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Abstract

Although traditionally Wireless Sensor Network (WSNs) have been regarded as

static sensor arrays used mainly for environmental monitoring, recently, its ap-

plications have undergone a paradigm shift from static to more dynamic environ-

ments, where nodes are attached to moving objects, people or animals. Applica-

tions that use WSNs in motion are broad, ranging from transport and logistics

to animal monitoring, health care and military.

These application domains have a number of characteristics that challenge the

algorithmic design of WSNs. Firstly, mobility has a negative effect on the qual-

ity of the wireless communication and the performance of networking protocols.

Nevertheless, it has been shown that mobility can enhance the functionality of

the network by exploiting the movement patterns of mobile objects. Secondly,

the heterogeneity of devices in a WSN has to be taken into account for increasing

the network performance and lifetime. Thirdly, the WSN services should ideally

assist the user in an unobtrusive and transparent way. Fourthly, energy-efficiency

and scalability are of primary importance to prevent the network performance

degradation.

This thesis contributes toward the design of a new hybrid optimization al-

gorithm; ENAMS (Energy optimizatioN Algorithm for Mobile Sensor networks)

which is based on the Evolutionary Computation and Swarm Intelligence to in-

crease the life time of mobile wireless sensor networks. The presented algorithm is

suitable for large scale mobile sensor networks and provides a robust and energy-
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efficient communication mechanism by dividing the sensor-nodes into clusters,

where the number of clusters is not predefined and the sensors within each cluster

are not necessary to be distributed in the same density. The presented algorithm

enables the sensor nodes to move as swarms within the search space while keeping

optimum distances between the sensors.

To verify the objectives of the proposed algorithm, the LEGO-NXT MIND-

STORMS robots are used to act as particles in a moving swarm keeping the

optimum distances while tracking each other within the permitted distance range

in the search space.
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Chapter 1

Introduction

1.1 Introduction

Recent advances in micro-electro-mechanical systems, digital electronics, and

wireless communications have led to the emergence of wireless sensor networks

(WSNs), which consist of a large number of sensing devices each capable of de-

tecting, processing, and transmitting environmental information. A single sensor

node may only be equipped with limited computation and communication capa-

bilities; however, nodes in a WSN, when properly configured, can collaboratively

perform signal processing tasks to obtain information of a remote and probably a

dangerous area in an untended and robust way. Applications of wireless sensors

networks include battlefield surveillance, environmental monitoring, biological

detection, smart spaces, industrial diagnostics, etc. [7]. Figure 1.1 depicts a typ-

ical application of WSNs: target detection, tracking, and classification [80, 154].
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Figure 1.1: Sensor nodes send their measurements to the sink (fusion centre) via

wireless multi-hop communications. The circles around the sensors represents

the radio range of each node.
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In this application scenario, the information processing tasks are to let the

sink-point (data collector) infer, based on the collected information from the

deployed sensor nodes, what type the target is and where the target is. To

accomplish these information processing tasks, a naive approach is to let nodes

send their measurements (e.g., an acoustic sensor measures the amplitude of the

received sound signal) to the sink, possibly via multi-hop communications as

shown in Fig. 1.1, and let the sink process the measurements. However, this

approach is not energy efficient. It has been widely argued that the transmission

and reception energy per bit is much larger than sensing and processing energy

per bit [53, 140]. In general, the raw data of a node’s measurements is of large

volume. Transmitting raw measured data not only consumes large amount of

energy but also increases network traffic which poses high bandwidth demand.

Energy efficiency has been deemed as the main challenge in the Wireless Sen-

sor Networks. Generally, the power supply of a single sensor node relies on a

battery with limited energy (e.g., an AAA battery). Changing or recharging

nodes’ battery is very difficult, if not impossible, after sensor nodes have been

deployed. Therefore, it is desirable to design energy efficient protocols to run

on individual nodes such that the operation time of the deployed WSN can be

maintained as long as possible. Some classical information processing approaches,

however, do not consider the energy efficiency issue and need to be re-examined

when applied in resource constrained WSNs. Geographically distributed nodes

in a WSN may have different views of the physical phenomenon in the sensor



1.2 Motivation 4

field and their measurements may have some correlations. A well-designed algo-

rithm should also exploit this to accomplish the information processing task via

collaboration among nodes.

1.2 Motivation

Wireless communication technologies are undergoing rapid advancements. The

last few years have experienced a steep growth in research in the area of wire-

less sensor networks (WSNs). In WSNs, communication takes place with the

help of spatially distributed autonomous sensor nodes equipped to sense specific

information.

WSNs, especially the ones that have gained much popularity in the recent

years, are typically, ad hoc in nature and they inherit many characteristics/features

of wireless ad hoc networks such as the ability for infrastructure-less setup, min-

imal or no reliance on network planning, and the ability of the nodes to self-

organize and self-configure without the involvement of a centralized network man-

ager, router, access point, or a switch. These features help to setup WSNs fast in

situations where there is no existing network setup or in times when setting up

a fixed infrastructure network is considered infeasible, for example, in times of

emergency or during relief operations. WSNs have variety of applications in both

the military and the civilian population worldwide such as in cases of enemy in-

trusion in the battlefield, object tracking, habitat monitoring, patient monitoring,

fire detection, and so on.
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Even though sensor networks have emerged to be attractive and they hold

great promises for our future, there are several challenges that need to be ad-

dressed. Some of the well-known challenges are attributed to issues relating

to coverage and deployment, scalability, quality-of-service, size, computational

power, energy efficiency, and security.

With the rapid development in miniaturization, low power wireless commu-

nication, micro-sensor, and microprocessor hardware, it have become a reality to

deploy small, inexpensive, low-power, distributed devices, which are capable of

monitoring physical environment by local processing and wireless communication.

As the Internet has revolutionized our life by the exchange of various forms

of information among a large number of users, WSNs may, in the near future, be

equally significant by providing information of the physical phenomena of interest

and ultimately being able to detect and control them or enable us to construct

more accurate models of the physical world.

Generally, when people consider wireless devices they think of items such as

cell phones, personal digital assistants, or laptops with 802.11 standards. These

items costs hundreds of dollars, target specialised applications, and rely on the

pre-deployment of extensive infrastructure support. In contrast, Wireless Sensor

Networks use small, low-cost embedded devices for a wide range of applications

and do not rely on any pre-existing infrastructure.

While it is important to provide timely delivery of data for most applications,

an efficient use of the mobile sensor-network’s limited energy resource must also
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be considered. Sensor nodes typically operate on batteries and have finite en-

ergy, but in many applications, the network is expected to have a long operating

lifetime. Compared to sensing and data processing, data communication and

sensor’s mobility are typically incurs the highest energy consumption.

1.3 Research Aims

The main aim of this research is to minimise the energy consumption in mobile

Wireless Sensor Networks by optimising the communication distance between

the sensor-nodes and the data collector (sink-point). To achieve this aim, we

need to design an algorithm that will divide the sensor-nodes into clusters and

enables these clusters to keep the optimised topology while they are directed to

achieve a given goal. This algorithm should be fast, randomized, and distributed

algorithm for organising the sensors in a mobile Wireless Sensor Network with

an objective of minimising the energy spent in communicating the information to

the data collector. The target networks are those consist of large scale, heavily

constrained embedded devices suitable for industrial, military and commercial

applications.

Many clustering algorithms in various contexts have been proposed in the

past [143, 144, 148, 156]. These are dicussed in details in Chapter 2. These

algorithms are mostly heuristic in nature and aim at generating the minimum

number of clusters in static networks with distance optimisation of around 75%.

In this research we are aiming to expand this optimisation problem to be applied
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for both static and mobile Wireless Sensor Networks and to achieve distance

optimisation of around 80% as compared with the distance of direct transmission.

The design of the proposed algorithm is based on Evolutionary Computation

and Swarm Intelligence. In the first phase of the algorithm, Genetic Algorithms

(GAs) to be used for clustering the sensor-nodes into independent clusters to

minimize the overall communication distance for the sensor network. One of

challenging assumptions for the presented algorithm is that the number of clus-

ters within the sensor network is not necessary to be predefined. This gives more

flexibility for the node deployment process in the sensor network. Another as-

sumption is that, the density of the sensors in each cluster not necessary to be

uniform for all the clusters as in most previous clustering algorithms. This will

support the application constraints for different kinds of Wireless Sensor Net-

works, where the sensors need to be deployed in different densities depending on

the nature of the location where the sensor-nodes to be deployed.

The second phase of the algorithm is based on Particle Swarms Optimisation

(PSO) to keep the optimum distribution of the sensor-nodes and to eliminate any

unnecessary movements for mobile sensors while they are directed as a swarm to

achieve a given goal.

1.4 Research Methodology

A key component to the design of an optimisation algorithm is a thorough knowl-

edge and understanding of the factors that influence the specific Wireless Sensor
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Networks (WSNs) for which the algorithm is intended.

To achieve the goals of the proposed algorithm mentioned in the previous

section, the research is divided into three distinct phases.

The first phase involved a thorough literature review where the related work

was studied to investigate the factors that influence the design of an energy opti-

misation algorithm to enlarge the life time of mobile Wireless Sensor Networks.

The literature study also includes an investigation into the available optimisation

algorithms and protocols which are related to Wireless Sensor Networks in order

to identify the common problems faced by these algorithms.

The second phase involved the design and implementation of the proposed

algorithm starting with static sensor-nodes as a first stage, in which the positions

of sensor nodes are assumed to be fixed. In the second stage of phase two, more

challenging WSNs were considered which are networks having mobile wireless

sensor nodes. To allow the rapid evaluation and adjustment of the proposed

algorithm, a simulation system was implemented in this phase by using Java

programming language to verify the goals of the presented algorithm.

The third phase was dedicated to the hardware experimentation using mo-

bile Robots to verify the objectives of the presented algorithm and proving its

portability from the simulation environment to physical swarm of mobile sensors.

Finally, result analysis and critical review was achieved.
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1.5 Thesis Outline

The rest of this thesis is structured as follows:

Chapter-2: presents a general overview of WSNs and how it differs from other

traditional wireless networks. A wide range of WSN applications also presented

in this chapter. The major challenges and hardware constraints are explained

in this chapter. The clustered topology as a solution for minimizing the energy

dissipation in the WSNs is outlined within this Chapter.

Chapter-3: demonstrates the swarm intelligence (SI) concepts and how it can

be used as a computational and behavioural metaphor for solving distributed and

complex problems. The main concentration in this chapter is devoted to explain

Particle Swarm Optimization (PSO) and Evolutionary Algorithms, specifically

Genetic Algorithms (GAs) as optimization techniques that the proposed system

in this thesis is based on Finally, the previous work and achievements which have

been done in this field are demonstrated.

Chapter-4: presents the new algorithm ENAMS, which is mainly consists of

two stages. In the first stage, the distance optimization for WSNs is achieved

by using GAs to divide the sensor nodes into K-independent clusters. In the

second stage, the distance management for the mobile Ad Hoc WSNs depending

on Particle Swarm Optimization (PSO) is demonstrated.

Chapter-5: presents the software implementation of ENAMS algorithm, by

showing the evolved clustered topology of the WSN and then how are those

clusters will be directed as swarms keeping the optimum deployment of the sen-



1.5 Thesis Outline 10

sor nodes to achieve a given goal.

Chapter-6: shows the implementation of ENAMS algorithm in a real world en-

vironment by using swarmed mobile robots of type NXT-Mindstorms to prove

the portability of our algorithm from the simulation environment into a physical

platform.

Chapter-7: summarizes the presented work of this thesis and highlights the sig-

nificance of the contributions made with an analytical observations. This chapter

is ended by discussing the directions for future work.



Chapter 2

Wireless Sensor Networks

(WSNs)

2.1 Introduction

A Wireless Sensor Network (WSN) consists of sensor nodes connected among

themselves by a wireless medium to perform distributed sensing tasks. This type

of networks are expected to be used in different applications such as environmen-

tal and health monitoring, surveillance, and security [78, 4]. Sensor networks are

a sensing, computing and communication infrastructure that allows us to instru-

ment, observe, and respond to phenomena in the natural environment, and in our

physical and cyber infrastructure. The sensors themselves can range from small

passive microsensors (e.g., ”smart dust”) to larger scale, controllable weather-

sensing platforms. Their computation and communication infrastructure will be

radically different from that found in today’s Internet-based systems, reflecting
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the device and application driven nature of these systems. An important aspect

of WSNs comes from having many sensors generating sensing data for the same

set of events.

2.1.1 WSNs verses Traditional Wireless Networks

Although many protocols and algorithms have been proposed for traditional wire-

less ad hoc networks, they are not well suited to the unique features and appli-

cation requirements of sensor networks [150]. Sensor networks is a new family

of wireless networks and is significantly differs from traditional networks like

cellular networks and MANETs. In such traditional networks, the tasks orga-

nization, routing and mobility management is done to optimize the Quality of

Service (QoS) and high bandwidth efficiency [119]. These networks are designed

to provide good throughput/delay characteristics under high mobility conditions.

Energy consumption is of secondary importance as the battery packs can be re-

placed as needed.

However, sensor networks consist of hundreds to thousands of nodes that are

designed for unattended operation. The traffic is of a statistical nature as com-

pared to the multimedia rich data in MANETs and cellular networks. The data

rate is expected to be very low to the order of 1-100 kb/sec. unlike conventional

networks, the main goals are prolonging the life of the network and prevent con-

nectivity degradation through aggressive energy management as the batteries

cannot usually be replaced because of operations in hostile or remote environ-
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ments. In sensor networks the flow of data is predominantly unidirectional from

the sensor nodes to the sink-point.

The following points illustrates some features of WSNs which make it different

to other traditional networks [7, 4]:

• The number of sensor nodes in a wireless sensor network can be several

orders of magnitude higher than the nodes in other wireless networks.

• Sensor nodes are densely deployed.

• Sensor nodes are prone to failures.

• The topology of a sensor network changes very frequently.

• Sensor nodes mainly use a broadcast communication paradigm, whereas

most ad hoc networks are based on point-to-point communications.

• Sensor nodes are limited in power, computational capacities, and memory.

• Sensor nodes may not have global identification (ID) because of the large

amount of overhead and large number of sensors.

