 mins depending on nR), when

l gets incremented by 1200. CBLDA and SBLDA have comparable complexities

due to the fact that the overall time taken for execution is dominated by BLDA,

as it takes much more iterations than FLDA for convergence. One complete run of

1440 rounds (corresponding to iterative classification of approximately 1 hour of

pre-processed data) using Matlab code running on a Windows Vista desktop com-

puter with a 2.8 GHz dual-core processor and 4GB of RAM takes approximately

13.2 and 12.7 seconds respectively.

4.5 Limitations and Implementation Issues

In practical situations, there may be gradual changes in the data with factors such

as gel drying, changes in cognitive state of patient, and adding unlabeled data might

help in gradual adaptation of the classifier. In the cross validations used in this

chapter, such adaptation effects are ignored. For getting a clearer picture on the

performance of the proposed scheme in practical situations, extensive experiments
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have to be done on a wider user base without having to rely on cross-validation

schemes.

When the training data is low and based on a few characters, the classifier

might have been trained on data which is subject to visual attention and spatial

gradient effects [106], which can introduce a bias in the result. Also, as mentioned

in Section. 4.4.3, very limited training data might not be sufficient to obtain a

reliable initial classifier. With a carefully chosen initial training pattern, the initial

classifier prediction will be sufficiently accurate and less subject to biases, and the

performance is likely to improve.

The computational power required for classifying an hour of data adaptively

is only a few seconds. However, the computational complexity keeps increasing

exponentially as more data is added. Some forgetting factor could be added to

keep the amount of data to be processed within limits, and thereby preventing

an exponential increase in computational complexity. This could be crucial in

low-power and mobile devices.

While it is generally accepted that P300 response has relatively relaxed re-

quirement of visual attention, paying overt attention will increase the ITR of a

P300 BCI [107]. Data from only healthy subjects are used in the current study.

It could be expected that the disabled patients will be less effective in producing

reliable training data, and hence the effectiveness of semi-supervised learning will

be lower for a given amount of initial training data. Even in this case, it is plausible

that the proposed methods could still yield the same classification accuracy with

a smaller amount of training data than full supervised techniques. However, this

would require extensive analysis to obtain a statistically valid confirmation.

Also, semi-supervised adaptation has the disadvantage that the initial classi-

fication accuracy might be relatively low, and the final classification accuracy is
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achieved only after several minutes of adaptation. The low classification accu-

racy during this adaptation phase can still be annoying for many users, and might

not be acceptable for many applications. For example, for an application such as

wheelchair control, a very high classification accuracy is required before the system

can be operated without risk. However, for an application such as a speller, this

lower initial accuracy might be tolerable.

4.6 Conclusions

A two-classifier co-training based approach is proposed to train robust classifiers

using both labeled and unlabeled data. The difference between the two classifiers is

exploited for delivering a performance which is superior to that of single classifier

systems. The algorithm is able to utilize unlabeled data effectively to improve

the performance of the classifier. This leads to a reduction in the user effort, and

consequently, results in a more convenient BCI system. Also, the proposed method

is shown to outperform the self-training based approaches in most situations. The

addition of unlabeled data was found to increase the classification accuracy to a

limit, beyond which the improvement was minimal. Also, if sufficient training data

is available, the performance improvement due to the algorithm is minimal, or even

negative.

Introducing artificial training examples [108] to preserve diversity might reduce

the tendency of co-training algorithms to degenerate to self-training with the ad-

dition of more and more unlabeled data. Another option is to use an ensemble of

classifiers, to combine the advantages of co-training and ensemble based methods.



Chapter 5
Asynchronous P300 BCI : SSVEP-Based

Control State Detection

5.1 Introduction

An alternate method to develop an asynchronous system is proposed in this chap-

ter, using different potentials for control state detection and information transfer.

The P300 based system is augmented with SSVEP providing control state infor-

mation. Use of two different paradigms in a complementary fashion to achieve

improved performance was recently reported by Pfurtscheller et al. [11, 109, 110].

In [109], they describe an SSVEP based system where ERD is used for control

state detection.

The base system described here utilizes the P300 ERP. The exact level of visual

attention required, and the suitability of P300 and SSVEP for various categories of

subjects are still being studied by various groups [41, 42, 107]. However, there are

several studies reporting severely paralyzed or disabled patients being able to use

P300 BCIs, though not to the same extent as healthy subjects [111]. Moreover, it

is relatively easy to detect, even with minimal training, and gives reasonably good

77
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ITRs. Although SSVEP based systems are generally faster than P300 based sys-

tems, they suffer from several drawbacks such as the requirement of more accurate

control of eye muscles [112, 113], precise and fast hardware, and unsuitability for

people with epilepsy. Moreover, if low frequency stimulus is used, prolonged use

of the system is very tiring whereas high frequency SSVEP response is weaker and

harder to detect accurately. For a detailed description of various considerations in

the operation of an SSVEP based BCI, see [11,41]. In our approach, instead of bas-

ing the complete system on SSVEP, we utilize it just for control state detection,

with P300 as the main BCI paradigm. Unlike P300 signals, SSVEP is unlikely

to produced accidentally in usual operational environments, which makes SSVEP

based control state detection more robust and reliable than a system purely based

on P300. While such a system is still dependent on control of eye muscles or other

motor control for switching between control states, the information transfer itself

is using P300 which has a relatively relaxed requirement as compared to SSVEP.

