43 research outputs found

    A Brief Survey on Cluster based Energy Efficient Routing Protocols in IoT based Wireless Sensor Networks

    Get PDF
    The wireless sensor network (WSN) consists of a large number of randomly distributed nodes capable of detecting environmental data, converting it into a suitable format, and transmitting it to the base station. The most essential issue in WSNs is energy consumption, which is mostly dependent on the energy-efficient clustering and data transfer phases. We compared a variety of algorithms for clustering that balance the number of clusters. The cluster head selection protocol is arbitrary and incorporates energy-conscious considerations. In this survey, we compared different types of energy-efficient clustering-based protocols to determine which one is effective for lowering energy consumption, latency and extending the lifetime of wireless sensor networks (WSN) under various scenarios

    On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    Get PDF
    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks

    Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are a particular type of distributed self-managed network with limited energy supply and communication ability. The most significant challenge of a routing protocol is the energy consumption and the extension of the network lifetime. Many energy-efficient routing algorithms were inspired by the development of Ant Colony Optimisation (ACO). However, due to the inborn defects, ACO-based routing algorithms have a slow convergence behaviour and are prone to premature, stagnation phenomenon, which hinders further route discovery, especially in a large-scale network. This paper proposes a hybrid routing algorithm by combining the Artificial Fish Swarm Algorithm (AFSA) and ACO to address these issues. We utilise AFSA to perform the initial route discovery in order to find feasible routes quickly. In the route discovery algorithm, we present a hybrid algorithm by combining the crowd factor in AFSA and the pseudo-random route select strategy in ACO. Furthermore, this paper presents an improved pheromone update method by considering energy levels and path length. Simulation results demonstrate that the proposed algorithm avoids the routing algorithm falling into local optimisation and stagnation, whilst speeding up the routing convergence, which is more prominent in a large-scale network. Furthermore, simulation evaluation reports that the proposed algorithm exhibits a significant improvement in terms of network lifetime

    Energy efficient data collection and dissemination protocols in self-organised wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are used for event detection and data collection in a plethora of environmental monitoring applications. However a critical factor limits the extension of WSNs into new application areas: energy constraints. This thesis develops self-organising energy efficient data collection and dissemination protocols in order to support WSNs in event detection and data collection and thus extend the use of sensor-based networks to many new application areas. Firstly, a Dual Prediction and Probabilistic Scheduler (DPPS) is developed. DPPS uses a Dual Prediction Scheme combining compression and load balancing techniques in order to manage sensor usage more efficiently. DPPS was tested and evaluated through computer simulations and empirical experiments. Results showed that DPPS reduces energy consumption in WSNs by up to 35% while simultaneously maintaining data quality and satisfying a user specified accuracy constraint. Secondly, an Adaptive Detection-driven Ad hoc Medium Access Control (ADAMAC) protocol is developed. ADAMAC limits the Data Forwarding Interruption problem which causes increased end-to-end delay and energy consumption in multi-hop sensor networks. ADAMAC uses early warning alarms to dynamically adapt the sensing intervals and communication periods of a sensor according to the likelihood of any new events occurring. Results demonstrated that compared to previous protocols such as SMAC, ADAMAC dramatically reduces end-to-end delay while still limiting energy consumption during data collection and dissemination. The protocols developed in this thesis, DPPS and ADAMAC, effectively alleviate the energy constraints associated with WSNs and will support the extension of sensorbased networks to many more application areas than had hitherto been readily possible

    Nonuniform Coverage Control on the Line

    Full text link
    This paper investigates control laws allowing mobile, autonomous agents to optimally position themselves on the line for distributed sensing in a nonuniform field. We show that a simple static control law, based only on local measurements of the field by each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/movement/computation rounds that is essentially quadratic in the number of agents. Further, we exhibit a dynamic control law which, under slightly stronger assumptions on the capabilities and knowledge of each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/communication/computation/movement rounds that is essentially linear in the number of agents. Crucially, both algorithms are fully distributed and robust to unpredictable loss and addition of agents

    Swarm intelligence and its applications to wireless ad hoc and sensor networks.