2.1.2 Types of Sensor Networks

Current WSNs are deployed on land, underground, and underwater. Depending

on the environment, a sensor network faces different challenges and constraints.

There are five types of WSNs: terrestrial WSN, underground WSN, underwater

WSN, multi-media WSN, and mobile WSN.
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Terrestrial WSNs [7] typically consist of hundreds to thousands of inexpensive

wireless sensor nodes deployed in a given area, either in an ad hoc or in a pre-

planned manner. In ad hoc deployment, sensor nodes can be dropped from a

plane and randomly placed into the target area. In pre-planned deployment,

there is grid placement, optimal placement [130], 2-d and 3-d placement models

[149, 105].

In a terrestrial WSN, reliable communication in a dense environment is very

important. Terrestrial sensor nodes must be able to effectively communicate data

back to the base station. While battery power is limited and may not be recharge-

able, terrestrial sensor nodes however can be equipped with a secondary power

source such as solar cells. In any case, it is important for sensor nodes to conserve

energy. For a terrestrial WSN, energy can be conserved with multi-hop optimal

routing, short transmission range, in-network data aggregation, eliminating data

redundancy, minimizing delays, and using low duty-cycle operations.

Underground WSNs [6, 81] consist of a number of sensor nodes buried under-

ground or in a cave or mine used to monitor underground conditions. Additional

sink nodes are located above ground to relay information from the sensor nodes

to the base station. An underground WSN is more expensive than a terrestrial

WSN in terms of equipment, deployment, and maintenance. Underground sensor

nodes are expensive because appropriate equipment parts must be selected to

ensure reliable communication through soil, rocks, water, and other mineral con-

tents. The underground environment makes wireless communication a challenge
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due to signal losses and high levels of attenuation. Unlike terrestrial WSNs, the

deployment of an underground WSN requires careful planning and energy and

cost considerations. Energy is an important concern in underground WSNs. Like

terrestrial WSN, underground sensor nodes are equipped with a limited battery

power and once deployed into the ground, it is difficult to recharge or replace a

sensor node’s battery. As before, a key objective is to conserve energy in order to

increase the lifetime of network which can be achieved by implementing efficient

communication protocol.

Underwater WSNs [5, 51] consist of a number of sensor nodes and vehicles de-

ployed underwater. As opposite to terrestrial WSNs, underwater sensor nodes are

more expensive and fewer sensor nodes are deployed. Autonomous underwater

vehicles are used for exploration or gathering data from sensor nodes. Compared

to a dense deployment of sensor nodes in a terrestrial WSN, a sparse deployment

of sensor nodes is placed underwater. Typical underwater wireless communi-

cations are established through transmission of acoustic waves. A challenge in

underwater acoustic communication is the limited bandwidth, long propagation

delay, and signal fading issues. Another challenge is sensor node failure due to en-

vironmental conditions. Underwater sensor nodes must be able to self-configure

and adapt to harsh ocean environment. Underwater sensor nodes are equipped

with a limited battery which cannot be replaced or recharged. The issue of en-

ergy conservation for underwater WSNs involves developing efficient underwater

communication and networking techniques.
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Multi-media WSNs [4] have been proposed to enable monitoring and tracking

of events in the form of multimedia such as video, audio, and imaging. Multi-

media WSNs consist of a number of low cost sensor nodes equipped with cameras

and microphones. These sensor nodes interconnect with each other over a wireless

connection for data retrieval, process, correlation, and compression. Multi-media

sensor nodes are deployed in a pre-planned manner into the environment to guar-

antee coverage. Challenges in multi-media WSN include high bandwidth demand,

high energy consumption, quality of service (QoS) provisioning, data processing

and compressing techniques, and cross-layer design. Multi-media content such

as a video stream requires high bandwidth in order for the content to be deliv-

ered. As a result, high data rate leads to high energy consumption. Transmission

techniques that support high bandwidth and low energy consumption have to be

developed. QoS provisioning is a challenging task in a multi-media WSN due to

the variable delay and variable channel capacity. It is important that a certain

level of QoS must be achieved for reliable content delivery. In-network process-

ing, filtering, and compression can significantly improve network performance in

terms of filtering and extracting redundant information and merging contents.

Similarly, cross-layer interaction among the layers can improve the processing

and the delivery process.

Mobile WSNs [151, 144, 148, 128, 115] consist of a collection of sensor nodes

that can move on their own and interact with the physical environment. Mobile

nodes have the ability to sense, compute, and communicate like static nodes. A
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key difference is mobile nodes have the ability to reposition and organize itself in

the network. A mobile WSN can start off with some initial deployment and nodes

can then spread out to gather information. Information gathered by a mobile

node can be communicated to another mobile node when they are within range

of each other. Another key difference is data distribution. In a static WSN, data

can be distributed using fixed routing or flooding while dynamic routing is used in

a mobile WSN. Challenges in mobile WSN include deployment, localization, self-

organization, navigation and control, coverage, energy, maintenance, and data

process.

Mobile WSN applications are included but not limited to environment moni-

toring, target tracking, search and rescue, and real-time monitoring of hazardous

material. For environmental monitoring in disaster areas, manual deployment

might not be possible. With mobile sensor nodes, they can move to areas of

events after deployment to provide the required coverage. In military surveillance

and tracking, mobile sensor nodes can collaborate and make decisions based on

the target. Mobile sensor nodes can achieve a higher degree of coverage and

connectivity compared to static sensor nodes. In the presence of obstacles in the

field, mobile sensor nodes can plan ahead and move appropriately to obstructed

regions to increase target exposure.
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2.1.3 Hardware Constraints of Sensors

A sensor is a physical device that probes physical, biological, or chemical prop-

erties of its environment and converts these properties into an electrical signal.

Sensors for temperature, light, oxygen, distance, blood pressure, moisture, and

torque are some of the many examples, Figure 2.1 shows some examples for sen-

sors platforms [78].

Figure 2.1: Examples of Sensor Platforms [80]

An actuator typically accepts an electrical signal and converts it into a physical

action to act upon the environment. Sensors and actuators belong to the broader

family of transducers. Classical transducers such as temperature or pressure sen-

sors are available as off-the-shelf components and can be easily integrated at the

board or package level. More complex ones like CMOS image sensors, inertial
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sensors, or micro-fluidic actuators have recently emerged [56], thanks to tech-

nological advances. Those ”smart” sensors typically require dedicated logic for

calibration, signal processing, or analog-to-digital conversion and sometimes in-

clude a micro-controller [78].

A sensor node is made up of four basic components, as shown in Figure 2.2: a

sensing unit, a processing unit, a transceiver unit, and a power unit. They may

also have additional application-dependent components such as a location finding

system, power generator, and mobilizer.

Figure 2.2: Block diagram of the main components in a sensor node [80]

Sensing units are usually composed of two subunits: sensors and analog-to-digital

converters (ADCs). The analog signals produced by the sensors based on the ob-

served phenomenon are converted to digital signals by the ADC, and then fed

into the processing unit. The processing unit, which is generally associated with

a small storage unit, manages the procedures that make the sensor node collab-
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orate with the other nodes to carry out the assigned sensing tasks. A transceiver

unit connects the node to the network.

One of the most important components of a sensor node is the power unit. Power

units may be supported by power scavenging units such as solar cells. There are

also other subunits that are application-dependent. Figure 2.3 shows an image

of the Embedded Sensor Board (ESB) developed by the FU-Berlin company.

Figure 2.3: Embedded Sensor Board (ESB) components from the FU-Berlin [64]

Most of the sensor network routing techniques and sensing tasks require

knowledge of location with high accuracy. Thus, it is common that a sensor
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node has a location finding system. A mobilizer may sometimes be needed to

move sensor nodes when it is required to carry out the assigned tasks. All of

these subunits may need to fit into a matchbox-sized module [62]. The required

size may be smaller than even a cubic centimetre, which is light enough to remain

suspended in the air [106]. Apart from size, there is some other stringent con-

straints for sensor nodes. These nodes must consume at an extremely low power,

operate in high volumetric densities, have low production cost, be dispensable

and autonomous, operate unattended, and be adaptive to the environment.

2.1.4 Challenges in Ad Hoc WSNs

This section shows the major challenges that the design and operation of Ad Hoc

WSNs face which mainly comes from the lack of infrastructure. The major issues

and challenges that affect the design, performance and operation of such types

of networks are listed below [4, 5, 128, 25, 69, 155]:

• Routing

• Energy Efficiency

• Self-Organization

• Medium Access Scheme

• Security

• Scalability
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• Quality of Service Provisioning

• Deployment Considerations

• Multicasting

• Addressing and Service Discovery

All of the envisaged applications require cheap sensors networks. The wireless

sensor nodes themselves must cost very little, and this means that the devices

must have a small silicon area to reduce their cost. Of course, this small die area

means that memory and digital computational circuitry will be limited. This

constraint places a burden on the chip designer implementing security on the

device, as approaches that consume a lot of die area cannot be entertained.

In some of application areas of WSN it will not be possible, for reasons of

cost or accessibility, to replace the power source when it is depleted. Conserving

energy is vital for the network to operate as long as possible. The radio will

be the main source of power dissipation in the device, and so should operate

with a low duty cycle - less than 1. It has been found that in a state of the art

radio, the energy required to transmit one bit can be dominated by the start-up

energy. This is because the packets to be transmitted are typically very small in

wireless sensor networks. The transceiver should be designed so that the start-up

time before the data can be transmitted or received is as small as possible [116].

The digital circuitry should be designed with the aim of reducing the energy

consumption using well-known techniques.



2.1 Introduction 23

It is also important that establishing the network is not an expensive process.

It should be possible for a person who is not an engineer to deploy these net-

works. Therefore the WSN has to be self-configuring, and robust to individual

device failure. Of course, the application programming of the wireless sensor

nodes would have been carried out by an engineer but the end user should just

be able to scatter the wireless sensor nodes and expect them to autonomously

establish a viable WSN.

A measurement taken from a wireless sensor node consists of three main compo-

nents; the physical measurement, the time it was taken and the position of the

device. Synchronization of the devices will be required to get a valid time stamp

for the reading. This can be achieved by the broadcasting of synchronization

packets from a wireless sensor node within a WSN as there may only be occa-

sional interaction with the gateway device that injects or extracts data from the

WSN. The end users of the system will not be concerned with a reading from an

individual node but rather with the position from which the reading originated.

Therefore it is also required that the wireless sensor nodes know their position,

at least relative to one another, and this is a challenging problem.

Most of the applications outlined in this thesis (see Section 2.2) require some level

of security: the driver who is speeding will not want this information to become

public; the company that is measuring the pollution that they are creating in the

environment will wish to release that information in a controlled way; the pa-

tient in the hospital will want to be sure that his private medical records remain
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private. So, in order for these networks to be deployed in most applications, it is

essential that the issue of security is solved, as noted in [102, 25].

Our consideration for this research will be focused on the Energy Efficiency

as it is one of the vital challenges in the Mobile Ad Hoc WSNs.

2.1.5 Energy-Aware Wireless Sensor Networks

Nodes in a WSN are usually highly energy-constrained and expected to operate

for long periods from limited on-board energy reserves. To permit this, nodes

and the embedded software that they execute must have energy-aware operation.

Energy efficiency has been of significant importance since WSNs were first con-

ceived but, as certain applications have emerged and evolved [65], a real need

for ultra-miniaturized long-life devices has re-emerged as a dominant require-

ment. Because of this, continued developments in energy-efficient operation are

paramount, requiring major advances to be made in energy hardware, power

management circuitry and energy-aware algorithms and protocols.

The energy components of a typical wireless sensor node are shown in Figure

2.4. Energy is provided to the node from an energy source, whether this is a form

of energy harvesting from sources such as solar, vibration or wind, or a resource

such as the mains supply or the manual provision and replacement of primary

batteries. Energy obtained from the energy source is buffered in an energy store;

this is usually a battery or super capacitor. Finally, energy is used by the node’s

energy consumers; these are hardware components such as; the microcontroller,
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radio transceiver, sensors and peripherals.

Figure 2.4: Energy components of a typical sensor node

With the increased usage of energy sources in nodes [100, 129], the need

for energy stores other than batteries (many of which suffer from only offering a

limited number of charging cycles) is increased. This can be seen by the researchs

that are now utilizing super capacitors (devices that are similar to standard

electrolytic capacitors, but with capacities of many Farads) to store the node’s

energy [129, 64].

To be energy-aware, the embedded software executing on the node must be

aware of the state of its energy components. This may be as advanced as mon-

itoring the energy harvested from each source [142], inspecting the rate of con-

sumption by different consumers [120], directing the flow of energy from and to

different stores and managing the charging of rechargeable stores [64]. Alterna-

tively, this may equate to simply being able to inspect the residual energy in

a single store. Therefore, the embedded software must not only be capable of
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interfacing with energy hardware (this is generally a requirement of power man-

agement circuitry), but also interpreting the data that are obtained usually in

the form of a sampled voltage into a remaining lifetime, power or energy. Based

upon these values, the operation of the node is adjusted accordingly, usually to

maximize the lifetime of the network.

2.2 Applications of Ad Hoc WSNs

Due to the fast and less demanding deployment of ad hoc sensor networks, we

can find this type of networks in several areas. Some of these areas includes: mil-

itary applications (search and rescue missions), multi-user games, robotics pets,

collaborative and distributive computing, emergency operations, wireless mesh

networks. In health, sensor nodes can also be deployed to monitor patients and

assist disabled patients. Some other commercial applications include managing

inventory, monitoring product quality, and monitoring disaster areas [92]. Gen-

erally, WSN applications can be classified into two categories [150]: monitoring

and tracking (see Figure 2.5).

Monitoring applications include indoor/outdoor environmental monitoring,

health and wellness monitoring, power monitoring, inventory location monitoring,

factory and process automation, and seismic and structural monitoring. Tracking

applications include tracking objects, animals, humans, and vehicles. Some of the

main application areas for Ad Hoc wireless sensors networks are described in the

following sections.
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Figure 2.5: Overview of Sensor Networks applications [154]
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2.2.1 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) is the application of sensing, commu-

nication and control technologies to the road transportation system, with the

aim of reducing congestion or improving road user’s safety. It is a field in which

wireless sensor networks could make a valuable contribution [30, 29].

