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Adaptation in P300 Brain–Computer Interfaces:
A Two-Classifier Cotraining Approach

Rajesh C. Panicker, Student Member, IEEE, Sadasivan Puthusserypady∗, Senior Member, IEEE,
and Ying Sun, Member, IEEE

Abstract—A cotraining-based approach is introduced for con-
structing high-performance classifiers for P300-based brain–
computer interfaces (BCIs), which were trained from very little
data. It uses two classifiers: Fisher’s linear discriminant analysis
and Bayesian linear discriminant analysis progressively teaching
each other to build a final classifier, which is robust and able to
learn effectively from unlabeled data. Detailed analysis of the per-
formance is carried out through extensive cross-validations, and
it is shown that the proposed approach is able to build high-
performance classifiers from just a few minutes of labeled data
and by making efficient use of unlabeled data. An average bit rate
of more than 37 bits/min was achieved with just one and a half
minutes of training, achieving an increase of about 17 bits/min
compared to the fully supervised classification in one of the config-
urations. This performance improvement is shown to be even more
significant in cases where the training data as well as the num-
ber of trials that are averaged for detection of a character is low,
both of which are desired operational characteristics of a practi-
cal BCI system. Moreover, the proposed method outperforms the
self-training-based approaches where the confident predictions of
a classifier is used to retrain itself.

Index Terms—Brain-computer interface (BCI), cotraining,
EEG, P300, semisupervised learning.

I. INTRODUCTION

ABRAIN–COMPUTER interface (BCI) is a system capable
of utilizing the brain’s electrical signals for direct commu-

nication with a computer system, without reliance on the usual
neuromuscular pathways. Patterns in the electrical activity of the
brain are extracted and used as control signals to the computer
or a prosthetic device. A primary target beneficiary group for
BCIs are people with severely impaired motor systems, which
have few options to communicate with the outside world. There
are various BCI systems based on evoked potentials (EPs), event
related potentials (ERP), motor imagery, various band rhythms,
etc., [1]. The most practical modality for a BCI is the electrical
activity measured at the scalp, the EEG. A widely used ERP in
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practical BCI systems is the P300 [1]. It is produced in response
to rare, random, and task-relevant stimulus, commonly known as
the oddball paradigm [2]. The P300 usually manifests as a pos-
itive peak about 300 ms after the presentation of the stimulus,
predominantly at the centro–parietal region [3]. Its amplitude
and latency varies from person to person and also depends on
the “surprise” in the stimulus [4]. The advantages of P300 in-
clude its suitability for a wide spectrum of users including the
locked-in patients [5], relaxed requirement of visual attention
and relative ease of detection, and reasonably good information
transfer rates (ITRs) [6].

A widely used P300 BCI paradigm is the P300 speller [7].
It has characters displayed as a matrix, with rows and columns
being highlighted at a pseudorandom sequence. P300 responses
are elicited during the highlighting of both the row and the col-
umn corresponding to the character of interest. The fact that
this elicitation is time locked to the stimulus can be utilized to
estimate the row and column containing the character. The pres-
ence or absence of P300 is typically detected with the help of a
classifier, which is trained using some data for which the labels
are known [8], [9]. Given the inter- and intrapersonal variations
in EEG, the training time is several tens of minutes to obtain
satisfactory performance [1]. The requirement of longer training
data is tiring on the part of the user and reduces the attractive-
ness of BCI as an alternate channel of communication. Hence,
building good classifiers from shorter training sessions have be-
come a topic of great interest to the BCI research community.
One way to improve the performance is to have improved fea-
ture extraction and classification techniques, and the other is to
render the classifier to be able to adjust itself progressively as
more and more (new) unlabeled data arrive. Such an adaptive
BCI has become an active field of research and encouraging
results have been reported by various groups [10]–[13].