The rest of this chapter is organized as follows - the proposed method is de-

scribed in Section 5.2. Section 5.3 describes the offline and online experiments and

Section 5.4 details the data analysis. The results for the experiments are given in

Section 5.5. The chapter is concluded with some remarks in Section 5.7.

5.2 P300-SSVEP system

SSVEP is an ideal candidate to be used in conjunction with the P300 ERP, for

several reasons. Both are well documented to be reliably evoked in most humans

without prior training. The visual stimulus required to elicit SSVEP can be added

to the existing P300 stimuli with relative ease, as both are usually evoked by a

visual stimuli (P300 can also be evoked by other stimuli, but visual P300 is faster,

and hence dominant in BCI research). Our experiments show that both signals

can be elicited at the same time in an individual, without greatly compromising
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the detection accuracy of either.

The experimental setup makes use of a 24 channel EEG amplifier from ANT-

Neuro, with a sampling rate of 256 Hz. EEG from 9 unshielded channels of the

standard 10-20 system [114] - Cz, C1, C2, Pz, P1, P2, Oz, O1 and O2, were

recorded. The data recording is controlled by the multi-threaded program imple-

mented in Visual C++ described in Section. 3.1. As with a usual P300 speller,

rows and columns are highlighted in a random order such that all rows and columns

are highlighted once in every round. When the character of interest is highlighted,

P300 is elicited. Data was sent to a second computer for processing in real-time,

and the results are sent back to the first computer, where it is optionally displayed

as a feedback. For eliciting SSVEP, all buttons are set to flicker at the desired

frequency (alternating between black and white with 50% duty cycle). This stim-

ulation paradigm of alternating a single graphic was reported to give a perfor-

mance comparable to the pattern reversal paradigms [115]. Highlighting of rows

and columns are done as usual for a P300 based interface, in a pseudo-random

sequence such that all the rows and columns are highlighted once every round.

Either red or orange color was used for row/column highlighting, completely oc-

cluding the character buttons. Figure 5.1 shows the two alternating states. When

the user is gazing at the screen, it can be assumed that he/she wishes to input

a command, which will manifest as the elicitation of SSVEP. With such an inter-

face, the user would be able to naturally elicit both potentials without requiring

a divided attention. Thus, the system can detect the target character and control

state simultaneously.

Since only one frequency is used, the task is thus reduced to the detection of any

SSVEP near the frequency of interest, as opposed to detecting precisely one among

several frequencies. Thus, the need for a dedicated hardware capable of creating

very precise stimuli of various frequencies is also eliminated; inexpensive displays
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(a)

(b)

Figure 5.1: Figures (a) and (b) show the two alternating states during flickering. Rows
and columns are highlighted in a pseudo-random sequence such that each row and each
column is highlighted once in every round, as with the case of a standard P300 speller.
Here, the target character during the training phase is ‘Y’, which is yellow in color.
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would be sufficient. By choosing the frequency to be outside of the P300 operating

range (i.e., above 12 Hz), the two signals could be separated by simple bandpass

filtering and thus there would be no reduction of accuracy in the classification

process.

Preliminary experiments were conducted to explore the best flicker frequency

to be used in the subsequent experiments and in the online experiments. A stim-

ulus frequency (fst) slightly less than 18 Hz was chosen due to the following con-

siderations: (i) to keep the frequency at least 2 harmonics above the frequency

corresponding to the P300 highlighting (reciprocal of the inter-stimulus interval,

ISI which is 225 ms in our experiments), so that the user can distinguish between

the two stimuli comfortably; (ii) to synchronize the P300 highlighting and SSVEP

flicker, it is desirable to have a flicker frequency which is a multiple of P300 high-

lighting frequency; (iii) to avoid overlap with the alpha band (8-12 Hz); (iv) lower

frequencies are easier to elicit but less comfortable for the user; (v) higher frequen-

cies are harder to elicit and demanding on hardware.

5.3 Experiments

5.3.1 Offline Experiments

To evaluate the performance of the proposed scheme, offline experiments were con-

ducted on ten healthy subjects aged 19-28; seven males and three females. All

subjects were undergraduate or postgraduate students who had no known physi-

cal or mental disabilities, were volunteers and received no compensation for their

participation. Subjects 1-3, 6 and 10 had prior experience with BCIs, whereas the

others were BCI naive. The data for two subjects who could not concentrate on

the task, and another two subjects for whom the complete set of experiments were
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not done are excluded form the subject count and analysis1. First, for training

a P300 classifier, EEG for 360 rounds of stimuli were recorded (only 300 rounds

for subjects 1-3), with the target character shown with a separate color during

the session, and an ISI of 225 ms. 360 rounds of stimuli without SSVEP (i.e., the

standard speller) were also recorded for subjects 6-10 to study the effect of intro-

duction of SSVEP on P300 classification accuracy. Subjects 6,7 and 10 underwent

the session with SSVEP first, whereas subjects 8 and 9 had the session without

SSVEP first, to balance any effects due to habituation. During these experiments,

subjects were instructed to count the number of times the target character is high-

lighted. The system shows 5 rounds per character, regardless of the state of the

user. Each subject performed an experiment of 40 characters for offline analysis.