The use of wireless sensor networks in ITS will enable much more data and

different types of data to be incorporated into traffic management systems. There

is also a need for security in the traffic enforcement scenario and also in the

general case of information from wireless sensor nodes being able to contribute

to the changing of traffic signals.

2.2.2 Healthcare

There are several projects in the application of wireless sensor nodes to the area

of patient healthcare in emergency medicine [49, 42]. When the paramedics and

doctors arrive at mass casualty incident they have to classify the injured into

critical (red), urgent (yellow) and minor (green). Following this initial classifi-

cation they have to monitor the different patients to ensure that their condition

does not deteriorate. If there are a lot of patients and not very many medical

personnel this process would be time consuming and lead to the doctor having

to stop treating a particular patient to check the vital signs of another patient.

John Hopkins University have designed a system, which uses the Mica-Z mote

from Crossbow Technology to assist in this process [89].
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2.2.3 Environmental Monitoring

Sensors can play an important role in environmental threat detection. Chemical

sensors attached to devices with integrated Radio Frequency (RF) transceivers

can provide an early warning system to rescuers. They provide information on

the toxic gas present and also the position of the contaminant.

Some environmental applications of sensor networks include monitoring envi-

ronmental conditions are listed below:

• Forest fire detection [26]

• Flood detection [20, 2, 61]

• Biocomplexity mapping of the environment [24, 33, 136]

• Precision Agriculture [9]

2.2.4 Military Applications

Incorporating wireless sensor networks in the military applications can play an

integral part of military command, control, communications, computing, intelli-

gence, surveillance, reconnaissance and targeting (C4ISRT) systems [144, 1]. The

rapid deployment, self-organization and fault tolerance characteristics of sensor

networks make them a very promising sensing technique for military C4ISRT.

Since the design of sensor networks is based on the dense deployment of dispos-

able and low-cost sensor nodes, destruction of some nodes by hostile actions does
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not affect a military operation as much as the destruction of a traditional sensor,

this makes sensor networks concept a better solution for battlefields [124].

2.2.5 Home Automation

With the advanced in the electronic and memory technologies, smart sensor nodes

and actuators can be embedded in appliances, such as; micro-wave ovens, vacuum

cleaners, refrigerators, and VCRs [103]. The sensors in such devices can inter-

act with each other and with the external network via the Internet or Satellite

communications. They allow end users to manage home devices locally as well

as remotely with an easier manner.

2.3 Existing Simulators for Wireless Networks

Analysing networks is usually done by using one of the following three techniques:

(1) analytical methods, (2) computer simulations, and (3) practical implemen-

tations [108]. The constraints and complexity of WSNs often cause analytical

methods to be unsuitable or inaccurate [28]. Additionally, the proportion of al-

gorithms that are analysed through practical evaluation is comparatively low,

possibly due to the relative infancy, deployment cost, broad diversity, and appli-

cation dependence of WSNs. As a result, simulation is currently the most widely

adopted method of analysing WSNs, allowing the rapid evaluation, optimisation,

and adjustment of proposed algorithms and protocols. Simulation allows certain

areas of network operation to be left out or simplified; for example assuming
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that packet collisions, interference and noise do not occur, that nodes are always

perfectly synchronised with one another, or that particular consumers do not

consume any energy. These simplifications often make the process of develop-

ment and evaluation faster and easier, but can result in algorithms that are not

realisable in practice; hence a simulation is only as realistic as the models and

assumptions that it is based upon.

While simulation is reasonably well established for Mobile Ad Hoc Networks

(MANETs), the simulation of WSNs not only requires the implementation of

a radio channel, but also a physical environment and accurate energy models.

The design aims and strategies of different simulators result in them each having

different strengths and weaknesses; an appreciation of this is essential in either

selecting a simulator, or simulation creation. Simulators for use with WSNs can

be classified into two predominant categories: those that have been developed

as extensions to existing network simulators (such as the SensorSim [101] exten-

sion to NS-2 [94], and those that have been designed specifically for the WSNs

simulation (such as J-Sim [118]).

In the following, we provide an overview of the design and architecture of

some of the major WSN simulators:

NS-2 [94] probably the most popular simulation tool for sensor networks,

which is an object-orientated discrete event network simulator based upon the

real network simulator (NS) that was released in 1989. It is reportedly hard

to make changes to and develop extensions for [28]. While this is not such a
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problem for traditional networks (protocols such as Ethernet and TCP do not

require alterations as they are well established), it poses obstacles in the simu-

lation of WSNs. Though NS-2 is relatively complicated to use, researchers are

often happy to invest their time in learning how to use it due to its popular-

ity and user-base. The extensibility of NS-2 has been a major contributor to

its success, with protocol implementations being widely produced and developed

by the research community. Additionally however, NS-2 is limited by its scala-

bility (interdependencies between objects in the object-orientated design do not

scale well) and the lack of an application model (sensor networks often require

interactions between network and application layers).

SensorSim [101] is an extension of NS-2 aimed at the simulation of WSNs.

SensorSim provides advanced models and the ability to interact with external ap-

plications (such as real sensor network hardware). SensorSim is currently with-

drawn from release and, as it is built on top of NS-2, suffers from the same

scalability problems.

Like NS-2, OMNeT++ [133] is a discrete-event general purpose network

simulator. OMNeT++ is structured around a modular system: simple modules

(such as layers of a protocol stack) contain algorithms, making up the lowest level

of hierarchy, while compound modules (such as a sensor node) contain simple

modules that interact with each other using messages. OMNeT++ has a ver-

satile Graphical User Interface (GUI) allowing, for example, the user to inspect

interconnections between modules and the messages being transferred between
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them.

SenSim [134] is a sensor network extension for OMNeT++. Within the com-

plex module of a node, modules are present to represent each protocol layer, the

hardware, and a coordinator (responsible for passing messages around the node).

Additional modules outside of the nodes represent a sensor channel and a net-

work channel. However, use of SenSim requires a reasonably high learning curve,

which is generally not popular with simulators that are not widely established.

Also, due to the lack of a significant user base, there are not many developed

protocols available for it.

Castalia [93] simulator is also built upon OMNeT++, and is a model-centric

extension for WSNs, providing a range of accurate models to the end-user.

The GTSNetS simulator [99] is a sensor network extension to the GTNetS

simulator, which aims to provide a scalable, highly extensible and customisable,

model-centric simulator to WSN researchers, and also enables the simulation of

sensor control networks.

OPNET [48] is an object-orientated network simulator, originally it was de-

veloped for the needs of military, but it has grown to be a world leading commer-

cial network simulation tool. It enables the possibility to simulate entire heteroge-

neous networks with various protocols. The software of this simulator is built on

top of a discrete event system. It simulates the system behavior by modeling each

event happening in the system and processes it by user-defined processes. It uses

a hierarchical strategy to organize all the models to build a whole network [98].
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The hierarchy models entities from physical link transceivers, antennas, to CPU

running processes to manage queues or running protocols, to devices modelled

by nodes with process modules and transceivers, to network model that connects

all different kinds of nodes together. OPNET is quite expensive for commercial

usage but there are also free licenses for educational purposes. It consists of high

level user interface, which is constructed from C and C++ source code blocks

with a huge library of OPNET specific functions. However, due to scalability

and extensibility issues, it is not widely used for WSN simulation.

J-Sim [118] is designed around a component structure in order to overcome

scalability issues inherent in object-orientated structures. While its component-

oriented structure increases its scalability, the implementation choice of Java

(which makes it truly crossplatform) arguably reduces the possible efficiency of

the simulator.

J-Sim is relatively complicated to use and, due to no real established user base,

is not widely adopted.

SENSE (Sensor Network Simulator and Emulator) [28] improves on the effi-

ciency of J-SIM by providing a component-orientated architecture programmed

in C++, and improving on the inter-communication efficiency of J-Sim. However,

SENSE lacks developed extensibility, and does not include functionality such as

sensing.

TOSSIM [79] is both a simulator and an emulator for WSNs, in that it

simulates TinyOS code for the Mica range of nodes. All nodes in the network
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must run identical code and, while sensor hardware is modelled, the environment

is not. However, TOSSIM provides obvious advantages to projects that are to be

implemented on the MICA nodes.

Table 2.1 summarise the main features and limitations that could be found

for all the simulators explained in this section.

2.4 Clustered Topology for WSNs

Cluster analysis or clustering is the assignment of a set of observations into

subsets (called clusters) so that observations in the same cluster are similar in

some sense [43]. Clustering is a method of unsupervised learning, and a common

technique for statistical data analysis used in many fields, including machine

learning, data mining, pattern recognition, image analysis and bioinformatics.

Among many challenges faced by ad-hoc and sensor networks designers, scal-

ability is a critical issue. The flat topology of these types of networks contains a

large number of nodes that have to compete for the limited wireless band-width,

handle sizable routing tables and manage substantial traffic caused by network

dynamics. One promising approach to solve the scalability problem is to abstract

the network topology by building hierarchies of nodes. This process is commonly

referred to as clustering.
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Table 2.1: A Comparison of Existing Network Simulators
Simulator Main Features Limitations

NS-2 Object oriented discrete event Popular Not easy to use; Hard to make changed;
Hard to develop extensions; Lack of Ap-
plication Layer model; Limited in Scal-
ability

SensorSim Object oriented discrete event; Pro-
vides advanced models for network
hardware

Hard to develop extensions; Limited in
Scalability

OMNeT++ Discrete-event; Structured around sim-
ple modules; Has a versatile GUI

Model building may require special
training; Needs long time for learning
how to use the simulation packages; Re-
sults may be difficult to interpret

SenSim Modules are present to represent each
protocol layer

Requires a reasonably high learning;
There are not many developed proto-
cols available for it

Castalia Built upon OMNeT++ simulator; Pro-
vides a range of accurate models to the
end-user

Users needs to build their custom rout-
ing protocol with the existing of MAC
protocol

GTSNetS Scalable, highly extensible and cus-
tomizable; Enables the simulation of
sensor control networks; Supports a
large variety of TCP-based applica-
tions; Provides a robust interface for
creating network graphs

Requires extensive centralized compu-
tational power; Requires huge memory
as the Network scale increased

OPNET Object-orientated, developed for mili-
tary applications; Suitable for heteroge-
neous networks with various protocols;
Uses a hierarchical strategy to organize
the models

Quite expensive for commercial usage;
Limited in scalability and extensibility

J-Sim Designed around a component struc-
ture; Overcome the scalability issues in-
herent in object-orientated structures

Relatively complicated to use; No
real established user base; Not widely
adopted

SENSE Built upon J-Sim simulator; Providing
a component-orientated architecture;
Improving on the inter-communication
efficiency of J-Sim

Lacks of developed extensibility; Does
not include functionality such as sens-
ing

TOSSIM It is both a simulator and an emulator
for WSNs; Provides obvious advantages
for projects deals with MICA nodes

All nodes in the network must run iden-
tical code; The network environment is
not modeled
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2.4.1 Classification

The classification that we propose provides a general overview of clustering de-

sign choices and attained performance. The classification criteria include the

clustering purpose, assumptions, decision range, decision metrics, degree of mo-

bility, number of clusters and complexity. We analyse each criterion in turn and

describe the associated categories.

1. Purpose:

Clustering algorithms for ad-hoc and sensor networks improve network scal-

ability by handling two important problems regarding the size and mobility

of the network: they make a large network appear smaller, and a highly

dynamic topology appear less dynamic [87]. Delay and message overhead

represent the cost for clustering. In this section, we focus on the above

described scalability improvements and show their direct benefits.

A large network appears smaller

Grouping nodes into clusters leads to having restricted communication and

data exchange, which improves on the following network operations:

• Medium access control (MAC). The access to the medium can be con-

trolled and bandwidth can be allocated separately in each cluster, thus

reducing the scope of inter-cluster interactions and avoiding redundant

exchange of messages [82].

• Routing. The size of the routing tables is reduced by maintaining
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routes only to the cluster-heads, and not to every node in the network

[131].

• Flooding. The cost of flooding is reduced by decreasing the number

of nodes that broadcast the message to only cluster-heads and border

nodes [121].

• Data collection. The data collected within a cluster is aggregated at

the cluster-head and transmitted as a whole to the base station, thus

avoiding excessive message exchange [52].

• Service discovery. The cluster-heads maintain a service directory for

nodes in their cluster. Thus, service discovery messages are trans-

mitted only to the cluster-head nodes, and not in the whole network

[85].

A highly dynamic topology appears less dynamic

Clustering can be used to partition the network with the objective of main-

taining a relatively stable topology. This improves on the following network

functionalities:

• Routing. Complete routing information is maintained only for intra-

cluster routing. Inter cluster routing is achieved by hiding the topology

details within a cluster from external nodes, thus limiting far-reaching

reactions to topology dynamics [87].

• Collaborative processing. Identifying nodes moving together and creat-
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ing clusters based on joint movement allows for long-term intra-cluster

collaborative processing.

Abstracting from the above specific purposes, several clustering algorithms

are generic algorithms, meaning that they do not follow any particular

objective, but rather propose a general solution that can be applied to

various networking operations [121].

2. Assumptions

The general assumptions of clustering algorithms are that the wireless com-

munication is reliable (that can be achieved by using a reliable transport

protocol [138]), and that the communication links are symmetrical. In ad-

dition, each clustering algorithm has a list of specific assumptions, based on

the functionality that the lower layers of the communication stack (MAC,

routing, transport) or other algorithms running on the nodes provide. Ad-

ditional assumptions include the following:

• Synchronization. Clustering algorithms that require a series of coor-

dinated phases among the network nodes assume the availability of a

network synchronization mechanism [52].

• Unique node IDs. Weight-based clustering algorithms require unique

IDs assigned to nodes, which can be used to break ties [14].

• Localization. Localization information represents the coordinates of

the node location. This information is useful for grouping nodes based
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on their location [121].

• Level of dynamics. The level of dynamics, such as a generic stationary/

mobile attribute or the concrete node speed is useful for reasoned

cluster membership selection [27].

• Global information. The number of nodes within the network or the

total remaining energy represent global information, which can be use-

ful for achieving the desired clustering structure [52].