The labels of the new incoming data are not available for adap-
tation of the classifiers in BCIs, unlike in active learning scenar-
ios [14]. This necessitates the classifier being able to adapt the
classification boundary blindly from the incoming data. Trans-
ductive and semisupervised algorithms have been recently used
as alternatives to the strenuous training effort required on the part
of the user. Transductive algorithms classify the unlabeled data
by optimizing a joint function of labeled and unlabeled data. A
transductive version of support vector machines (SVMs), which
aligns the classification boundary maximally away from the un-
labeled data has been proposed for use in BCI systems [15].
Unlike a standard SVM, the optimization problem for trans-
ductive SVM is nonconvex. This requires complex numerical
routines, and there is no guarantee of the solution being a global
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optimum. On the other hand, usual semisupervised algorithms
define a classifier as a function for which an unlabeled datum
is essentially test data—the posterior probabilities of data being
labeled are independent. A widely used semisupervised tech-
nique is self-training, which uses the most confident predictions
from the classifier for additional labeled data [16]. Another
popular method is the classical cotraining introduced by Blum
and Mitchell [17], which requires two redundant and sufficient
views of the data, i.e., two sets of independent features both
of which have the classification information. Such a require-
ment cannot be met in most practical scenarios, including BCI.
Goldman and Zhou [18] later showed that labels generated from
two different classifiers can also be used to generate additional
data, thus doing away with the multiview requirement. Such a
two-classifier cotraining-based approach is introduced in this
paper to reduce the training effort. The two classifiers used
are the Fisher’s linear discriminant analysis (FLDA) and the
Bayesian linear discriminant analysis (BLDA). The algorithm
exploits the difference between the classifiers to generate differ-
ent labels for the data. Recently, a mathematical reasoning for
the success of cotraining style algorithms was given by Wang
and Zhou [19]. They proved that the success of cotraining-based
algorithms is higher when the difference between the classifiers
is maximized [20].

The proposed method is described in Section II. Section III
details the experiments and data analysis, followed by discus-
sions in Section IV. The paper is concluded with some remarks
in Section V.

II. COTRAINING METHOD

Let the data from the jth trial, xj = [x1j , x2j , . . . , xdj ]T

be the feature vector of length d for the classification prob-
lem, with xij s, i = 1, 2, . . . , d, denoting the individual fea-
tures and let yj ∈ {−1, 1} be the corresponding labels. Let
X = {x1 ,x2 , . . . ,xl ,xl+1 , . . . ,xn} be the set of all n data
points in feature space, of which l points have known labels
given by, Y = {y1 , y2 , . . . , yl}. The semisupervised classifica-
tion problem can be defined as follows: Given the dataset S =
L ∪ U , where L = {(x1 , y1), (x2 , y2), . . . , (xl , yl)} ⊂ X × Y
is the labeled dataset and U = {xl+1 ,xl+2 , . . . ,xn} ⊂ X is the
unlabeled dataset, find a mapping h∗ ∈ H , which holds for the
entire S and gives a perfect generalization, where H: X → Y
denotes the set of all classifiers. This will be hard to realize in
most practical applications, where the data are generally noisy;
also for small l, the mapping will be less accurate. Cotraining
method uses two initial classifiers, namely, h0

1 ∈ H and h0
2 ∈ H ,

trained on L, and iteratively updates them, with hi+1
1 and hi+1

2
hopefully providing a better mapping than hi

1 and hi
2 , where i

is the iteration number.
The algorithm can be summarized as follows. Given the initial

training data (L) and the unlabeled data (U ):
1) Obtain the initial classifiers h0

1 and h0
2 , using the training

data L0
1 = L0

2 = L; and set i = 1.
2) Take u number of unlabeled instances from U and label

them using hi−1
1 and hi−1

2 .

3) Construct a new labeled set Li
1 by combining Li−1

1 and
the labeled data given by hi−1

2 , and Li
2 by combining Li−1

2
and the labeled data given by hi−1

1 in the previous step.
4) Obtain the updated classifiers hi

1 and hi
2 using Li

1 and
Li

2 . In certain cases, only a fraction of the most confident
among the u labels predicted by each classifier is used for
updating.

5) Increment i and repeat steps 2 to 5 till stopping criterion
is met.

6) Stop the training if all the unlabeled data have been classi-
fied or if the confidence improvement due to the addition
of unlabeled data are minimal.

Several classifiers for classification of P300 have been re-
ported in the literature, which include FLDA [21], SVM [22],
BLDA [23], [24], etc. The classifiers used (for implementing
hi

1’s and hi
2’s, respectively) are BLDA and FLDA for the fol-

lowing reasons.
1) In our preliminary experiments, BLDA and FLDA gave

very good accuracies. Some studies have reported that the
algorithms give accuracies comparable to that of SVMs
[25].

2) Both are computationally simple and do not require
complex cross-validation procedures for tuning their hy-
perparameters. Although BLDA uses a data-dependant
expectation-maximization type algorithm for hyperpa-
rameter optimization, the empirical complexity was found
to be very low, especially as compared to competing clas-
sifiers like SVMs.