Subjects are in control state for the first 10 characters, in non-control state for the

next 10 characters and so on. There is no gap between rounds belonging to the

same character, but a 1 second gap was provided between the two characters (i.e.,

5 rounds) to allow the user to shift his/her attention to the next character. In con-

trol state, the subject focusses on the target character. The subject is instructed

to do a mental task (multiplication of two random numbers of their choice) and to

relax with eyes closed for alternate non-control states. A break was provided after

every 10 characters (i.e., during the transition of the control state) and the system

resumed the presentation of stimuli after the user has pressed a keyboard button

to indicate his/her readiness to continue. An auditory cue was provided to alert

the subject that the non-control session is over.

1A total of 16 subjects participated in the experiments, data from 4 subjects were discarded.
Data from 5 subjects were used for analysis of methods presented in Chapter 4 and 10 Subjects
for this Chapter, with 3 subjects participating in both
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5.3.2 Online Experiments

To highlight the capability of the control state detection of the BCI and for eas-

ier evaluation of its performance, the online experiment is implemented as semi-

asynchronous. The BCI system is still operated in a discrete, predefined blocks of

rounds. In this experiment, 5 rounds per block and an ISI of 225 ms were used.

Once stimuli for one block is finished, the system will halt until a decision has been

made, and a new block will start. In addition to detecting target character using

P300 in each round, the presence of SSVEP is detected as well to validate it. As

long as SSVEP is detected in at least 3 out of 5 rounds, the subject is deemed to be

in control state. P300 classification is employed only when control state has been

established. In this scheme, the user will have to wait for the beginning of a new

block to change to control state and to start giving the input. The subjects under-

went three experimental sessions, with 18 characters for each session. A character

is identified and displayed on the screen once 5 rounds have been presented, and

the character is determined to be null (shown on the screen using an ‘=’) if control

state is not detected. While in control state, the subjects are required to input a

string of characters (either the sentence A QUICK BROWN FOX JUMPS OVER

A LAZY DOG or a random string). In each run, the subject focused on the first 6

characters, gazed away for the next 6, and focused again on the last 6. Thus, there

would be 54 blocks of 5 rounds each, 36 of which are in control state. For every

6 characters, the subjects were provided a break from which he/she can resume

based on his/her readiness; and the end of a non-control session was indicated

through an auditory cue similar to that of offline experiments.



5.4 Data Analysis 84

Figure 5.2: The peak picking algorithm. The objective function is the peak PSD in the
band enclosed by the thick lines, relative to the mean PSD in the band enclosed by the
thin lines.

5.4 Data Analysis

5.4.1 SSVEP Detection

SSVEP is usually very precise about the stimulus frequency. Gao et al. reported

the possibility of distinguishing two stimuli with frequency difference of just 0.2 Hz

[34]. Detection of SSVEP is usually done by a simple thresholding of the amplitude

of the signal’s Fourier spectrum. Various techniques for enhanced detection of

SSVEP can be found in [35–38].

Unlike the techniques mentioned above, the detection task in our system is less

demanding on frequency precision, as the presence or absence of SSVEP is all that

is required to be estimated. Therefore, in this control state detection scheme, all

other peaks not located around the target frequency can be assumed to be due to

noise and were ignored. Simple thresholding of band-power would not work due to
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high variability of EEG signals and the presence of a peak at the target frequency

needs to be ascertained. Hence, the mean power in a wider range of frequencies

is used as the benchmark for comparison. The window length of the FFT used is

1228, corresponding to approximately 4.8 seconds of data at a sampling frequency

of 256 Hz. Figure 5.2 shows a sample FFT result of a round in which the user used

the system with the screen flickering at around 17.7 Hz (a precise frequency is hard

to maintain, owing to operating system scheduling related unpredictabilities [115],

and lack of synchronization with vertical refresh of the monitor [116]). The relative

mean PSD of frequency bins in the narrow range fst ± fn Hz as compared to the

mean PSD in the wider range fst±fw Hz is the metric chosen for detection. Thus,

a simple objective function can be defined as

J(fst) =
[S(f)]fst±fn − [S(f)]fst±fw

[S(f)]fst±fw

(5.1)

where [S(f)]fst±fn is the mean PSD in the narrow range and [S(f)]fst±fw is the

mean PSD in the wider range. In our experiments, fn is chosen to be 0.3 Hz,

and fw is chosen to be 2 Hz. The value of J(fst) could then be compared with

a threshold to detect the SSVEP, which in turn indicates user’s desire to input a

command. The frequency sensitivity of the algorithm could be tuned by setting

the ranges. The threshold controls balance between TPR and FPR, the setting

of which depends on the requirements of the specific application. Bashashati et

al. have reported that false positive rates in asynchronous BCI applications above