    Get PDF
    Swarm intelligence, as inspired by natural biological swarms, has numerous powerful properties for distributed problem solving in complex real world applications such as optimisation and control. Swarm intelligence properties can be found in natural systems such as ants, bees and birds, whereby the collective behaviour of unsophisticated agents interact locally with their environment to explore collective problem solving without centralised control. Recent advances in wireless communication and digital electronics have instigated important changes in distributed computing. Pervasive computing environments have emerged, such as large scale communication networks and wireless ad hoc and sensor networks that are extremely dynamic and unreliable. The network management and control must be based on distributed principles where centralised approaches may not be suitable for exploiting the enormous potential of these environments. In this thesis, we focus on applying swarm intelligence to the wireless ad hoc and sensor networks optimisation and control problems. Firstly, an analysis of the recently proposed particle swarm optimisation, which is based on the swarm intelligence techniques, is presented. Previous stability analysis of the particle swarm optimisation was restricted to the assumption that all of the parameters are non random since the theoretical analysis with the random parameters is difficult. We analyse the stability of the particle dynamics without these restrictive assumptions using Lyapunov stability and passive systems concepts. The particle swarm optimisation is then used to solve the sink node placement problem in sensor networks. Secondly, swarm intelligence based routing methods for mobile ad hoc networks are investigated. Two protocols have been proposed based on the foraging behaviour of biological ants and implemented in the NS2 network simulator. The first protocol allows each node in the network to choose the next node for packets to be forwarded on the basis of mobility influenced routing table. Since mobility is one of the most important factors for route changes in mobile ad hoc networks, the mobility of the neighbour node using HELLO packets is predicted and then translated into a pheromone decay as found in natural biological systems. The second protocol uses the same mechanism as the first, but instead of mobility the neighbour node remaining energy level and its drain rate are used. The thesis clearly shows that swarm intelligence methods have a very useful role to play in the management and control iv problems associated with wireless ad hoc and sensor networks. This thesis has given a number of example applications and has demonstrated its usefulness in improving performance over other existing methods

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating System

    Get PDF
    The problem which I address in this thesis is to find a way to organise and manage a network of wireless sensor nodes using a minimal amount of communication. To find a solution I explore the use of Bio-inspired protocols to enable WSN management while maintaining a low communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed systems comprised of low-resource, battery powered sensor nodes. The largest problem with WSN management is that communication is the largest consumer of a sensor node’s energy. WSN management systems need to use as little communication as possible to prolong their operational lifetimes. This is the Wireless Sensor Network Management Problem. This problem is compounded because current WSN management systems glue together unrelated protocols to provide system services causing inter-protocol interference. Bio-inspired protocols provide a good solution because they enable the nodes to self-organise, use local area communication, and can combine their communication in an intelligent way with minimal increase in communication. I present a combined protocol and MAC scheduler to enable multiple service protocols to function in a WSN at the same time without causing inter-protocol interference. The scheduler is throughput optimal as long as the communication requirements of all of the protocols remain within the communication capacity of the network. I show that the scheduler improves a dissemination protocol’s performance by 35%. A bio-inspired synchronisation service is presented which enables wireless sensor nodes to self organise and provide a time service. Evaluation of the protocol shows an 80% saving in communication over similar bio-inspired synchronisation approaches. I then add an information dissemination protocol, without significantly increasing communication. This is achieved through the ability of our bio-inspired algorithms to combine their communication in an intelligent way so that they are able to offer multiple services without requiring a great deal of inter-node communication.Open Acces

    ENAMS: Energy optimization algorithm for mobile wireless sensor networks using evolutionary computation and swarm intelligence.

    Get PDF
    Although traditionally Wireless Sensor Network (WSNs) have been regarded as static sensor arrays used mainly for environmental monitoring, recently, its applications have undergone a paradigm shift from static to more dynamic environments, where nodes are attached to moving objects, people or animals. Applications that use WSNs in motion are broad, ranging from transport and logistics to animal monitoring, health care and military. These application domains have a number of characteristics that challenge the algorithmic design of WSNs. Firstly, mobility has a negative effect on the quality of the wireless communication and the performance of networking protocols. Nevertheless, it has been shown that mobility can enhance the functionality of the network by exploiting the movement patterns of mobile objects. Secondly, the heterogeneity of devices in a WSN has to be taken into account for increasing the network performance and lifetime. Thirdly, the WSN services should ideally assist the user in an unobtrusive and transparent way. Fourthly, energy-efficiency and scalability are of primary importance to prevent the network performance degradation. This thesis contributes toward the design of a new hybrid optimization algorithm; ENAMS (Energy optimizatioN Algorithm for Mobile Sensor networks) which is based on the Evolutionary Computation and Swarm Intelligence to increase the life time of mobile wireless sensor networks. The presented algorithm is suitable for large scale mobile sensor networks and provides a robust and energy- efficient communication mechanism by dividing the sensor-nodes into clusters, where the number of clusters is not predefined and the sensors within each cluster are not necessary to be distributed in the same density. The presented algorithm enables the sensor nodes to move as swarms within the search space while keeping optimum distances between the sensors. To verify the objectives of the proposed algorithm, the LEGO-NXT MIND-STORMS robots are used to act as particles in a moving swarm keeping the optimum distances while tracking each other within the permitted distance range in the search space
    corecore