3) The two classifiers gave reasonably different separat-
ing planes, which is a crucial factor in cotraining ap-
proaches. Since BLDA uses an entirely different optimiza-
tion method, the biases of the two algorithms are different.
Such a diversity is crucial from the point of cotraining. In
our experiments, it was observed that reasonable diversity
was maintained, though it is inevitable that the classifiers
produce closer and closer predictions as the cotraining
proceeds with more and more unlabeled samples.

A brief description of the two algorithms is given shortly.

A. Fisher’s Linear Discriminant Analysis

In FLDA, the data are projected to a lower dimension such
that the projected means of classes are far apart, while the spread
of the projected data is small. This can be realized by optimizing
a cost function related to the within-class matrix (Sw ) and the
between-class matrix (Sb ), which are defined as

Sw =
nc∑

k=1

∑
xj ∈ck

(xj − mf
k )(xj − mf

k )T (1)

Sb =
nc∑

k=1

nc
k (mf

k − mf )(mf
k − mf )T (2)

where xj , j = 1, 2, . . . , nt are the training data vectors, ck de-
notes the kth class, mf

k is the mean of samples belonging to the
kth class, mf is the global mean, nc is the number of classes
(nc = 2 in our classification, denoting either the presence or the
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absence of P300), and nc
k is the number of samples in the kth

class. Given the pattern matrix X = [x1 ,x2 , . . . ,xnt ] and the
corresponding label vector y = [y1 , y2 , . . . , ynt ], the problem
is to find a projection vector w = [w1 , w2 , . . . , wd ]T such that
the projection

y = wT X (3)

maximizes the criterion function Jp(w) defined as

Jp(w) =
det(wT Sbw)
det(wT Sww)

. (4)

The solution [26] is to choose w satisfying the eigen equation

S−1
w Sbw = λw (5)

if S−1
w exists, λ being the only nonzero eigenvalue [26] of S−1

w Sb .
Once w is estimated, the classifier design is complete and the
output for a single feature vector (xj ) is

yj = wT xj . (6)

Reliable detection of the P300 usually requires several rounds
(a round is the data associated with one complete cycle of row
and column flashings [27]) of stimulus presentations. In each
round, the scores for all rows and columns are calculated using
(6). As reliable detection of the P300 requires data from several
rounds, the scores are averaged over a fixed number of rounds
(denoted by nR ). The estimated target is the symbol at the in-
tersection of the row and the column having the maximum of
the averaged scores. This scheme performs a multiclass classi-
fication, even though the underlying classifications are binary.

B. Bayesian Linear Discriminant Analysis

The BLDA uses an entirely different approach for optimizing
the weights. Instead of committing a particular value of the
projection vector, it creates the posterior distribution using the
Bayesian criterion. The BLDA implemented in this paper is
similar to the one described in [23]. More general descriptions of
this method can be found in [28] and [29]. The basic assumption
in BLDA is that the regression targets

y = wT X + n (7)

where n is the noise vector. For simplicity and mathematical
tractability, the noise is assumed to be Gaussian. Therefore, the
likelihood function can be written as

p(D|β,w) =
(

β

2π

) l
2

e−
β
2 ‖wT X−y‖2

(8)

where D denotes the pair (X,y), β denotes the inverse variance
of noise, and l is the number of examples in the training set.
For Bayesian inference, we specify a prior distribution for the
weight vectorw. The expression for the prior distribution (which
is assumed to be Gaussian) is

p(w/α) =
d∏

i=1

( αi

2π

) 1
2

e−
1
2 (wT I′(α)w) (9)

where αis are the hyperparameters (which signifies the inverse
relevance of each feature), and I′(α) is a d × d dimensional
square matrix, with αis along the diagonal.