1% - 2% cause frustration and distraction [86]. In most control applications of

BCIs (e.g. wheelchairs), false positives should be minimized; whereas applications

such as spellers are likely to be more tolerant to false positives. To an extent, this

depends on user preferences as well. If the goal is to maximize the classification

accuracy, the threshold can be found using an exhaustive search of a training data

set. A value of 0.5, which was found to be giving a reasonable trade-off between
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selectivity and sensitivity for most of the subjects was used in all results reported

in this thesis. Channel selection was done based on inspection of power spectral

densities of data from various channels at the frequency of interest. For SSVEP

detection, Pz was used for subject 2, whereas for all others, Oz was chosen. From

the pilot experiments, it was found that the data from just one round is not always

sufficient for reliable control state detection. However, it is not necessary to follow

P300’s trial demarcation rigidly in this case, and it is possible to obtain more data

per round without lengthening the ISI and sacrificing bit rates by allowing some

overlap of data between rounds. It is justified if we assume that the user would

have been focusing on the screen for at least a few seconds before the onset of the

stimulus. Hence, for all the analysis as well as for online experiments, we included

a 2 second overlap for SSVEP detection.

5.4.2 P300 Classification

As most of the information for detection of P300 lies in lower frequencies, the

collected data is filtered with 0.5 Hz and 12 Hz as the lower and upper cut-off

frequencies, zero-phase filtered using a Butterworth filter of order 3. To reduce

the feature size, it is down-sampled to 32 Hz, and the data for a duration of 0.7

seconds from the start of the stimulus is considered to belong to that particular

epoch. Due to the high amount of noise and background activity present in EEG,

several rounds of data are required to get a reliable estimate of the P300 potential.

The optimum number of rounds to be chosen for detection is a trade-off between

accuracy and ITR, and varies from person to person. The number of rounds used in

our experiments is fixed to be 5, as it was found to be giving a near-perfect accuracy

in our preliminary experiments as well as in [117] and [118]. Several classifiers for

classification of P300 have been reported in the literature including FLDA [97],

support vector machines (SVM) [118], BLDA [2] etc. In our system, either FLDA or
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BLDA is used for classification (FLDA for subjects 1-3 and BLDA for the rest of the

subjects) as they are simple and computationally efficient, yet in our experiments,

gave results comparable to other methods when there is reasonable amount of

training data. A detailed description of FLDA can be found in Section 2.6. For

BLDA, the criterion is the maximization of a log likelihood function involving X

and y, the details of which can be found in Section 4.2.1. As mentioned therein,

the classifier scores calculated as yj = wTxj are summed over a number of rounds

and the symbol corresponding to the maximum score is selected. The criterion for

evaluating the BCI performance is described in Section 2.6.1. The effective number

of bits is calculated using Eq. (2.10) and the information transfer rate is calculated

using Eq. (2.11).

5.5 Results and Discussions

5.5.1 Effect of SSVEP Addition

To investigate the effect of addition of the flickering stimuli for eliciting SSVEP, a

4-fold cross-validation of 360-round data with and without SSVEP was done. The

360 rounds were split into 4 continuous sections of 90 rounds each. The classifier

was trained on one of the sections and used to predict the class labels for the rest

of the 3 sections. This was done for all the sections and the results were averaged.

Table 5.1 shows the classification accuracies obtained for subjects 6-10 with and

without SSVEP stimuli. For subject 10, slightly better accuracy was obtained when

SSVEP was absent, whereas for subjects 6-8, introduction of SSVEP resulted in a

slight improvement in accuracy. Results show that the accuracies are comparable

and the introduction of SSVEP might not be detrimental to P300 detection.
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Table 5.1: Table showing P300 detection accuracies with and without SSVEP stimuli.

Subject CA CA
(SSVEP stimuli present) (SSVEP stimuli absent)

Sub 6 97.69 94.91
Sub 7 83.80 81.48
Sub 8 99.07 95.37
Sub 9 99.07 98.61
Sub 10 72.69 75.00

5.5.2 Results for Offline Analysis

The P300 detection accuracy was found to be very good - all the 20 characters

were correctly detected for all subjects except Subjects 1, 5, 7 and 10, for whom

the correct detections were 19,19,19 and 16 respectively. A sample spectrum of the

first 20 characters is shown in Fig.5.3, which shows that with a full block of data,

distinguishing between control and non-control states could be done.
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Figure 5.3: FFT of the first 20 characters for Subject 1. Characters 1-10 are in control state.
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Figure 5.4: J(fst) for Subject 1.