• Routing information. Routing tables may be needed to ease the com-

munication among nodes during cluster organization [87].

• Additional hardware capabilities. Hardware capabilities can help achieve

a better clustering structure by providing additional information about

neighbouring nodes or improved communication abilities. Examples

include the capability to measure the Received Signal Strength (RSSI)

and the availability of multiple transmission power levels [52, 151].

• Additional structures. Additional structures such as spanning trees

may facilitate the clustering process, but may also induce more over-

head for maintenance [137].

• Additional algorithms. Additional algorithms include localized event

detection, context-sharing, availability paths or distance between pairs

of nodes. The output of these algorithms is semantic information used

for clustering decisions [27].
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Some of the above mentioned assumptions are in line with the decision met-

rics used to form clusters, such as unique node IDs or additional algorithms.

Other assumptions are used to improve the clustering result by exploiting

the availability of specialized hardware, or taking advantage of additional

information, such as location or routing tables.

3. Decision Metrics

The decision to become cluster-head or to join an existing cluster is typically

based on the following metrics:

• Time. A node may become cluster-head on a time-dependent basis,

i.e. if it is the first one in its neighbourhood that declares itself as

cluster-head [43].

• Probability. A node may become cluster-head depending on a prob-

abilistic measure. The probability is defined such that the desired

number of cluster-heads is reached without the need of global message

exchange. The probability may depend on the number of nodes in

the network, global aggregate energy, local residual energy, number of

times the nodes has been cluster-head, cluster size, etc [52].

• Weight. A weight is an application-specific number assigned to every

node in the network. The weight may depend on multiple measures,

such as the node degree, distance to neighbours, movement speed,

energy left, capability. The node ID is usually used to break ties. A
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node may become a cluster-head if it has the highest weight among a

group of nodes, depending on the decision range. Similarly, a node may

choose to join the cluster-head with the highest weight [85]. Contrary

to the probability metrics, weight metrics are deterministic.

• Semantics. Semantic properties refer to the relationship between pairs

of nodes or among nodes in a group. Semantic properties include

distance between nodes, availability paths between nodes, similar or

relative mobility, location attribute or type of event detected. Clusters

can be formed based on similar semantic properties of nodes [87].

The decision process may depend on more than one of the above metrics.

For example, the cluster-head may be probabilistically selected, but the

ordinary nodes choose a cluster-head based on a semantic property (e.g.

the minimum distance to the neighbouring cluster-heads) [52]. Similarly,

nodes are grouped based on semantic information, but the cluster-head is

chosen depending on the weight.

4. Decision Range

The decision that each node takes is either autonomous, such that it does

not depend on any other node in the network, or non-autonomous, where

there are also other nodes that determine or influence the cluster member-

ship. This set of nodes is denoted with the decision range. The decision

range can vary from as little as only 1-hop neighbours [85], to as large as

the whole network [27].
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5. Mobility

The design of a clustering algorithm depends on the degree of dynamics

expected to be present in the wireless network. The network can be:

• Mobile. The clustering algorithm is designed to handle network mo-

bility during any of its phases [85, 14].

• Quasi-static. The network is assumed to be static during the initial

cluster setup phase. Strategies for cluster maintenance are given for

the subsequent phases [14].

• Static. The network is static. Changes of topology rarely occur and

do not represent the focus of the clustering algorithm [52].

A clustering algorithm designed for quasi-static or static networks has as

main purpose to increase the scalability of the network with respect to

the number of nodes. Algorithms that take mobility into account focus on

reducing both the size and dynamics of the network.

6. Disjoint Clusters

Depending whether a node may be part of one or more clusters, the output

of the clustering algorithm falls in one of the following categories:

• Disjoint clusters. A node may belong to only one cluster [14].

• Overlapping clusters. A node may belong to more than one cluster

[147].
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Algorithms that partition the network into clusters and construct connected

dominating sets of cluster-heads have as result overlapping clusters. The

reason is that the nodes that connect a set of clusters (gateway nodes)

belong to all the adjacent connected clusters. Disjoint clusters are generally

constructed when a node has to share a piece of information (such as id,

sensed data, service offer) with the cluster-head. The cluster-head is thus

responsible to make use of this information on behalf of the node.

7. Number and Size of Clusters

Since clustering improves the scalability of higher layer protocols by making

a large network appear smaller (see Section 2.4.1), the number and size of

clusters is an important metric in characterizing the performance of a given

algorithm. However, when speaking about performance, it is important to

relate to the application objectives. In some cases, it is desirable to have

a small number of clusters (for example to route packets quickly between

clusters), but in other cases it is important to keep the cluster size small and

consequently they form more clusters (for example to manage the structure

in the presence of mobility).

Algorithms generate different cluster sizes, depending for example on the

number of nodes in the network n, the average node degree D [14] or the

probability p of becoming a cluster-head [52]. The number and size of clus-

ters generated by semantic algorithms depend on the number of distinct

semantic properties that represent clustering criteria. Algorithms that con-
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struct weakly connected dominating sets usually use the approximation

factor (the ratio between approximate and optimal solution) as a metric to

characterize the performance of the algorithm [147].

8. Complexity

The complexity of a clustering algorithm is essential for estimating the

latency and message overhead involved in building and maintaining the

clusters.

To evaluate the time complexity, the algorithm is considered to start from a

stable state. An event of a single, isolated change in this network (e.g. a link

added or deleted) triggers a series of steps for restructuring the structure

[17]. The time it takes for the algorithm, after this event to achieve a valid

cluster structure is denoted as convergence time.

The message complexity defines the communication effort for creating and

maintaining clusters [17]. For achieving minimum energy expenditure and

processing load on the nodes, the overhead induced by clustering messages

should be as low as possible.

2.4.2 A Comparison among Various Clustering Algorithms

This section shows a comparison of different clustering algorithms in terms of the

purpose, decision neighbourhood rang, mobility, and finally whether the clusters

are disjoint or not. By analysing Table 2.2, we can observe that most of the

existing clustering algorithms are less suitable for mobile environment [86]. The
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reasons for that are: Firstly, electing the cluster-heads based on information from

nodes which are multiple hopes away leads to high overhead and slow reaction

to topology changes. Secondly, maintaining complete intra-cluster information

is an expensive task which results in a high traffic. Thirdly, the complexity

of the multi-layer clustering algorithms leads to a lot of efforts in building and

maintaining the desired structure.

2.5 Summary

Clustering algorithms for ad-hoc and sensor networks improve network scalability

by handling two important problems regarding the size and mobility of the net-

work. They make a large network appear smaller, and a highly dynamic topology

appears less dynamic.

The design of a clustering algorithm depends on the degree of dynamics ex-

pected to be present in the wireless network. The network can be: Mobile,

Quasi-static or Static.

The output of the clustering algorithm falls in one of the following categories:

Disjoint clusters. A node may belong to only one cluster. Overlapping clusters.

A node may belong to more than one cluster.

The high overhead and slow reaction to topology changes of WSNs led to make

the task of designing a clustering algorithm for mobile WSN is a challenging task.

In this chapter, a general overview for Wireless Sensor Networks; types, clas-

sification and features are presented.
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Table 2.2: A Comparison of Clustering Algorithms

Algorithm Purpose Decision

neighbour-

hood range

Mobility Disjoint

Clusters

WCA [27] MAC Network wide Mobile Yes

LEACH [52] Data collection 1-hop Static Yes

HEED [151] Routing 1-hop Quasi static Yes

MOCA [152] Data collection k-hops Static No

Coyle et al.

[12]

Data collection k-hops Static Yes

EEMC [65] Data collection 1-hop Static Yes

Bouhafs et al.

[21]

Data collection Network wide Static No

Tandem [84] Collaborative

processing

1-hop Mobile Yes

Smart clus-

tering [122]

Routing 1-hop Quasi static Yes

Wang et al.

[139]

Information dec-

imation

Network wide Quasi static Yes
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Comparison with other types of wireless networks is also discussed. The

major hardware constraints of sensors’ platforms and the challenges for this type

of networks are explained.

Description for the most popular simulators used to analyse and evaluate the

networks algorithms are explored.

The clustered topology for the WSNs with general assumptions for clustering

algorithms and a comparison among various clustering algorithms is also demon-

strated.



Chapter 3

Swarm Intelligence

3.1 Introduction

Swarm Intelligence (SI) indicates a recent computational and behavioural metaphor

for solving distributed problems that originally took its inspiration from the bi-

ological examples provided by social insects (ants, termites, bees, wasps) and by

swarming, flocking, herding behaviours in vertebrates [70]. It is an attempt to de-

sign algorithms or distributed problem-solving devices inspired by the collective

behaviour of social insects and other animal societies. The common behaviours

in all kinds of swarms are [70, 19, 39];

• Control is fully distributed among a number of individuals;

• Communications among the individuals happen in a localized way;

• System-level behaviours appear to transcend the behavioural repertoire of

the single individual; and
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• The overall response of the system is quite robust and adaptive with respect

to changes in the environment.

Swarm intelligence (SI) as defined by Bonabeau, Dorigo and Theraulaz is

”any attempt to design algorithms or distributed problem-solving devices inspired

by the collective behaviour of social insect colonies and other animal societies”

[19]. The term ”swarm” is used in a general sense to refer to any such loosely

structured collection of interacting agents. The classic example of a swarm is a

swarm of bees, but the metaphor of a swarm can be extended to other systems

with a similar architecture. An ant colony can be thought of as a swarm whose

individual agents are ants, a flock of birds is a swarm whose agents are birds,

traffic is a swarm of cars, a crowd is a swarm of people, an immune system is a

swarm of cells and molecules, and an economy is a swarm of economic agents.

Although the notion of a swarm suggests an aspect of collective motion in space,

as in the swarm of a flock of birds, all types of collective behaviour are considered

here, not just spatial motion.

3.2 Swarm Intelligence in Nature

Swarm behaviour in nature is divided into two categories: Species whose indi-

viduals form a swarm because they benefit in some way and Social insects which

live in colonies whose members cannot survive on their own [39].
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3.2.1 Social Insects

If we compare the complexity of the buildings and actions of the colony to the

relative simplicity of an individual it will be a striking feature of social insects.

Termite builders are one kind of self-organizing system. There is no central

control, the intention of the population is distributed throughout its membership

and the members themselves are unaware of the ”plan” they are carrying out.

Actors in the system follow simple rules, and improbable structures emerge from

lower-level activities, analogous to the way gliders emerge from simple rules in a

cellular automaton.

It appears that the termites build a dome by taking some dirt in their mouths,

moistening it, and following these rules:

• Move in the direction of the strongest pheromone concentration.

• Deposit what you are carrying where the smell is strongest.

After some random movements searching for a relatively strong pheromone

field, the termites will have started a number of small pillars as shown in Fig-

ure 3.1 [39]. The pillars signify places where a greater number of termites

have recently passed, and thus the pheromone concentration is high there. The

pheromone dissipates with time, so in order for it to accumulate, the number of

termites must exceed some threshold; they must leave pheromones faster than the

chemicals evaporate. This prevents the formation of a great number of pillars, or

of a wasteland strewn with little mouthfuls of dirt.
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Figure 3.1: Termites’ nest ( c© Masson) [39]

Ants manage to efficiently search an area for food whether it is evenly dis-

tributed or scattered in patches. Figure 3.2 from [19] shows an example for the

robustness of the insect colony. There is some degree of communication among

the ants, just enough to keep them from wandering off completely at random.

By this minimal communication they can remind each other that they are not

alone but are cooperating with team-mates. It takes a large number of ants, all

reinforcing each other this way, to sustain any activity-such as trail building-for

any length of time.

Social insects also effectively divide tasks among individuals like finding food,

feeding the brood and defending the nest. All this is not achieved by central

control but by stigmergy and very seldom by one to one communication. Stig-
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Figure 3.2: Foraging patterns of three army ant species: The food of (A) is

distributed in patches while for (B) has an intermediary distribution.(C) is evenly

distributed. [19]
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mergy is communication by altering the state of the environment in a way that

will affect the behaviours of others for whom the environment is a stimulus. It

describes an indirect communication by leaving marks in the environment. These

marks can be the structures that are built or markers meant especially for the

purpose of communication (typically pheromones which can be smelled by the

individuals). The marks left by the colony act as stimuli for the individuals and

can trigger certain actions. Additionally, the termites are guided by pheromone

concentration forming for example the pattern for the royal chamber around the

queen.

3.2.2 Flocks, Herds and Schools

Social insects can not survive without living as swarms. The advantages for herd

animals, flocks of birds and schools of fish to form swarms is to defence against

predators (see Figure 3.3) [110]. As Kenward [73] showed the success of hawk

attacks on pigeons decreases greatly with the size of the swarm.

Although the disadvantage of sharing food sources can be outweighed by the

reduced chances of finding no food at all, whenever the food is unpredictably

distributed in patches, individuals may also increase their chances of finding a

mate [46] and for animals that travel great distances, like migratory birds and

certain fish species, there is a decrease in energy consumption when moving in a

tight formation.

As flocks, herds and schools can become very large and the individuals are
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Figure 3.3: Fish schooling ( c© CORO, CalTech) [113]

both limited in their mental capacity and their perception, it can be assumed that

only simple, local rules control the movements of a single animal. ”Local” means

that only objects in a certain neighbourhood, depending on the perception of

the individual, are taken into account. The most basic behaviours seem to be an

urge to stay close to the swarm and one to avoid collisions [70]. The perception

is of course not the same for different species resulting in a different range of

possible swarm behaviours. Fish for example cannot see as far as birds especially

in murky water but can feel the pressure waves of neighbours with their lateral

line organ [104]. Birds on the other hand have long-range vision enabling them to

see the movements of far away flock mates. This enables them to prepare for the

change of direction, which explains the quick propagation of ”manoeuvre waves”
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going through a flock that is much faster than can be explained by strictly local

rules and the reaction times of the birds [107] (see Figure 3.4).