Using Bayes theorem, it can be shown [23] that the posterior
is also a Gaussian, with mean (m) and the covariance (C) given
by

C = β
(
βXXT + I′(α)

)−1
(10)

m = βCXy. (10b)

The predictive distribution of the target y′ for previously un-
seen x′ is also Gaussian, the mean (μ) and variance (σ2) of
which is given by

μ = mT x′ (11a)

σ2 =
1
β

+ x′T Cx′ (11b)

of which only the mean is being used for the class predictions.
The likelihood p(D|β, α) is given by marginalizing (8) as

p(D|β, α) =
∫

p(D|β,w)p(w|α)dw. (12)

The update equations for α and β are obtained by maximizing
the log likelihood and setting the partial derivatives with respect
to α and β to 0 as

αi =
1

cii + m2
i

(13a)

β =
d

tr(XXT )C + ‖mT X − y‖2
(13b)

where ciis are the diagonal elements of C, mis are the elements
ofm, and tr(·) denotes the trace of matrix. Equations (10a), (10c)
and (13a), (13c) form a set of coupled equations, which can be
iterated to optimize the values of α and β. Once the optimization
is complete, mean of the posterior (m) given by (10c) is taken as
the optimum value of w. The character detection then proceeds
in a manner similar to that with FLDA.

Depending on the semisupervised strategy employed and the
classifier giving the final output, we have the following four
different classifiers:

1) self-training BLDA (SBLDA);
2) self-training FLDA (SLDA);
3) cotraining BLDA (CBLDA)—in which the output is taken

from BLDA classifier, which is cotrained with FLDA;
4) cotraining FLDA (CLDA)—in which the output is taken

from FLDA classifier which is cotrained with BLDA.
Performance analysis of these four algorithms is given in

Section IV.

C. Confidence Criterion

The cotraining process is repeated once 100 rounds of fresh
unlabeled data are made available to the classifier, as it was
empirically found to give reasonably good performances while
avoiding frequent updating of the classifier. The fraction of
the classified data that is being added to the training data in
each iteration of the algorithm is determined by a confidence
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criterion. In our study, the z-score [defined in (14] is the metric
used for calculating the confidence of predictions. The z-score
corresponding to the ith character is given as

zi =
ymax,i − ymean,i

σyi

(14)

where ymax,i , ymean,i , and σyi
are the maximum, mean, and the

standard deviation, respectively, of the averaged scores corre-
sponding to the rows/columns associated with the ith character
detection.

D. Evaluation Criterion

The classification accuracy (CA) is the ratio of correct char-
acter classifications to the total number of characters being clas-
sified. However, since BCI is a communication system, the ITR
is also an important figure of merit. Based on the suggestion
of Wolpaw et al. [30], the formula for information per detected
symbol is calculated as

B[bits] = log2(n
s)+p0 log2(p0) + (1−p0)log2

[
(1−CA)
(ns−1)

]
(15)

where ns is the number of equiprobable symbols (36 in our
speller paradigm; as there are six rows and six columns). It is
assumed that CA is uniform among classes. Given the interstim-
ulus interval (ISI, the interval between two consecutive stimulus
presentations, in seconds) and the intercharacter gap (ICG, the
time gap between two consecutive rounds, in seconds), ITR
(in bits/min) is calculated as

ITR =
B[bits]

nR × ISI × 12 + ICG
× 60 (16)

where ISI and ICG are given in seconds. The CA by chance for
all the cases is 0.0278 (1/36, or 2.78%), and the corresponding
ITR is 0.

For all the comparisons done in this paper, the sign test is
used, given by

ntrue =
1
2

(
niter −

n i t e r∑
i=1

sgn
(
CAi

1 − CAi
2
))

(17)

where CAi
1 and CAi

2 are the classification accuracies for method
1 and method 2 respectively and niter is the number of cross-
validation iterations. The one-tailed p-value [31] (for the null
hypothesis that method 1 does not give better CA than method 2)
is calculated using the binomial cumulative distribution func-
tion, with ntrue trials turning out to be true, out of the niter
binomial trials.

III. DATA RECORDING AND ANALYSIS

A. Experimental Setup

The experimental setup makes use of a 24-channel amplifier
from ANT-Neuro [32], with a sampling rate of 256 Hz. EEG
from seven channels (Cz, C3, C4, Pz, P3, P4, and Oz) were
recorded following the standard 10–20 system [33]. Electrode
AFz was used as the ground, and linked-ear is used as the refer-
ence. All electrodes used were passive and unshielded, and the

impedances were kept below 10 kΩ throughout the experiment.
The experiment was conducted in a laboratory environment,
with sound absorbent screens to enable the user to concen-
trate better, and without electromagnetic shielding. The data
recording is controlled from a custom multithreaded program
implemented in Visual C++, where one thread is used for data
collection and is precisely synchronized with a second thread,
which controls an OpenGL-based hardware-accelerated speller
interface.