The values of the objective function (J(fst)), evaluated using Eq.(5.1) for 200

rounds of data are shown in Fig. 5.4. The vertical dashed lines indicate a change

in control state (as the control state in the experiment changed every 50 rounds),

and as expected, the non-control rounds have values around zero. The horizontal

dashed line is the detection threshold which is set to 0.5. Those points below the

threshold in control state are false negatives, and those in non-control state above

the threshold are false positives. If SSVEP is absent, the mean PSD in the band

of interest (fst ± fn) is close to the mean PSD over fst ± fw, and the value of the

objective function would be nearly zero; which can be observed in Fig. 5.4.

To evaluate the performance of the system for various thresholds, the receiver-

operating characteristic (ROC) was plotted for the first five subjects as shown in

Fig. 5.5a and for the rest of the five subjects in Fig.5.5b. ROC plots the TPR

(sensitivity) against FPR (selectivity). Area under curve (AUC) of the ROC,

which is a performance measure of the system, is given in Table 5.2. Classification

accuracies (CA) of the speller, the corresponding ITRs as well as control state
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Figure 5.5: ROC for the Subjects.
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detection accuracies (CD) for the subjects are also given therein. Average AUC

over all subjects is 0.859, and Subject 10 has the minimum AUC at 0.632. For most

subjects, the AUC is much higher than that for a random classification (0.5), which

shows that the system has good control-state detection capability. For subject 10,

the discrimination is very low, though it is significantly better than chance (a

bootstrap analysis [102] reveals that the 95% confidence interval for the AUC does

not include 0.5). Voting of classifier labels within a block was used for calculation

of CD. For example, if blocks of 5 rounds are considered for the detection of one

character; as long as at least 3 rounds are determined to be in the control state, the

character is deemed valid. This will ensure that the false positives within a round

does not necessarily cause an error in control state detection. However, using more

rounds will inevitably reduce the ITRs achievable, and increases the waiting time

for the user to start operating the system (user will not be able to start operating

the system till the end of the number of rounds used in detection). It can be seen

from Table. 5.2 that most subjects were able to achieve very good data transfer

rates as well as control state detection accuracies. The control state detection

accuracy for Subject 10 is very low as compared to other subjects. This could be

expected, as a recent survey by Allison et al. [41,119] on BCI demographics shows

that there are BCI “illiterate” people who shows poor performance for certain BCI

paradigms. The P300 classification accuracy for Subject 10 was also less than

others. However, it is not possible to derive statistical conclusions on the relation

between P300 and SSVEP detection accuracies based on the data - it could be due

to attentional / motivational factors. Overall, the system achieved an average bit

rate of 20 bits/min at an accuracy of 96.5%, and a control state detection accuracy

of 88%.
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Table 5.2: Detection results for the offline experiment. The classification accuracy for P300 (CA), the corresponding ITR,
and the control state detection accuracies (CD) for various number of rounds used for the detection of a character.

Rounds/Char. 2 3 5
Subject AUC CA ITR CD CA ITR CD CA ITR CD

(%) (bits/min) (%) (%) (bits/min) (%) (%) (bits/min) (%)
Sub 1 0.928 90.00 39.26 72.50 95.00 30.51 97.50 95.00 19.15 95.00
Sub 2 0.958 65.00 22.88 85.00 95.00 30.51 95.00 100.00 21.39 97.50
Sub 3 0.964 85.00 35.54 82.50 95.00 30.51 95.00 100.00 21.39 97.50
Sub 4 0.925 85.00 35.54 72.50 95.00 30.51 92.50 100.00 21.39 97.50
Sub 5 0.836 75.00 28.84 55.00 85.00 24.99 85.00 95.00 19.15 87.50
Sub 6 0.791 90.00 39.26 55.00 95.00 30.51 72.50 100.00 21.39 77.50
Sub 7 0.894 65.00 22.88 72.50 85.00 24.99 85.00 95.00 19.15 92.50
Sub 8 0.802 80.00 32.08 55.00 95.00 30.51 77.50 100.00 21.39 85.00
Sub 9 0.859 95.00 43.38 52.50 100.00 34.09 82.50 100.00 21.39 92.50
Sub 10 0.632 35.00 8.45 50.00 50.00 10.58 62.50 80.00 14.16 57.50
Average 0.859 76.50 30.81 65.25 89.00 27.77 84.50 96.50 20.00 88.00
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Figure 5.6: J(fst) for Subject 1 in the online experiment.

5.5.3 Online Results

For online experiments, the threshold value was set to be 0.5. A plot of objective

function for one session is given in Fig. 5.6. For blocks of 5 rounds (one character),

the mean detections for control states (CS) and non-control states (NCS) are given

in Table. 5.3. More than 4 out of 5 rounds gave correct detections in control state

for Subjects 1-7. The mean of the number of rounds in a block where the system

gives a positive detection during non-control state is 0.21 on an average, which

corresponds to a round-wise false alarm rate of 4.2%. The corresponding control

state detection accuracy is 88.15%. The control state detection accuracy was more

than 94% for Subjects 1-7. For Subjects 8 and 10, these were less than 70%, and

little discrimination could be achieved for Subject 10 (detection accuracy by chance

is 50%). It was noted that accuracy is lower when focusing on the last column of the

display, likely due to reduced visual attention to SSVEP; however more experiments

are required to ascertain the statistical validity of this observation. Based on the
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Table 5.3: Detection results for the online experiment. CS and NCS are the mean SSVEP
detections for blocks of 5 rounds, when the subject is in control state and non-control
state respectively. CD is the block-wise detection accuracy of control state.