Figure 3.4: Birds flocking in V-formation ( c© CORO, CalTech) [110]

Computer simulations have been created after these findings. Reynolds [110]

created a computer graphics simulation of swarms which he called the boids2

model using three simple local rules for the movement of an individual: Collision

Avoidance, Velocity Matching (heading and speed) and Flock Centring (see Fig-

ure 3.5). Heppner and Grenander [55] independently developed a similar model

using stochastic nonlinear differential equations [10]. Swarms in nature could

be said to ”run in constant time” because every individual interacts only with

its neighbours and therefore its mental capacity does not limit the size of the

swarm. In the simulation the relations to all other individuals have to be taken
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Figure 3.5: Rules for the boids simulation: (A) Collision Avoidance. (B) Velocity

Matching. (C) Flock Centring.

into account, at least to determine if they are in the neighbourhood.

3.3 Metaheuristics

The term meta-heuristics, first used by Glover [45], contains all heuristics meth-

ods that show evidence of achieving good quality solutions for a problem of in-

terest within an acceptable time. Usually, metaheuristics offer no guarantee of

obtaining the global best solutions [46].

The interaction between computer science and optimization has yielded new

practical solvers for global optimization problems, called metaheuristics. The

structures of meta-heuristics are mainly based on simulating nature and artifi-

cial intelligence tools. Metaheuristics mainly invoke exploration and exploitation
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search procedures in order to diversify the search all over the search space and

intensify the search in some promising areas. Therefore, metaheuristics cannot

easily be entrapped in local minima. However, metaheuristics are computation-

ally costly due to their slow convergence. One of the main reasons for their slow

convergence is that they may fail to detect promising search directions especially

in the vicinity of local minima due to their random constructions.

In terms of the process of updating solutions, meta-heuristics can be classi-

fied into two classes; population-based methods and point-to-point methods. In

the latter methods, the search keeps only one solution at the end of each itera-

tion, from which the search will start in the next iteration. On the other hand,

the population-based methods keep a set of many solutions at the end of each

iteration.

In terms of search methodologies and trial solutions generation, meta-heuristics

can be categorized into several groups of methods, as shown in Figure 3.6 [50].

Among those methods, we are mainly exploring some of the Evolutionary Algo-

rithms (EAs) and Swarm Intelligence (SI) metaheuristics in the following sections

because our ENAMS Algorithm is based on it.

3.4 Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) tries to mimic the evolution of a species. Specifi-

cally, EAs simulate the biological processes that allow the consecutive generations

in a population to adapt to their environment [50]. The adaptation process is
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Figure 3.6: Classification of Meta-heuristics [51]
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mainly applied through genetic inheritance from parents to children and through

survival of the fittest.

The main types of EAs are; Genetic Algorithms, Evolution Strategies, Evo-

lutionary Programming, and Scatter Search. In contrast to other EAs, Scatter

Search invokes more artificial elements, like using memory elements to update

populations.

3.4.1 Genetic Algorithms (GAs)

In the past few decades, Genetic Algorithms (GAs) have been used in science to

derive solutions for a wide range of optimization problems such as; construction of

wind turbines [15], pattern-recognition systems [7], multi-processor task schedul-

ing [75], energy optimization [59, 141], self organization of sensors networks [74],

and travelling salesman problems [117].

Genetic Algorithms are efficient search algorithms that simulate the adap-

tive evolution process of natural systems [113]. They represents a stochastic

search procedures based on the mechanics of natural selection, genetics, and evo-

lution [47]. Since they simultaneously evaluate many points in the search space,

they are more likely to find the global solution of a given problem. In addi-

tion, they use only a simple scalar performance measure that does not require

or use derivative information, so they are general-purpose optimization methods

for solving search problems. Two major primary areas in which GAs have been

employed; optimization and machine learning. In machine learning, GAs have
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been successfully applied to the learning of neural networks [60, 146] and fuzzy

systems [34, 35].

In GAs, a candidate solution for a specific problem is called an individual or

a chromosome and consists of a linear list of genes, each individual represents

a point in the search space, hence it will be a possible solution to the problem

[66]. A population consists of a finite number of individuals. Each individual is

decided by an evaluating mechanism to obtain its fitness value. Based on this

fitness value and undergoing genetic operators, a new population is generated

iteratively with each successive population referred to as a generation.

The GAs use three basic operators (reproduction, crossover, and mutation) to

manipulate the genetic composition of a population. Reproduction is a process by

which the most highly rated individuals in the current generation are reproduced

in the new generation.

The crossover operator produces two offsprings (new candidate solutions) by

recombining the information from two parents. There are two processing steps

in this operation. In the first step, a given number of crossing sites are selected

uniformly, along with the parent individual at random. In the second step, two

new individuals are formed by exchanging alternate pairs of selection between

the selected sites.

Mutation is a random alteration of some gene values in an individual. The

allele of each gene is a candidate for mutation, and its function is determined by

the mutation probability. Many efforts on the enhancement of traditional GAs
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have been proposed [90]. Among them, one category focuses on modifying the

structure of the population or the role an individual plays in it [8, 125], such as

distributed GA [123], cellular GA [32], and symbiotic GA [91]. Another category

aims to modify the basic operations, such as crossover or mutation, of traditional

GAs [145, 132].

Algorithm 1 illustrates the basic process in GAs.

Initialization: Generate random population of n chromosomes

while the stop condition is not satisfied do

Evaluate the fitness g(x) of each chromosome x in the population;

while the new population is not complete do

Selection: Select two parent chromosomes from a population

according to their fitness;

Crossover: With a crossover probability, crossover the parents to

form a new offspring (children);

Mutation: With a mutation probability mutate new offspring;

Accepting: Place new offspring in a new population;

end

Replace: Use new generated population for further runs;

end

Return: the best solution of the current population;

Algorithm 1: Basic Process in Genetic Algorithms
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3.5 Swarm Intelligence (SI) - Metaheuristics

The SI-metaheuristic is an arbitrary problem solving strategy which falls under

the SI-definition. It is inspired by the ”behaviour of social insect colonies and

other animal societies” [70]. The main two SI-metaheuristics are; Ant Colony Op-

timization (ACO) and Particle Swarm Optimization (PSO). The ACO is briefly

introduced in the following Section. The PSO will be explored in more details in

Section(3.5.2) since it constitutes an important part of our ENAMS algorithm.

3.5.1 Ant Colony Optimization

Ant colony optimization is a metaheuristic for difficult combinatorial optimization

problems modelled after the stigmergetic communication of ants finding short-

est paths to food sources [38]. The first ACO-algorithm was Ant System (AS),

introduced by Dorigo [37] in 1992. He later generalized it into the ACO meta-

heuristic. Ant colony optimization uses virtual ants laying out virtual pheromone

in the problem states they visit. As in nature the virtual ants communicate

indirectly and the solution to the problem emerges by the cooperation of the

colony. As an example a simple implementation for the travelling salesman prob-

lem (TSP) could work as follows: Ants start at a random city and choose the

next city stochastically but prefer the road with more pheromone. When they

cannot choose another city or have completed a tour, they die. If they managed

to complete a tour they deposit pheromone on all the visited edges. The shorter

the tour, the more pheromone is placed.
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Ants use pheromones to find shortest paths to food sources. They lay out

pheromone trails behind them and prefer regions with higher pheromone con-

centration when deciding where to go. Some species deposit different amounts

of pheromone depending whether they are on the way to or back from the food

source and depending on its size.

As ants taking the shorter path will reinforce the trail more often the pheromone

concentration rises and the path will be preferred by following individuals (see

Figure 3.7) [54]. This self-energizing effect leads to the development of a short-

Figure 3.7: Ants find the shorter path in an experimental setup. A bridge leads

from a nest to a foraging area. (A) 4 minutes after bridge placement. (B) 8

minutes after bridge placement.

est path used by the individuals. Pheromone evaporation prevents stagnation,

allowing for dynamic changes in the environment. It also avoids premature con-
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vergence on a not optimal path.

Ants work simultaneously and new ants are created as needed to keep the

population on a desired level. The search is finished when a short enough tour is

found, or a maximum number of iterations were done.

3.5.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population based stochastic optimiza-

tion technique developed by Kennedy and Eberhart in 1995 [71], inspired by

social behaviour of bird flocking or fish schooling. PSO shares many similarities

with evolutionary computation techniques such as Genetic Algorithms (GAs).

The system is initialized with a population of random solutions and searches for

optima by updating generations. However, unlike GAs, PSO has no evolution

operators such as crossover and mutation.

Definitions:

In PSO, a problem is modelled as an n-dimensional solution space and a popu-

lation of particles search through this n-dimensional space for optimal solutions.

Definition 1. In PSO, a particle Pi simulates an individual in a bird flock.

Figure 3.8 shows a group of particles in a 2-dimensional space. Each particle

in the group is responsible for searching and keeping solutions together with its

fellow particles. At any time t, particle Pi is located at some position xi(t) in

the n-dimensional problem space. Conventionally, xi(t) indicates the current
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Figure 3.8: Particle swarm (population = 10) in a 2-dimensional space

position of Pi and xi(t − 1) represents the previous position. In the problem

solving context, a particle with its position represents a potential solution.

Definition 2. In PSO, a swarm P = P1, P2, ...Ps is a set of particles.

Definition 3. A particle’s velocity
→
v (t) = [u1, u2..., un] is an n-dimensional

vector that moves particle Pi at time t as shown in Figure 3.9. Mathematically,

the position-velocity relation is:

xi(t) = xi(t− 1)+
→
v (t) (3.1)

In PSO, velocities are mainly affected by particle’s own knowledge and the

neighbours’ experience. Conceptually, a velocity
→
v (t) can be derived from the
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Figure 3.9: The position-velocity relation in a 2-dimensional space

relation in Equation 3.2, where ϕ1 and ϕ2 are parameters as will be discussed in

Section (3.5.3). According to this relation, a velocity can be computed using:

→
v (t) = ϕ1(individual experience) + ϕ2(global experience) (3.2)

Definition 4. A neighbourhood defines the social structure of a swarm and

indicates which ones a particle should interact with. Within a neighbourhood,

particles interact, communicate and share information. To form a neighbourhood,

we may not restrict to the physical distances between particles; in fact, they are

often defined by the enumeration labels of the particles in PSO. For example in

Figure 3.10 from [41], nine particles are enumerated as P1, P2, ...P9. Regardless

of the physical distance, P1, P2 and P3 are a neighbour of size three, P4, P5 and

P6 form another neighbour of size three, and this is the same for P7, P8 and P9.

Stars, rings and wheels are the most commonly used neighbourhood structures
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Figure 3.10: A global swarm vs. local neighbourhoods [41]
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(shown in Figure 3.11.

Figure 3.11: Simple neighbourhood topologies (population = 5)

In the PSO context, two terms, local versus global are often used. ”Local”

refers to an individual neighbourhood while the ”global” refers to the entire swarm

as one big neighbourhood. For example, there are three local neighbourhoods in

Figure 3.10. Neighbourhoods can overlap and a particle can belong to multi-

ple neighbourhoods. For instance, particles P1, P2, P3, P4 and P5 are to form

neighbourhoods of size (3) in a Ring topology as shown in Figure 3.11 (a). We

may have five neighbourhoods in total: {P1, P2, P3}, {P2, P3, P4}, {P3, P4, P5},

{P4, P5, P1} and {P5, P1, P2}. A particle in such a structure retrieves information

from another two particles directly connected to it.

Different neighbourhood structures may affect the performance of the swarm.

They determine how information propagate among particles, and thus may affect

the convergence of particles, i.e. when and how particles may come together,

arrive at some stable state and stop improving the solution. That is, particles
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may converge on different local optima or at different time with different neigh-

bourhood topologies. In a star topology as shown in Figure 3.11 (c), all particles

are influenced by one global best location so far in every iteration and move to-

wards the location, so they tend to converge quickly to the global best. In a ring

topology, the neighbourhood segments are overlapped so the convergence may

spread from one neighbourhood to another and eventually pull all the particles

together.

By gradually spreading information, the swarm converges slower in a ring than

in a star. For a swarm in a wheel, there exists one and only one central par-

ticle, which serves as a buffer [70]. The central particle collects and compares

the positions of all particles, finds the best one and moves itself towards the best

position. All other particles then pull information from the central particle and

start moving towards the same position. Because of this buffering effect, a wheel

topology may preserve diversity for a bit longer and prevent the swarm from

converging too fast on local optima.

3.5.3 Continuous PSO

PSO was originally designed to optimize continuous nonlinear mathematical func-

tions, and so it deals with real numbers [71]. The algorithm randomly initializes

each particle Pi to position xi(0) and velocity
→
v (0). At each time step t, every

particle calculates a new velocity
→
v (t) based on the social-psychological tendency

[41, 71] from both its own and its neighbours’ knowledge. Considering different



3.5 Swarm Intelligence (SI) - Metaheuristics 71

ways of sharing information, there can be three ways to compute velocities:

1. Individual pbest only or one particle per neighbourhood: each particle

makes decisions on its own, and ignores everybody else.

→
v (t) = w

→
v (t− 1) + r1c1(xpbest− xi(t− 1)) (3.3)

2. Global gbest and individual pbest: every particle considers the knowledge

of all particles within a single neighbourhood.

→
v (t) = w

→
v (t−1)+r1c1(xpbest−xi(t−1))+r2c2(xgbest−xi(t−1)) (3.4)

3. Local neighbourhoods lbest and particle individual pbest: suppose particle

Pi is in neighbourhood k.

→
v (t) = w

→
v (t−1)+r1c1(xpbest−xi(t−1))+r2c2(xlbestk−xi(t−1)) (3.5)

where w is a parameter to control how much the new velocity is affected by

the previous velocity. r1 and r2 are random numbers in [0, 1] to randomize the

influence of group experience and particles’ individual experience. c1 and c2 are

positive acceleration constants.

Once the new velocity has been determined, particle Pi updates its position

using Equation(3.1) mentioned earlier. Then iteratively, all particles keep up-

dating the velocities and their positions until timeout or the goal fitness value is

obtained.
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In short, this algorithm makes use of a swarm of particles stochastically and

intelligently exploring new regions and exploiting towards the previous better

regions until the swarm reaches an ”optimum”. The particles intelligence comes

from social interaction and information sharing, and such learning abilities dom-

inate the PSO algorithm [70].