B. Offline Experiments

To evaluate the performance of the proposed scheme, offline
experiments were conducted on five healthy subjects aged 22–
27; four males and one female. Subjects 1 and 4 had some
prior experience with P300 BCIs, whereas the other three were
BCI-naive. Each subject performed an experiment of 72 char-
acters, each repeated for 20 rounds, with an ISI of 175 ms. An
ICG of one second was provided to enable the subject to shift
his/her attention to the next character. In our experiments, the
target character was highlighted so that the user does not have to
memorize any character order. It also helps minimize the possi-
bility of character positional biases in P300 signal by allowing
the usage of random characters as targets.

C. Preprocessing

As most of the discriminant information in P300 resides in
lower frequencies, the collected data are zero-phase (forward-
backward) bandpass filtered between 0.5 and 12 Hz, using a
Butterworth filter of order 3. To reduce the feature size, it is
downsampled to 32 Hz, and the data for a duration of 0.7 s (23
samples) from the start of the stimulus are considered to belong
to that particular epoch. A 161-dimensional feature vector is
constructed by the concatenation of the data thus obtained, from
all the seven channels. The optimum number of rounds to be
chosen is usually a tradeoff between the CA and the ITR and
varies from person to person. In our study, we carried out the
analysis using different number of rounds (nR = 1 and 2).

D. Cross-Validation

To evaluate the performance of cotraining, an extensive cross-
validation analysis is carried out. First, the data are shuffled 100
(niter) times randomly with the constraint that the data for any
one character are kept together, to obtain 100 different data
ensembles. For each ensemble, first l rounds of training data are
used to train an initial classifier. The rest of the data are treated
as unlabeled data and are progressively added in batches of
100, and the self/cotraining algorithms are applied. The means,
standard deviations and p-values are calculated as appropriate,
using the results from the 100 ensembles. This scheme gives us
a realistic measure of the performance of the algorithm and has
been used in many previous works involving semisupervised
learning [20]. The disadvantage of such a scheme is that the
scrambling of data forces the algorithm to ignore any adaptation
effects. However, taking it into consideration would make the
data requirement for performance analysis impractically huge.
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Fig. 1. CA versus rounds of unlabeled data for different percentages of clas-
sifier predictions used in self-/cotraining, for l = 60 and nR = 2. P75 and
P50 denotes the P-values for similar performance of 75% and 50% of most
confident classifier predictions as compared to using 100%. (a) Cotraining.
(b) Self-training.

The validation scheme is applied for all (l, nR ) combinations,
maintaining the same orders of permutations of the data in each
case.

IV. RESULTS AND DISCUSSION

The algorithms were run for eight different configurations
of the initial training data (l) and the number of rounds (nR )
used for the detection of each character. They are (l, nR ) -
(40, 1), (60, 1), (60, 2), and (300, 2). The measure that is used
to determine the most confident instances for retraining the
classifier is the z-score, given in (14). Analysis of self-training
and cotraining using 50%, 75%, and 100% of most confident
predictions for updating the classifier was done. A sample result
when l = 60 and nR = 2, averaged over all the subjects is given
in Fig. 1. The results clearly demonstrate a better performance
when all the labels are used for retraining the classifiers. The
statistical significance of this conclusion is established from the
low p values for the null hypothesis that using all the classifier
predictions for self-/cotraining are not beneficial. A similar trend
was observed for other configurations of (l, nR ) as well, for both
self- and cotraining. Hence, all the results presented henceforth
uses 100% of the classifier predictions for self-/co-training.

The cross-validated results for the four algorithms (SBLDA,
SLDA, CBLDA, CLDA) are summarized in Figs. 2–8. In most
of the discussions that follows, only SBLDA and CBLDA are
included, as these almost always gave better results than their
FLDA-based counterparts, the SLDA, and CLDA. Also, since
our study is meant to highlight semisupervised learning in gen-
eral, and co-training in particular, such a comparison would be
more appropriate.