Subject CS NCS CD CA ITR (bits/min)
Sub 1 4.78 0.15 98.15 97.22 20.04
Sub 2 4.88 0.12 96.30 86.11 16.04
Sub 3 4.69 0.09 98.15 100.00 21.39
Sub 4 4.67 0.26 97.22 97.22 20.05
Sub 5 4.52 0.26 94.44 88.89 16.95
Sub 6 4.48 0.17 95.83 94.44 18.93
Sub 7 4.51 0.26 94.44 88.89 16.95
Sub 8 3.50 0.39 68.05 97.22 20.04
Sub 9 3.70 0.22 83.33 97.22 20.04
Sub 10 2.59 0.19 55.56 97.22 20.04
Average 4.23 0.21 88.15 94.44 19.05

P300 detection accuracy, the system is capable of information transfer at an average

of 19.05 bits/min while maintaining very good classification accuracies when the

subjects are in control state. The accuracy is more than 94% except for Subjects

2, 5 and 7, who also achieved more than 86% accuracy.

5.6 Limitations and Implementation Issues

The current system is not completely synchronous - the user still needs to wait for

the gap between characters to start giving an input. Since we use 5 rounds/character,

the maximum waiting time can be up to about 14 seconds, which can be frustrating

for the user. A possible enhancement to mitigate this issue is to render the system

more asynchronous by the use of a sliding window instead of discrete blocks for

the detection of a character. The window should consists of 6 rounds, the control

state is determined as follows: the first round has to contain SSVEP, and at most

two of the other 5 can have a negative detection. If the current window fulfills that

criteria, a decision is made through P300 classification of the last 5 rounds and the
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queue is emptied. Otherwise, the window is moved forward by 1 round. The extra

round at the beginning is not evaluated for P300 as the user might start focusing

mid-round, producing the requisite SSVEP and without the proper P300 signal.

This extra round can work as an alternative to the break enforced between blocks,

and hence does not amount to a loss of efficiency.

Higher frequency flicker could be used to increase users’ comfort while using the

system. Various works have reported reliable detection of frequencies up to 40 Hz,

which corresponds to a flicker that is barely perceptible [120, 121]. However, this

would necessitate very sophisticated hardware and detection algorithms. Choosing

frequencies which can synchronize with the vertical refresh of the monitor might

reduce the BCI illiteracy [116].

To evaluate the advantages and limitations of the proposed method in prac-

tical scenarios, it needs to be tested for different BCI applications. Also, the

performance of the system should be tested on a larger and more varied subject

pool to get unbiased results on the usability and generality. This should also en-

able a better understanding on the effect of inter- and intra-subject variabilities on

the combined elicitation of P300 and SSVEP. Techniques for adapting the SSVEP

detection threshold needs to be explored for subjects with high intra-subject vari-

ability. A detailed study of factors affecting user comfort, and effects of habituation

would enable necessary modifications to improve the usability and practicality of

the system.

5.7 Conclusions

An asynchronous BCI system combining two different paradigms has been realized.

This system takes advantage of the ease of elicitation of the SSVEP, and flexibility

of P300 such that the system has efficient operation and reliable control state

detection. In the online experiments, the system achieved an ITR of 19.05 bits/min,
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with a control state classification accuracy of 88.15%. The system demonstrated

very good control state detection accuracies for 8 of the 10 subjects, and had more

than 94% discrimination for 7 subjects.

Since the purpose of this work is to validate the proposed technique of com-

bining P300 and SSVEP paradigms, the system uses relatively simple hardware

and detection algorithms. More responsive (faster) hardware devices such as

LED/plasma displays might enable more accurate stimuli presentation, and conse-

quently better performance. Pre-processing techniques such as ICA [48] could be

employed to clean up the recorded signal by removing artefacts and spatially lo-

calized noise. This will enable the classifier to learn and classify the P300 response

better, resulting in a higher ITR. More advanced SSVEP detection techniques

such as CCA [34] could be used to improve the control state detection accuracy

of the system. Also, combining the statistical information from the P300 classi-

fier scores [51] with the information from SSVEP could improve the control state

detection performance further.



Chapter 6
Conclusions and Future Directions

A BCI system can be used as a channel of communication between the user and

a human-computer interaction system. This can be used by a disabled person to

communicate with a computer through his “thought” alone. The applications of

such a system are ever increasing and virtually endless. Basic commercial systems

have already hit the market, and more sophisticated and cheaper systems are bound

to enter the market soon. This chapter summarizes the contributions in this thesis

toward the goal of a better P300/hybrid P300 interface, focusing on adaptation

and control state detection capabilities.