3.5.4 Discrete PSO

Kennedy and Eberhart’s discrete model [72] is a version of the PSO that does not

directly use real numbers. It makes the PSO applicable to problems with variable

values taken from a discrete domain e.g. v ∈ 1, 1.5, 2, 2.5, 3 as opposed to over a

continuous range 1 ≤ v ≤ 3 where there are infinite number of values between

any two numbers. The rationale is that not all problems can be described using

continuous domains; for example, the graph colouring has finite domains such as

(red, blue, green).

In Kennedy and Eberhart’s discrete PSO, a particle and its position still

represent a solution in the problem solution space. Instead of consisting of a

sequence of integers or real numbers however, a particle Pi’s position xi(t) at

time t is composed of a bit-string: xi1(t), xi2(t) . . . , xin(t) where xij(t) ∈ {0, 1}

for each j ∈ {1, 2, ...n}. Also, in order to derive the bit value of xij(t), a velocity

element vij(t) is not directly used as an increment to compute xij(t), rather it is

used as a threshold to determine the possibility of a bit change. More specifically,

vij(t) is transformed by a sigmoid function and then compared with a uniformly
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distributed random number ρij(t) ∈ [0, 1].

x(t+ 1) =


0 if ρij(t) ≥ 1

1+exp(−vij(t))
,

1 otherwise.

(3.6)

3.5.5 Modified PSO Models

In recent times, there have been a number of improvements to the original PSO.

We have explored different versions of PSO where the extension to the original

algorithm is distinct from each other. The following sections describes the PSO

versions which are studied in this research.

1. PSO - Time Varying Inertia Weight (TVIW)

PSO-TVIW is the same basic PSO algorithm, but with inertia weight vary-

ing with time from 0.9 to 0.4 and the acceleration coefficient is set to 2.

The time varying inertia weight is mathematically represented as follows

[114]:

w = (weight− 0.4)× (MAXITER− iter)
MAXITER

+ 0.4 (3.7)

where MAXITER is the maximum iteration allowed, iter is the current

iteration number and weight is a constant set to 0.9.

2. PSO - Time Varying Acceleration Coefficients (TVAC)

PSO - TVAC proposed by Ratnaweera et al. [109], uses time varying ac-

celeration coefficient (TVAC). The C1 varies from 2.5 to 0.5 and the C2

varies from 0.5 to 2.5. Here the cognitive component is reduced and social

component is increased by changing C1 and C2. The large cognitive compo-
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nent and the small social component in the initial stages of the algorithm

helps the particle to wander around the search space. However, the small

cognitive component and large social component at the later stages of the

algorithm helps the particle to converge to the global optima. TVAC is

mathematically represented as follows:

C1 = (C1min− C1max)
iter

MAXITER
+ C1min (3.8)

C2 = (C2min− C2max)
iter

MAXITER
+ C2min (3.9)

In Equations 3.8 and 3.9 C1min and C2min are constants set to 0.5, C1max

and C2max are also constants set to 2.5. Thus, in this algorithm as the

iter progresses, C1 varies from 2.5 to 0.5 and C2 varies from 0.5 to 2.5.

3. Hierarchical PSO with Time Varying Acceleration Coefficients

(HPSO-TVAC)

In this method the particle’s behaviour will not be influenced by the pre-

vious velocity term of Equation (4.5). Due to non-influence of previous

velocity, re-initialisation of velocity is used when the velocity stagnates in

the search space [109]. Therefore, in this method, a series of particle swarm

optimisers are automatically generated inside the main particle swarm op-

timiser according to the behaviour of the particle in the search space, until

the convergence criteria is met. The re-initialisation velocity is set propor-

tional to V max. The pseudo code for re-initialising velocity is as follows:
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vk+1
i = c1rand1 ∗ (pbesti − sk

i ) + c2rand2 ∗ (gbest− sk
i )

if(vk+1
i == 0)

if(rand1() < 0.5)

vk+1
i = rand2() ∗ v

else

vk+1
i = −rand3() ∗ v

endif

endif

vk+1
i = sign(vk+1

i ) ∗min(fabs(vk+1
i , vmax))

where randi(), i= 1, 2, 3 are separately generated uniformly distributed

random numbers in the range [0,1] and v is the re-initialisation velocity.

4. PSO with Supervisor-Student Model (PSO-SSM)

In this method Liu et al. [83] proposed PSO-SSM to achieve low computa-

tional costs. The algorithm introduces a new parameter called momentum

factor (mc) to update the positions of particles. In this algorithm, they

also proposed a different velocity updating mechanism from the conven-

tional PSO algorithms. Here velocity is updated only if each particle’s

fitness at the current iteration is not better than that of previous iteration.

The velocity serves as a navigator (supervisor) by getting the right direc-

tion, while the position (student) gets a right step size along the direction.
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The velocity and the position are modified using the following equations:

vk+1
i = vk

i + c1rand1 × (pbesti − sk
i ) + c2rand2 × (gbest− sk

i ) (3.10)

xk+1
i = (1−mc)× xk

i +mc× vk+1
i (3.11)

3.5.6 PSO Strengths

In the past few decades, PSO has been successfully applied in many research and

application areas. It is demonstrated that PSO gets better results in a faster,

cheaper way as compared with other optimization methods [22]. Another reason

that PSO is attractive is that there are few parameters to adjust. One version,

with slight variations, works well in a wide variety of applications. Particle swarm

optimization has been used for approaches that can be used across a wide range

of applications, as well as for specific applications focused on a specific require-

ment.

One reason for PSO gaining its popularity is that it is conceptually straightfor-

ward and computationally simple [70]. Simulating birds flocking, particle swarms

fundamentally use two simple formulas to effectively search the goal. Also, re-

search has shown that in comparing PSO with other algorithms on a variety of

problems [31, 112, 18, 44, 153], it can perform better on some problems and be

competitive on others. Since PSOs are a new search technique, much research

has been targeting to improve the original PSOs for solving various problems and

it has great potential to be done further. For example, owing to its similarity

to evolutionary computation (EC) methods, many successful EC techniques and
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ideas may be integrated to improve PSOs.

Like many EC algorithms, PSO has a number of parameters to adjust. On

one hand, this is beneficial for implementing adaptive systems [70] and also shows

the extensibility of PSO to other specifically designed algorithms although it may

not perform as well as those algorithms. On the other hand, tuning parameters

for solving a particular problem or a range of problems can be time-consuming

and non-trivial. Compared with EC methods, PSO does not have as many pa-

rameters to tune in order to get acceptable performance [58]. In addition, Hu and

Eberthart suggest that PSO is applicable for both constrained and unconstrained

problems even without pre-transforming the constraints and the objectives of a

problem [58].

3.5.7 PSO Weaknesses

Researchers have found several issues that prevent the generic PSOs from effec-

tively solving certain types of problems. Although the improvement has been

working on to handle these issues, the solutions may not easily be applied to

solve other problems; thus, we should keep these issues in mind while developing

new particle swarms for solving other problems. For example, although PSO

has the ability to converge quickly, it tends to wander and slow down as it ap-

proaches an optimum [135]. Owing to the premature convergence, it gets stuck

quite easily and cannot explore wide enough. This can be problematic for solv-

ing multimodal problems where the problems have multiple optimal solutions.
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Particularly if many of those optima are only local rather than global [135], par-

ticles may get trapped at local optima. In addition, while there are not many

parameters to control [58] and as mentioned previously, these parameters open

up a potential for developing adaptive PSO systems, some of the parameters are

problem dependent. Some suggested values and experimental settings are still at

trial-and-error stage [40], and it can be non-trivial to find the right settings for

individual problems.

3.5.8 PSO Suitability for Energy Efficient Mobile WSNs

A particle swarm is a self-organizing system whose global dynamics emerge from

local rules. As each individual trajectory is adjusted towards the successes of

neighbours, the population converges or clusters in optimal regions of the search

space. The search would fail if individuals did not influence one another; because

a number of them are sharing information locally, it is possible to discover optima

in the landscape [70].

Particle swarms have a unique way of using gradient information to guide their

search. A particle moves in a stochastic oscillatory trajectory through the prob-

lem space, sampling around relatively optimal local points, while an evolutionary

individual searches by changing position through mutation and crossover. This

perpetuated directional movement through the search space gives particles their

characteristic behaviour; their interaction results in effective search for optima

[36].
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One major difference between particle swarms and traditional evolutionary

computation methods is that particles’ velocities are adjusted, while evolutionary

individuals’ positions are acted upon; it is as if we were altering the ”fate” rather

than the ”state” of particle swarm individuals [70].

3.6 Deployment of SI in WSNs

Continued advances of wireless communication technologies have enabled the de-

ployment of large scale wireless sensor networks WSNs. Sensor nodes monitor

the surroundings and process the data obtained and transmit this data to the

base station located on the periphery of the sensor network. Each sensor node is

equipped with a limited battery-supplied energy which makes energy consump-

tion a critical issue.

Innovative techniques are highly required to improve energy efficiency and

prolong the lifetime of WSNs. Many energy-efficient solutions have been pro-

posed. An approach that is likely to succeed is the use of a hierarchical structure

[12]. Clustering is an important technique in this respect which aims at gen-

erating the minimum number of clusters and transmission distance [53]. The

clustering algorithms also distinguish themselves by how the cluster heads are

elected. Clustering is an NP-hard problem [3]. For a given network it is always

difficult to find an optimal cluster-head (CH) placement.

Clustering wireless sensor networks has been researched intensively in the last
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decade because this technique can greatly reduce communication cost of the net-

work nodes since the sensors only need to send data to the nearest cluster-head.

However, cluster-heads expends more energy than ordinary nodes because they

are responsible of passing all the sensed information to the sink point (destina-

tion).

Heinzelman et al. in LEACH [53] proposed a clustering based on routing

technique. Cluster head collects and aggregates data from member nodes and

transmits the data to base station (sink). Member nodes only need sense the data

and transmit to its cluster head. It is the basic concept of cluster-based routing

protocol that sensor nodes play the role of cluster-head or cluster member and

complete mission by division of labor and cooperation. LEACH circulates cluster

head randomly for distributing energy consumption and fuses the data within the

cluster in the cluster head for reducing communication cost, and this technique

comprises several rounds. After formatting the clusters, the cluster head broad-

cast TDMA schedule which indicates data transmission order of cluster members.

By this way, each cluster member transmits data only in own transmit slot and

in the rest of time slots can go to sleep mode and decrease power consumption. It

is the similar way while cluster heads transmit aggregation data to base station.

The performance of LEACH counts on evenly deploying cluster head and the

number of cluster head at each round. But it can not be guaranteed by selecting

cluster head itself.

Because LEACH can not be guaranteed by selecting cluster head itself, LEACH-
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C [52] is proposed that decides cluster head and cluster concerning location in-

formation of sensor node and energy from base station.

Banerjee et al. presented an efficient distributed clustering algorithm to create

a hierarchical control structure and the set of desired clusters [13]. WSN is viewed

as an unweighted connected graph and a cluster is defined as a subset of vertices.

Clustering problem can be viewed as a search problem through a typically NP-

hard solution space. In this sense, some researchers have adopted nature-inspired

approaches for WSNs.

The hybridization of a Genetic Algorithms (GA) with existing algorithms can

always produce a better algorithm than either the GA or the existing algorithms

alone [18, 151, 34].

Chia et al. [67] proposed an evolutionary recurrent network which automates

the design of recurrent neural/fuzzy networks using a new evolutionary learning

algorithm. This new evolutionary learning algorithm is based on a hybrid of

genetic algorithm (GA) and particle swarm optimization (PSO), and is thus called

HGAPSO. In HGAPSO, individuals in a new generation are created, not only by

crossover and mutation operation as in GA, but also by PSO.

In [127], Tillet et al. proposed a Particle Swarm Optimisation (PSO) approach

for the same problem. However, the main aim was to reduce an intra-cluster

distance by completely ignoring the distance to the sink.

In [63], Ji et al. applied Divided Range Particle Swarm Optimisation (DRPSO)

to optimise weighted clustering algorithm (WCA)[27] parameters.
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Different approaches to combine PSO with the other evolutionary algorithms

have been reported. Robinson et al. in [111] obtained better results by applying

PSO first followed by applying GA in their profiled corrugated horn antenna

optimization problem. In [76], either particle swarm optimization algorithm,

genetic algorithm, or hill climbing search algorithm can be applied to a different

sub-population of individuals which each individual is dynamically assigned to

according to some pre-designed rules. In [54], ant colony optimization is combined

with PSO. A list of best positions found so far is recorded and the neighbourhood

best is randomly selected from the list instead of the current neighbourhood best.

Also, non-evolutionary techniques have been incorporated into PSO. In [16],

a Cooperative Particle Swarm Optimizer (CPSO) is implemented. The CPSO

employs cooperative behaviour to significantly improve the performance of the

original PSO algorithm through using multiple swarms to optimize different com-

ponents of the solution vector cooperatively.

In the self-organization of the WSN, two directions have been paid much at-

tention. The former kind is the coverage-based method [126, 88], which concerns

on ensuring the complete sensing coverage with node number as small as possible.

Only when one or more operated nodes happen to fail, does the network organi-

zation implement once more. It is actually a static method without considering

the dynamic of target state. The latter is the distributed collaborative sensing

method [77, 143, 144, 148, 156], which constructs an integrated performance index

of tracking accuracy and communication cost. By optimizing the performance
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index online, it achieves a trade off between the energy cost and sensing perfor-

mance. However it usually requires a cluster head and some cluster members

to form a centralized construction. Moreover, such centralized optimization may

not be practical because each node has very limited computation ability. Besides

this, the priori location information of each node is needed beforehand.

Raluca Marin [86] proposed Tandem algorithm which is a context-aware

method for spontaneous clustering of wireless sensor nodes. The behaviour of

the algorithm is approximated by using Markov chain model. The algorithm

allows re-clustering in case of topological or contextual changes. The difference

between the derived approximation and the real situation is increasing with the

number of groups. This algorithm is valid only for one-hop clusters.

3.7 Summary

This Chapter has investigated the common behaviour of Swarms (Flocks, Herds,

and Schools) and the concepts of Swarm Intelligence (SI) in nature.

The interaction between computer science and computer optimization and

how this has yielded to new practical solvers for global optimization problems,

called metaheuristics is explained.