A. Effect of Training Data

It can be seen from the results that the increase in proportion
of unlabeled data leads to a significant increase in the CA, espe-
cially in situations where relatively low amount of labeled data
is available. This could be expected, as empirical studies have
shown that the CA increases exponentially with labeled data
and linearly with unlabeled data [34]. These results can be ob-
served in Fig. 2. For all the five subjects, it can be observed that
when the labeled data are sufficient, addition of unlabeled data

Fig. 2. CA of CBLDA, SBLDA, and fully supervised BLDA for various l
(for nR = 2), along with the error bars for ±σ. (a) Subject 1. (b) Subject 2.
(c) Subject 3. (d) Subject 4. (e) Subject 5. (f) Magnified version of data in the
rectangle in Fig. 2(e).

does not improve the classifier performance. For all the subjects,
approximately 200 rounds of data were enough to learn a clas-
sifier, which could not be improved further by semisupervised
learning, and the CA using CBLDA bettered that of SBLDA in
most cases.

B. Effect of Unlabeled Data

The effect of unlabeled data can be seen from Figs. 3–7 for
various configurations of l and nR . It can be seen that in most
cases, the addition of unlabeled data helps increase the accuracy.
However, as the ratio of unlabeled data to labeled data increases,
the performance improvement decreases and gradually becomes
minimal. A mathematical reasoning for this effect can be found
in [19]. It can be seen in Figs. 3(e), 4(d), 5(d), 6(d), and 7(d)
that the addition of unlabeled data when sufficient training data
are available does not improve the classification performance of
the system. For subjects 1 and 5, when l = 300 [see Fig. 3(e)],
addition of unlabeled data in fact degrades the performance.
This effect has been reported on semisupervised learning on
different datasets by Cohen et al. [35].

In cases where there is an improvement, CBLDA almost al-
ways gives a better improvement over SBLDA. If unlabeled data
were detrimental to classification performance (fourth group in
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Fig. 3. CA versus rounds of unlabeled data for subject 1 for various l and nR .
(a) l = 40, nR = 1. (b) l = 60, nR = 1. (c) l = 60, nR = 2. (d) l = 300,
nR = 2. (e) Magnified version of data in the rectangle in Fig. 3(c) (mean only).

Fig. 4. CA versus rounds of unlabeled data for subject 2 for various l and nR .
(a) l = 40, nR = 1. (b) l = 60, nR = 1. (c) l = 60, nR = 2. (d) l = 300,
nR = 2.

Fig. 5. CA versus rounds of unlabeled data for subject 3 for various l and nR .
(a) l = 40, nR = 1. (b) l = 60, nR = 1. (c) l = 60, nR = 2. (d) l = 300,
nR = 2.

Fig. 6. CA versus rounds of unlabeled data for subject 4 for various l and nR .
(a) l = 40, nR = 1. (b) l = 60, nR = 1. (c) l = 60, nR = 2. (d) l = 300,
nR = 2.

Fig. 8 for all subjects except subject 2), CBLDA reduced the
initial accuracy only slightly as compared to SBLDA. Such a
degradation can be observed in subjects 1 and 5 with the addition
of unlabeled data when l = 300. A similar pattern is observed
in the ITRs as well (see Fig. 8). It can be seen from Figs. 3–7
that the performance of CBLDA is significantly (P < 0.05) bet-
ter than SBLDA for all subjects except when l = 300, in which
case semisupervised learning offered no significant improve-
ment over fully supervised classification. For the configuration
(l = 40, nR = 1), CBLDA gives a performance improvement of
13.2 bits/min more than supervised classifiers, and 1.7 bits/min



PANICKER et al.: ADAPTATION IN P300 BRAIN–COMPUTER INTERFACES: TWO-CLASSIFIER COTRAINING APPROACH 2933

Fig. 7. CA versus rounds of unlabeled data for subject 5 for various l and nR .
(a) l = 40, nR = 1. (b) l = 60, nR = 1. (c) l = 60, nR = 2. (d) l = 300,
nR = 2.

Fig. 8. Bar chart showing the bit rates for various configurations of l and nR .
The initial CA (Init.); as well as the mean classification (Mean.), and final clas-
sification accuracies (Fin.) achieved are shown for each (l, nR ) configuration
and for each subject. (a) Subject 1. (b) Subject 2. (c) Subject 3. (d) Subject 4.
(e) Subject 5.

more than SBLDA for subject 1; and 16.4 bits/min more than
supervised classifiers, and 1.2 bits/min more than SBLDA for
subject 2. The improvement is 21.0 and 17.2 bits/min over super-
vised classifiers, and 1.5 bits/min and 1.4 bits/min over SBLDA
for subject 3 and 4, respectively. For subject 5, the algorithm
achieved an increase of 18.5 bits/min over supervised classifiers
and 1.6 bits/min over SBLDA. From these results, we can see
that CBLDA outperforms SBLDA in most situations, though
the actual amount of increase is not large. The final bit rates av-
eraged over all the subjects is approximately 37 bits/min, which
is 17 bits/min more than the initial CA. This was achieved with
just 40 rounds of labeled data, which corresponds to a training
time of about 90 s. This compares favorably with most state of
the art BCI systems, where average bit rates of 30–40 bits/min
are achieved with several minutes of training data [10], [36].