A flexible BCI system was realized which can work as a stand-alone P300

speller or a hybrid system, or which can elicit P300 along with SSVEP. The baseline

performance is evaluated thoroughly, and is able to achieve a classification accuracy

of >85% with a bit rate of about 40bits/min. This is comparable to the state of

the art BCI systems.

98
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6.1 Adaptation

Fast adaptation schemes are necessary for realizing BCI systems which can operate

with very little training data. This can result in a more usable BCI which will en-

hance the attractiveness and encourage their commercial viability and widespread

adoption. A co-training approach, which uses two classifiers - FLDA and BLDA

is used for fast adaptation in a P300 BCI. The resulting classifier predicted labels

by one classifier is used for generating training data for the other classifier and

vice versa. The method is shown to achieve a good and gradual increase in the

classification accuracy, and consequently, bit rates. Thus, the user will be able to

communicate faster, and the need for intermittent training sessions will be mini-

mized. The method is found to be yielding a superior performance as compared to

self-training where the classifier is re-trained using its own predictions. The per-

formance improvement was found to be even more significant for the cases where

the training data and the number of rounds used for detection of a character are

low, both desirable qualities for a BCI.

The difference between the two classifiers add extra information to improve the

adaptation performance. This is unlike in the case of self training where only one

classifier is used. In usual self-training or co-training, only certain fraction consti-

tuting the most confident predictions of the classifier is used for adaptation. In

this thesis, we have shown that adding all the predictions yield better adaptation

performance for the P300 classifier. This is likely due to the fact that the data

points which are nearer to the classification boundary are more important in de-

termining the updates to the boundary as compared to those far away from the

it (whose prediction confidence will be high anyway). Though this adds a risk of

mislabeling, the information provided by the weak learners still add positively to

the adaptation.

The co-training method yielded better results for subjects who produced a



6.1 Adaptation 100

stronger P300 (as could be inferred from the supervised classification rate). The fi-

nal classification accuracy attained was, however, strongly dependent on the initial

labelled data. However, the absolute increase in classification accuracy, desirably,

is better when the training data is low. The method is able to achieve very good

accuracy and data transfer rate even with very little (a few seconds of) training

data. The accuracy was found to increase till a point, beyond which the addition

of unlabeled data has little effect on accuracy. In some cases, addition of unlabeled

data can be detrimental to performance.

The present study uses cross-validations to perform statistical analysis of clas-

sifier performances. Hence, it does not evaluate the performance when there are

gradual variation in the characteristics of the recorded signal. Such adaptation

effects are important in practical scenarios, though it is very hard to statistically

analyse the relative performances of various algorithms without conducting very

long experiments on a number of patients. For example, we might need to conduct

experiments of several minutes duration with a gap of several hours in between to

analyse the effect of adaptation in realistic BCI usage scenarios.

Though not fully studied yet, it is possible that the P300 characteristics may

be dependent on the location of the character in the matrix producing P300. For a

non-speller based interface too, the exact way in which P300 is elicited might have

a bearing on its characteristics. In adaptive BCIs where the training data is low,

the initial labeled data is likely to have a strong bearing on the final classification

accuracy achieved. Hence, it is desirable to have a carefully chosen pattern which

is less subject to visual attention and spatial effects to avoid such biases.

In this thesis, we have not attempted to derive techniques which can assist

the system in determining when and whether to adapt, which are also equally

important problems as how to adapt. As mentioned in Chapter 2, such techniques

could focus on statistical analysis of classifier scores. For example, we can keep
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adapting while the z-score of the classifier scores does not decrease. However,

we should not stop adapting completely at any point, as the positive effect of

adaptation might become relevant/significant at some point in the BCI operation.

A detailed analysis of such schemes are left as future work.

With the addition of more unlabeled data, the difference in predictions of the

two classifiers in co-training algorithm reduces, and co-training degenerates to self-

training. One option to minimize this possibility and to preserve diversity is to

introduce artificial training examples [108]. Another possible enhancement is to use

an ensemble of classifiers instead of just two. This will help combine the advantages

of both ensemble learning as well as co-training. The ensembles could be derived

from different types of classifiers, or using the same classifier model, trained to

different subsets of data.

Also, adaptation is intensive on memory and computational power. Future

BCI systems are embedded / mobile applications. In such systems, resources come

at a premium, and existing transductive / semi-supervised techniques have heavy

requirements on these two resources. As such, these techniques might be difficult to

implement on mobile or embedded platforms. Hence, there is a need for exploring

incremental versions of the semi-supervised techniques. One method would be to

carefully choose and retain only a limited set of confident labels, discarding the

least confident ones in each round of prediction. Alternatively, the predicted data

could be used to update a fixed set of training points based on some statistical

criterion (such as a weighted addition to the point nearest, according to a distance

metric such as Mahalanobis distance). Another promising method is to use a SVM

trained using sequential minimal optimization (SMO), with the new training data

derived from confident predictions by the existing classifier.