Genetic Algorithms (GAs) as part of Evolutionary Computations (ECs) is

explained showing how this technique can be used as an efficient search algorithm

to simulate the adaptive evolution process of natural systems.

On the other hand, Particle Swarm Optimization (PSO) technique is explored



3.7 Summary 84

with different modified versions and how this optimization technique can be used

as a solution for energy efficient mobile WSNs.

Compared with EC methods, PSO does not have as many parameters to tune

in order to get acceptable performance. Although PSO has the ability to converge

quickly, it tends to wander and slow down as it approaches an optimum. Owing

to the premature convergence, it gets stuck quite easily and cannot explore wide

enough. This can be problematic for solving multimodal problems where the

problems have multiple optimal solutions.

Particle swarms have a unique way of using gradient information to guide their

search. A particle moves in a stochastic oscillatory trajectory through the prob-

lem space, sampling around relatively optimal local points, while an evolutionary

individual searches by changing position through mutation and crossover.

The deployment of SI in WSNs is mentioned, including energy optimization

approaches in WSNs, clustering algorithms for Mobile WSNs, and the hybrid

approaches between PSO and other Evolutionary Algorithms.

In the next Chapter, the design details of the presented ENAMS algorithm

are presented, based on the optimization techniques that are explained in this

Chapter.



Chapter 4

ENAMS: Energy Optimization

Algorithm for Mobile WSNs

4.1 Introduction

This chapter presents the developed ENAMS algorithm (Energy optimizatioN

Algorithm for Mobile Sensor networks) which is based on Evolutionary Compu-

tation (EC) and Swarm Intelligence (SI). It is composed of two phases; Phase-1

is designed to divide the sensor nodes into independent clusters by using Genetic

Algorithms (GAs) to minimize the overall communication distance between the

sensor-nodes and the sink-point. This will decrease the energy consumption for

the entire network. Phase-2 is designed to keep the optimum sensors’ distribution

while the mobile sensor network is directed as a swarm to achieve a given goal.

It is based on Particle Swarm Optimization (PSO).

One of the main strengths in the presented system is that the number of
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clusters within the sensor network is not predefined, this gives more flexibility for

the nodes’ deployment in the sensor network. Another strength is that sensors’

density is not necessary to be uniformly distributed among the clusters, since

in some applications constraints, the sensors need to be deployed in different

densities depending on the nature of the application domain.

4.2 Design Challenges

The use of clusters for transmitting data to the sink-point enforces the advantages

of short transmission distances for most sensor-nodes within the WSN, requiring

only a few nodes to transmit far distances.

One of the main challenges in designing ENAMS algorithm is the complexity

of finding the optimal number of clusters and the best positions for the cluster-

heads. This complexity increases as the number of sensor-nodes increases. For

example, to perform an exhausted search of all possible solutions of a sensor

network with 100 nodes will require:

C1
100 + C2

100 + ...+ C100
100 = 2100 − 1

different combination which is far too large to be handled by normal computer

resources. Our target in this research is the high density mobile sensor networks.

The second challenge in the design of ENAMS algorithm is how to keep the

clustered topology of the sensor network in the optimised structure during the

movement of the mobile sensors. It can be observed that most of the existing
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clustering algorithms are less suitable for mobile environment. The reasons for

that are: The process of electing the cluster-heads based on information from

nodes which are multiple hopes away leads to high overhead and slow reaction

to topology changes. Also, maintaining complete intra-cluster information is an

expensive task which results in a high traffic. Finally, the complexity of the multi-

layer clustering algorithms leads to a lot of efforts in building and maintaining

the desired structure.

4.3 Phase-1: Distance Optimization using GAs

The design of phase-1 for the presented energy-efficient algorithm (ENAMS) is

based on a developed Genetic Algorithms (GAs) to optimize the communica-

tion distance of Wireless Sensor Networks in which a large number of sensors

are deployed to achieve a given goal. To minimize the energy dissipation, the

sensor-nodes are divided into clusters (see Section 2.4.1). This will decrease the

communication distances between the sensor-nodes and the sink-point. The re-

lation between the communication distance and the energy dissipation will be

explained in more details in the following Section.

4.3.1 Energy Model for Optimization

The recent developments in micro-electro-mechanical systems technology, wireless

communications, and digital electronics have enabled the expansion of low-cost,

low-power, multifunctional sensor nodes that can be aggregated into a wireless
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sensor network. Energy constraints are the driving factors in the design of wire-

less sensor networks, which require low power consumption and energy efficient

communication protocols.

Direct transmission networks are very straightforward to design but can be

very power-consuming due to the long distances from sensors to the sink-point

(Data Collector). Figure 4.1 is an example of WSN with direct transmission

where each sensor transmits messages directly to the sink-point.

Figure 4.1: Direct transmission example

Alternative designs that shorten or minimize the communication links can

decrease the power consumption and extend network lifetime. One of these tech-

niques is to divide the sensor network into clusters. Each cluster usually has

one cluster-head which communicates with the sensor nodes that are related to

that cluster, and forward the aggregated data to sink-point. Figure 4.2 shows an

example of clustered WSN.

The important components of each sensor are the data and central processing
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Figure 4.2: Clustered Sensors Network

unit and the radio for communication. The microprocessor used in the processing

unit of the sensor’s platform should be energy efficient with less energy consump-

tion. The energy dissipation for transmitting b bits through distance d is shown

in Equation 4.1.

Etx(b, d) = Eelec × b+ Eamp × b× d2 (4.1)

The energy dissipation in a node to receive b bits of data is shown in Equation

4.2.

Erx(b) = Eelec × b (4.2)

where Eelec is the radio energy dissipation and Eamp is the transmition amplifier

energy dissipation.

Energy consumption of a wireless sensor node transmitting and receiving data

from another node at a distance d can be divided into two main components: En-

ergy used to transmit, receive and amplify data; and energy used for processing
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the data, mainly by the microcontroller. Leakage current can be as large as a few

mA for the microcontroller, and the effect of leakage current can be neglected

for higher frequencies and lower supply voltage. Assuming the leakage current

as negligible, the total energy loss for the sensor system due to the distance Edd

can be calculated according to Figure 4.3 using the following equation:

Edd =

 k∑
j=1

nj∑
i=1

(d2
ij +

D2
j

nj

)

 (4.3)

where Dj is the distance between cluster-heads and the sink-point, dij is the

distance between the sensor-nodes and its related cluster-heads. k represents the

number of clusters and n is the total number of sensors in the network.

Figure 4.3: Energy Model for distance based Sensor Network
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4.3.2 Chromosome Representation

Specifying the appropriate nodes to be the cluster-head for each group of sensor-

nodes is critically important for minimizing the distance. In this research we are

using binary chromosome representation in which each bit corresponds to one

sensor. A ”1” means that corresponding sensor is a cluster-head; otherwise, it

is a regular node. In Figure 4.4, the individual nodes S1, S4 and S6 are cluster-

heads. The remaining nodes are regular nodes. The initial population consists of

randomly generated individuals. Each regular node uses a deterministic method

to find its nearest cluster-head.

Figure 4.4: Chromosome representation for cluster-heads and regular nodes

In this research we have developed the basic GA in a way that in case of any

cluster-head remain unconnected with any regular sensor then its state should be

changed to be a regular node and linked to the nearest cluster-head available in

the field. This process will eliminate inefficient clusters to survive. Decreasing the

number of clusters will enhance the overall distance optimization of the sensors

network. As a result the optimization process will produce more energy efficient

topology for the sensor network.
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Once cluster-heads are selected, each regular node connects to its nearest

cluster-head. Each node in a network is either a cluster-head or a ”member” of

a cluster-head. Each regular node can only belong to one cluster-head. Cluster-

heads collects data from all sensors within its cluster and directly sends the

collected data to the sink-point. If a regular node becomes a cluster-head after

crossover, all other regular nodes should check if they are closer to this new

cluster-head. If so, they switch their membership to the new cluster-head. The

new cluster-head is detached from its previous cluster. If a cluster-head becomes

a regular node, all of its members must find new cluster-heads.

Each individual in the GA population represents a possible solution to the

problem. Finding individuals which are the best suggestions to our problem

and combine these individuals into new individuals is an important stage of the

evolutionary process. Using this method repeatedly, the population should evolve

good solutions. Crossover and mutation provide exploration, compared with the

exploitation provided by selection. The effectiveness of GA depends on the trade-

off between exploitation and exploration [117].

Crossover: The crossover operation takes place between two consecutive

individuals with probability specified by crossover rate. These two individuals

exchange portions that are separated by the crossover point. In the developed

ENAMS algorithm we have used one-point crossover type. Figure 4.5 shows an

example of crossover. After crossover, two offspring are created as shown in

Figure 4.6.
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Figure 4.5: Example of Crossover

Figure 4.6: Two offspring created by Crossover

Mutation: The mutation operator is applied to each bit of an individual

with a probability of mutation rate. When applied, a bit whose value is 0 is

mutated into 1 and vice versa. An example of mutation shown in Figure 4.7.

Figure 4.7: Example of Mutation
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4.3.3 Distance - Clusters Rule

The total transmission distance is the main factor we need to minimize. In

addition, the number of cluster heads can factor into the fitness function. In

designing our fitness function required for GAs process, we are considering that;

given the same distance, fewer cluster heads result in greater energy efficiency as

cluster heads drain more power than non-cluster-heads. Thus, each individual is

evaluated by the following combined fitness components:

Fitness = w × (D − distancei) + (1− w)× (N −H i) (4.4)

where D is the total distance of all nodes to the sink, distancei is the sum of the

distances from regular nodes to cluster-heads plus the sum of the distances from

all cluster-heads to the sink; Hi is the number of cluster-heads; N is the total

number of nodes; and w is a predefined weight. The value of w is between 0 and

1, and it is application-dependent. It indicates which factor is more important

to be considered: distance or the cost incurred by cluster-heads.

At one extreme, if w = 1, we optimize the network only based on the com-

munication distance. If w = 0, only the number of cluster heads is considered.

Except for distancei and Hi, all other parameters are fixed values in a given

topology. The shorter the distance, or the lower the number of cluster-heads, the

higher the fitness value of an individual is. ENAMS algorithm tries to maximize

the fitness value to find a good solution. The developed Phase-1 of ENAMS al-

gorithm is shown in Algorithm 2. This algorithm appears in our publication [97].
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Initialization: Generate random population of n chromosomes

while the stop condition is not satisfied do

if cluster-head not connected to any sensor-node then

change cluster-head state into regular sensor;

find the nearest cluster-head to be connected with;

end

Evaluate the fitness g(x) of each chromosome x in the population;

while the new population is not complete do

Selection: Select two parent chromosomes from a population

according to their fitness;

Crossover: With a crossover probability, crossover the parents to

form a new offspring (children);

Mutation: With a mutation probability mutate new offspring;

Accepting: Place new offspring in a new population;

end

Replace: Use new generated population for further runs;

end

Return: the best solution of the current population;

Algorithm 2: Phase-1 of ENAMS Algorithm
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4.4 Phase-2: Distance Management Using SI

The second part of ENAMS algorithm is designed to provide the distance man-

agement by using Particle Swarm Optimization (PSO) which makes the wireless

sensor network self organized while the sensors are moving on a swarm bases. In

PSO, the potential solutions are called particles, fly through the problem space by

following the current optimum particles. The particles are initialised randomly.

Each particle will have a fitness value, which will be evaluated by the fitness func-

tion to be optimised in each generation. Each particle knows its best position

pbest and the best position so far among the entire group of particles gbest. The

particle will have velocities, which direct the flying of the particle. In each gener-

ation the velocity and the position of the particle will be updated. The velocity

and the position update equations are given below as (4.5) and (4.6) respectively.

These equations were described previously with more details in Section (3.5.2).

vk+1
i = wvk

i + c1rand1 × (pbesti − sk
i ) + c2rand2 × (gbest− sk

i ) (4.5)

xk+1
i = xk

i + vk+1
i (4.6)

The parameters used in Equations (4.5) and (4.6) are described in Table 4.1.

4.4.1 Fitness Function for PSO

Referring to Equation (4.3), we can conclude that by reducing the distance from

a node to the cluster-head and the cluster-head to the sink-point we can minimise

the energy dissipation in a sensor network. In our system, we cluster the nodes
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Table 4.1: The parameters for PSO velocity and position update

Parameter Description

vk
i velocity of particle i at iteration k

w inertia weight

vk+1
i velocity of particle i at iteration k + 1

cj acceleration coefficients j=1,2

randi random number between 0 and 1 i=1,2

sk
i current position of particle i at iteration k

pbesti best position of particle i

gbest best position so far among the entire group of particles

xk+1
i position of the particle i at iteration k + 1

taking into consideration that each node can transmit or receive data from all

other nodes. Thus, nodes considered in this network do not have transmission

range constraint. Sensors are clustered using entirely distance based Equation

(4.3). Here the number of clusters is produced from the former phase of our

algorithm by GA part, hence the nodes are distributed within a given number

of clusters ’k’. The fitness function for this phase of our algorithm is shown in

Equation (4.7).

Fitness = min

 k∑
j=1

nj∑
i=1

(d2
ij +

D2
j

nj

)

 (4.7)

where,

∑k
j=1(nj + k) = N.

N is the total number of nodes in the network. The pseudo code for phase-2 of
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ENAMS algorithm is shown in Algorithm (3).

PSO Initialization: Assume the initial population is the best solution

generated by the previous stage of GAs;

while the stop condition is not satisfied do

Evaluate the fitness value for each particle’s position in the swarm;

if fitness(p) better than fitness(pbest) then

pbest = p;

Set best of pbest as gbest;

end

Update the particles’ velocity vk+1
i ;

Update the particles’ position xk+1
i ;

end

Algorithm 3: Phase-2 of ENAMS Algorithm

4.5 ENAMS Algorithm: The Hybrid Approach

Any WSN is deeply involved in and related to the monitored environment, and

any change occurring to the surroundings will significantly influence its perfor-

mance; nevertheless, the network must be able to tolerate and ’survive’ any

change by implementing proper reactions and adaptation mechanisms sustain-

ing communications for both sensed data and commands.