C. Subjectivity

The algorithm is found to have effective performance en-
hancement in all the five subjects. We can observe from the
results that the algorithm is especially effective for subject 3,
even when l is 40 and nR is 1, which corresponds to a train-
ing time of less than 2 min. This could be due to the fact that
subject 3 produces stronger P300 (which can be inferred from
the fact that subject 3 gives the best performance with super-
vised classifiers, as can be seen from Fig. 2), and the prediction
by both the classifiers are reasonably good. Consequently, the
possibility of errors reinforcing themselves catastrophically is
minimized, especially in cases where the training data are low.

For subject 2, the performance of CBLDA was not signifi-
cantly better than that of SBLDA [see Fig. 4(c)] when l = 60,
nR = 2. For subject 1, when the training data are sufficient,
degradation of accuracy with addition of unlabeled data are
even more prominent [see Fig. 3(e), as compared to subjects 2,
3, and 4 [see Figs. 4(d), 5(d), and 6(d)]. Subject 2 always had
an increase in performance even when training data were abun-
dant [see Fig. 4(d)]. For other configurations, the enhancement
of accuracy in subjects 2, 3, and 4 are found to be consistently
better than subject 1. These are reflected in the ITRs as well.
From these results, it can be concluded that the semisupervised
learning is even more effective for subjects with a stronger P300,
especially for the extreme cases of abundance and scarcity of
training data.

D. Computational Complexity

Both self-training and cotraining are generalized methods,
and the exact complexity depends on the particular classifica-
tion algorithms used in their realization. For self-training, the
complexity is related to the complexity of the specific classifier
used, whereas for cotraining, it is determined by the sum of
the complexities of the two classifiers used. In both cases, as
more and more unlabeled data are added, complexity increases,
as the classifier has to be retrained from a bigger pool of data.
In the cotraining described in this paper, CBLDA and SBLDA
have comparable complexities due to the fact that BLDA com-
plexity, while being data and stopping criterion dependent, is
much higher than that of the FLDA on average. One complete
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run (corresponding to iterative classification of approximately
1 h of preprocessed data) of the MATLAB code running on a
Windows Vista desktop computer with a 2.8 -GHz dual-core pro-
cessor and 4 GB of RAM takes approximately 13.2 and 12.7 s,
respectively.

V. CONCLUSION

A two-classifier cotraining-based approach is proposed to
train robust classifiers, using both labeled and unlabeled data.
The difference between the two classifiers is exploited for deliv-
ering a performance, which is superior to that of single classifier
systems. The algorithm is able to utilize unlabeled data effec-
tively to improve the performance of the classifier. This leads
to a reduction in the user effort, and consequently, results in
a more convenient BCI system. Also, the proposed method is
shown to outperform the self-training-based approaches in most
situations.

The addition of unlabeled data was found to increase the
CA to a limit, beyond which the improvement was minimal.
Also, if sufficient training data are available, the performance
improvement due to the algorithm is minimal, or even nega-
tive. Introducing artificial training examples [37] to preserve
diversity might reduce the tendency of cotraining algorithms to
degenerate to self-training with the addition of more and more
unlabeled data. Also, the use of more classifiers and a majority
voting procedure could be used to determine the winner, thereby
leveraging the advantages of both ensemble learning as well as
cotraining.

In practical situations, there may be gradual changes in the
data with factors such as gel drying, changes in cognitive state
of patient, and adding unlabeled data might help in gradual
adaptation of the classifier. In the cross-validations used in this
paper, such adaptation effects are ignored. For getting a clearer
picture on the performance of the proposed scheme in practical
situations, extensive experiments have to be done on a wider
user base without having to rely on cross-validation schemes.
Moreover, when the training data are low and based on a few
characters, the classifier might have been trained on data which
are subject to visual attention and spatial gradient effects [38],
which can introduce a bias in the result. With a carefully chosen
initial training pattern, the initial classifier prediction will be
less subject to biases, and the performance is likely to improve.
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