The prominence of P300 peak and its duration depends on a lot of factors,

including, but not limited to the subject, his/her level of alertness, the novelty
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of the event etc. Selecting the right features for a subject might help in better

predictions from initial data, and consequently in better performance from semi-

supervised learning techniques. Identifying the best features requires an exhaustive

search, and genetic algorithms (GA), which tend to give solutions which are glob-

ally optimal are well suited for such tasks. The common use of feature selection in

context of BCI is in the selection of electrodes in a multi-channel EEG recording

arrangement, as can be seen in [30]. A spatio-temporal feature selection could be

done with having starting and end point markers on the time series, and one bit

per channel used as the mask vector. The feature selection algorithm could be

run periodically and the feature sets could be adapted based on the statistics of

classifier confidence (such as the average z-scores of predicted labels).

6.2 Control State Detection

Almost all of the present day BCI systems work in synchronous mode, i.e., the

knowledge of precisely when the user will give an input to the computer is known.

An ideal BCI system should be able to work in an asynchronous mode, i.e., the user

should be able to give input at will. The challenge in developing an asynchronous

BCI system is the control state detection. The system should be able to detect

whether the user is trying to communicate, and detect the input. Otherwise, it

should remain inactive. It might be required that some other criterion other than

P300 needs to be used in such a system to initiate the system into active state.

In this thesis, we propose an asynchronous BCI system combining two different

paradigms. The system relies on P300 for information transfer. P300 can be

elicited in a wider range of patients, has relaxed visual attention requirements, and

the required stimuli paradigm can be realized using simpler hardware. This base

system is augmented by the introduction of a constant frequency flicker. This elicits

a relatively easy to detect SSVEP, which is utilized for control state detection. The
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system is shown to achieve good control state detection and data transfer rates for

most of the subjects.

The proposed system clearly shows the advantages of hybrid techniques. Hybrid

techniques could be used for achieving desirable goals such as enhancing informa-

tion transfer and as activation mechanisms for certain infrequently used inputs.

It is known that BCI illiteracy is usually specific to a particular EEG pattern.

Thus, a system which can utilize different potentials for the same goal could re-

duce the effects of BCI illiteracy. For example, in a system which combines P300

and SSVEP in a speller paradigm, if the user is unable to produce P300 signals

which can be reliably detected, the SSVEP could provide additional information

to the classifier, and hence target character could be detected more reliably. Due

to all these advantages, hybrid BCIs hold a prominent place in the future of BCIs,

and research in this direction has geared up recently. However, it should be noted

that BCI illiteracy posses a greater challenge in the system described in this thesis.

This is due to the fact that the system uses P300 and SSVEP for separate goals,

and its proper operation requires the user to be able to produce both responses

reliably.

Frequencies which are synchronized to the vertical refresh of the monitor could

provide a more precise frequency stimuli, and consequently, better control state

detection accuracy. This could reduce the BCI illiteracy due to SSVEP. Also, the

statistical information from P300 classifier scores could be combined to increase the

robustness of control state detection, and thereby reducing the need to detect both

P300 and SSVEP reliably. Another disadvantage of the system is that the system

uses flickering stimuli. This can be uncomfortable for certain users, and also has

the potential to trigger epileptic seizures. These negative aspects can be mitigated

to a great extent through the use of high-frequency SSVEP. This would make the

system more comfortable for the user as compared to a sub-20 Hz flicker used in
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the present study. However, elicitation and detection of high-frequency SSVEP is

very demanding on the hardware and detection algorithms. The system described

in this thesis has been kept fairly basic as the purpose was to validate the use of

a hybrid technique for control state detection. More sophisticated hardware and

detection algorithms (for example, CCA based or phase rectified methods) could

yield a better performance. Also, the system was tested only on a relatively small

pool of homogenous subjects. To evaluate the performance and usability of the

system in a completely unbiased manner, it should be tested on a large subject pool

similar to the demographics tests described in [41], and for various applications.



Bibliography

[1] P. Williams et al., Gray’s anatomy. Churchill Livingstone, London, 1989,

vol. 378.

[2] U. Hoffmann, “Bayesian machine learning applied in a brain-computer inter-

face for disabled users,” Ph.D. dissertation, Ecole Polytechnique Federale de

Lausanne, Switzerland, 2007.

[3] C. Guan, M. Thulasidas, and J. Wu, “High performance P300 speller for

brain-computer interface,” IEEE Workshop on Biomed. Circuit and Sys.,

pp. 13–16, 2004.

[4] M. Thulasidas, C. Guan, and J. Wu, “Robust classification of eeg signal for

brain-computer interface,” IEEE Trans. Neural Sys. Rehab. Eng., vol. 14,

no. 1, pp. 24–29, 2006.

[5] B. Blankertz, G. Dornhege, M. Krauledat, M. Schröder, J. Williamson,
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