This section describes the complete ENAMS algorithm by combining phase-1

and phase-2 which are described in Sections (4.3) and (4.4) respectively. The
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produced hybrid algorithm which is based on Evolutionary Computation and

Swarm Intelligence is an efficient algorithm for energy optimization of mobile

wireless sensor networks.

To obey the self-working paradigm, WSN protocols should be designed with

strong attention to both device coordination and redundancy exploitation issues,

both of which might have to cope with the network member resource heterogene-

ity. A vision to reach this autonomy is through the concept of self-organization,

which is defined in [23] as ”the spontaneous creation of a globally coherent pat-

tern out of local interactions”. Local interactions will be probably based on local

rules to achieve a global goal. Note that the local rules assigned to each sensor

may be different depending on its hardware characteristics, node location, traf-

fic pattern, security, and other attributes associated with the application. The

ultimate goal of these local rules is to design a self-organizing WSN.

Figure 4.8 combines Algorithms (2) and (3), showing the flow of ENAMS

phases to achieve the energy optimization for a mobile WSN.

4.6 Summary

In this chapter, the design of ENAMS algorithm is presented, in two phases;

Phase-1 is based on Genetic Algorithms (GAs) with some enhancements to divide

the sensor nodes into independent clusters to minimize the overall communica-

tion distance between the sensor-nodes and the sink-point for the entire network.

Each node in a network is either a cluster-head or a ”member” of a cluster-head.
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Figure 4.8: Phases flow of ENAMS Algorithm
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Each regular node can only belong to one cluster-head. Cluster-heads collect

data from all sensors within their cluster and directly send the collected data

to the sink-point. If a regular node becomes a cluster-head after crossover, all

other regular nodes should check if they are closer to this new cluster-head. If

so, they switch their membership to the new cluster-head. The new cluster-head

is detached from its previous cluster. If a cluster-head becomes a regular node,

all of its members must find new cluster-head.

Phase-2 is based on Swarm Intelligence (SI) which is designed to keep the opti-

mum sensors’ distribution while the mobile sensors are directed as a swarm to

achieve a given goal.

In the next Chapter, the design of a simulation system is presented to analyse

and evaluate the ENAMS algorithm.



Chapter 5

Simulation

5.1 Introduction

This chapter presents the software implementation of the presented ENAMS al-

gorithm which is designed for energy optimization of mobile WSNs by using

Evolutionary Computation and Swarm Intelligence.

The first phase of the algorithm is to divide the network into clusters by

using GAs, where the number of clusters is not predefined and number of sensor-

nodes within each cluster is not necessary to be the same. This makes ENAMS

algorithm more flexible in terms of the designed network topology which can

cover a wide range of applications.

The second phase of the algorithm enabling the sensors to move as a swarm

using PSO while keeping the optimum distances between the sensor-nodes and

their related cluster-head, avoiding any unnecessary movements.
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5.2 Operational Specifications for Simulation

To verify the goals of the presented ENAMS algorithm, we have designed a 2-D

simulation environment for the wireless sensor network having randomly gener-

ated sensor-nodes to be considered as the initial population for the GAs process.

We used Java-Applet to simulate the experiments of 80 nodes considering differ-

ent sink positions to cover a variety of applications’ specifications. The tuning

parameters used for GAs in the simulated experiments are given in Table 5.1.

Figure 5.1 shows the flowchart for phase-1 of ENAMS algorithm at which the Ad

Table 5.1: The GA parameters settings

Parameter Value

Population size 80

Selection type Proportional

Crossover rate 0.7

Crossover type one point

Mutation rate 0.005

Generation size 1000

hoc WSN is clustered by using GAs. For more details about the Java coding for

implementing the simulator, refer to Appendix (A). The implementation of these

simulation experiments appears in our publication [95].
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Figure 5.1: Flowchart for Part-1 of ENAMS simulation system
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5.3 Evolving Clustered WSN Using GAs

Among many experiments achieved to divide the WSN into K-clusters by using

GAs with a tuning parameters such that described in the previous section, We

are exploring the following cases:

5.3.1 Experiment-1: WSN with Sink located at (0,0)

This experiment demonstrates the case when the sink point is located at (0,0)

(i.e. the upper left corner) and the value of the predefined weight w is set (1.0)

(see Section 4.3.3). This network distribution is suitable when the application

environment is inhospitable, which will be not safe to allocate the sink-point (i.e.

data collector) within the field area, like some military applications or earthquake

observations. see Figure 5.2. Our observation in this experiment is that, when

a single sensor node located near to the sink point, that node itself becomes a

cluster-head and sends the data directly to the sink. Also, for the nodes which

are near the sink are more likely become cluster-heads than those faraway from

it.

5.3.2 Experiment-2: WSN with Sink located at (100,100)

This experiment demonstrates the case when the sink point is located near the

centre of the network, for example at the point (100,100) and the value of w set to

(0.8). This network distribution is more suitable when the sensor nodes are dis-

tributed around a centralized safe area where the sink-point can receive the data
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Figure 5.2: Clustered network when sink point at (0,0)

in a wider circular range and from different directions. For example the Mobile

networks, see Figure 5.3. In the majority of the outcomes for this experiment, we

found that more cluster-heads are needed than the previous experiment. This is

due to the sink location. This behavior is expected because when the sink point

located at the centre, more density of sensor nodes is available around it. As a

result, more cluster-heads tends to be distributed around the sink point.

5.3.3 Experiment-3: WSN with Sink located at (0,0) and

the predefined weight (w=0)

This experiment describes the situation when the number of cluster-heads is only

considered in the fitness function, that is when the value of the predefined weight
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Figure 5.3: Clustered network when sink point at (100,100)

w is set to (0.0). Although this is not realistic in our research-problem, but it

verifies the effectiveness of ENAMS algorithm because, as expected, the optimal

number of heads is equal to 1. See Figure 5.4.

5.3.4 Scalability

The ability to maintain performance characteristics irrespective of the size of the

network is referred to as scalability [69]. Hundreds or thousands of the nodes can

be deployed in a sensor network, since the cost of the sensors recently become rel-

atively low. With WSNs potentially consisting of thousands of nodes, scalability

is an evidently indispensable requirement.

It is very important to test the scalability of the designed optimization algo-

rithm. In our experiments, we have increased the number of sensor-nodes from
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Figure 5.4: Clustered network when w=0

80,160, to 1280, see Figure 5.5.

Figure 5.5: Large scale clustered WSN with 1280 sensor nodes
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Table(5.2) illustrates some initial test results when the sink-point is assumed

to be at point (0,0). As an average value, the distance is reduced by 84% as

Table 5.2: Test results for different problem size

No. Nodes Total distance

without clustering

Total distance

with clustering

Distance

decreased

80 16945 4581 73.96%

160 36301 6541 81.98%

320 71687 9929 86.15%

640 148700 20125 86.64%

1280 293244 20221 93.10%

compared with the distance when direct transmission is used. This percentage

will slightly increase as the number of nodes increases because, as more nodes

will be deployed in the network with denser distribution, this will result in more

efficient cluster optimization.

5.4 Fitness Value and Number of Clusters Over

Generations

Analysis of the fitness values observed for most of our experimentations, we can

see that the fitness value is greatly enhanced after 100 generations due to the

selection of the best fitness chromosomes to be used in the next generation.
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Figure 5.6 shows the maximum fitness value reached over generations.

Figure 5.6: Fitness values over generations
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In Figure 5.7, number of cluster heads decreases over generations to reach

around 25% from the overall number of nodes in the network. This verifies the

effectiveness of our algorithm because, as expected, the total distance will be

minimized as the number of heads decreases. This percentage value may vary if

the sensor nodes are unevenly distributed over the network field.

Figure 5.7: Number of cluster heads over generations
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5.5 Mobile Clustered WSN Using PSO

Referring to equations (4.5) and (4.6) explained in the previous chapter, the par-

ticles’ velocities are continuously adjusted over generations enabling the swarm to

move within the search space keeping the optimum distribution. We have taken

the advantages of this criterion to enable the sensor nodes of the clustered Wire-

less Sensor Network to be mobile sensors moving together as swarms throughout

the generations of PSO process. The fitness function used for this part of ENAMS

algorithm is shown in Section (4.4.1). The maximum number of generations we

were running was 1000. The parameters used in the simulations are tabulated

in Table (5.3). Figure 5.8 shows the flowchart for phase-2 of ENAMS algorithm

Table 5.3: The PSO Parameters settings

Parameter Range

Population size 80

MAXITER 1000

vmax 100

xmax 100

v range 0-100

x range 0-100

which is responsible of avoiding the mobile sensor nodes to do any unnecessary

movements by achieving self-organization while they are moving as swarms using

PSO.
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Figure 5.8: Flowchart for Part-2 of ENAMS simulation system
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In this simulation, we observed the performance in terms of quality of the

average optimum value for 10 trials to the PSO-TVIW and PSO-SSM models

which are described in Section 3.5.5 earlier. For both simulations we use the same

set of nodes. We have chose these two methods for the following reasons;

The PSO-SSM model is the only model which has the ability to stop parti-

cles from moving beyond the boundary of the problem space, that is under the

influence of the momentum factor (mc) in it.

The PSO-TVIW model is almost similar to the basic PSO algorithm with

just the inertia weight varying with time from 0.9 to 0.4.

From the graph shown in Figure 5.9 we can conclude that PSO-TVIW con-

vergence is slower as compared to the PSO-SSM algorithm. This was due to

constant acceleration co-efficients used in this model which affects the rate of

convergence.

Snapshots for the mobile swarmed sensor-nodes are shown in Figure 5.10.

Figure 5.10-a shows the initial distribution for sensor-nodes which is produced

by GAs from the previous phase of ENAMS algorithm. It can be observed from

this distribution that the WSN is clustered into 4-clusters, each one represents

a swarm to be directed and controlled by the PSO when it will start running in

the second phase of ENAMS. During PSO phase, clusters will be self-organized

while they are moving within the experimentation boundaries. This will avoid

the mobile sensors to make any unnecessary movements to reserve the energy

and enlarge the lifetime for each sensor. It is clear from the screen shots shown
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Figure 5.9: Convergence for the PSO-SSM and PSO-TVIW Models
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in Figure 5.10 - b, c, d, e and f respectively, that the mobile sensors in each

cluster keep adjusting their positions during the movements to keep the distances

between the sensor-nodes as much as possible the same as it was in the initial

distribution. This work appears in our publication [96].
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Figure 5.10: Snapshots of swarmed WSN with 4 clusters crossing the problem

space



5.6 Summary 118

5.6 Summary

In this Chapter, the simulation of ENAMS algorithm is described along with

the operational specifications for the experimentation. Among many experiments

achieved, three main cases are emphasized. Each case demonstrates the algorithm

outcomes in response to the sink-point location and the value of the predefined

weight in the fitness function.

The scalability of sensors in the WSN is investigated by increasing the network

size from 80,160, to 1280 nodes. The optimization outcomes are also discussed

based on screen shots taken from the simulation system.

In order to prove the portability of ENAMS algorithm from the simulation into

physical environment, the next Chapter will show the hardware implementation

of the algorithm using swarmed Robots.



Chapter 6

Hardware Implementation:

Multi-Robot based Simulation

6.1 Introduction

This chapter shows the implementation of ENAMS algorithm to prove it’s porta-

bility from the simulation environment to a physical swarm of mobile sensors,

using a multiple robot system. Since it is likely that any simulator will require

physical implementation, we show how this can be achieved. Therefore, this

chapter discuss the operational specifications for how the presented ENAMS al-

gorithm would work in the real world on a physical mobile sensor network; i.e.

robots.

This chapter is organised as follows:

• The hardware description; the physical specifications of the robots used for
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this case study is presented in Section 6.2.1

• The communication properties considered, simple definitions are presented

in Section 6.3

• The experiments description and results are presented in Section 6.4

6.2 Operational Specifications

6.2.1 Hardware Specifications

LEGO-NXT Mindstorms robots, shown in Figure 6.1, were used as mobile sensors

platforms to implement the ENAMS algorithm. This type of robots is selected

because it meets our assumptions for the sensors platform to be energy limited.

Each robot can communicate with maximum of three other robots at a time.

The technical details of the Lego-NXT Mindstorms robot are as follows:

Input/output ports are similar to RJ12 connectors for sensors and motors. It

contains four input ports which read the sensors’ activities like; Light sensor,

Sound sensor, Ultrasound sensor, and Touch sensor. Additionally, It has three

output ports which are usually used to drive the three servo motors: A, B and

C. Each motor has a built-in rotation sensor. This lets us control the robot’s

movement precisely. The rotation sensor measures motor rotations in degrees or

full rotations with accuracy of +/- one degree. The main processing unit which

is usually called (Brick) has the following specification:

• A 32-bit ARM7 microcontroller with a clock frequency of 48MHz
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Figure 6.1: LEGO-NXT Mindstorms robot

• Supports Bluetooth communication (Bluetooth Class II V 2.0 compliant)

• 1 USB 2.0 port (12 Mbit/s)

• 256 KB of Flash Memory

• 64 KB of RAM

• 8-bit Atmel AVR microcontroller with a clock frequency of 4MHz

• 4 KB of Flash Memory

• 512 Bytes of RAM

• Loudspeaker 8 kHz sound quality
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• The energy source for the robot is six batteries of 1.5 volt AA type

Ultrasonic Sensor:

This sensor gives the robot the ability of vision. By using this sensor, the robot

can detect objects and avoid obstacles. This sensor is able to measure the dis-

tances from 0 to 255 centimetres with a precision of +/- 3 cm. Large size objects

with hard surfaces return the best readings. Objects made of soft fabric or those

are curved (like a ball) or very thin can be difficult for the sensor to detect. Also,

two or more Ultrasonic sensors operating in the same room may interfere with

each other’s readings.

6.2.2 Software Specifications

The Lego-NXT Mindstorms robot can be programmed using the NXT-G graph-

ical programming environment developed by National Instruments for LEGO

robots. Writing an NXT-G program is very much like creating a flowchart.

You write a program by dragging icons (code blocks) that describe different be-

haviours, e.g., turn motor A on at 75 percent of full power, and connect them

with lines to describe the program behaviour. Using a variety of code blocks,

you can control motors, introduce delays, play sounds and direct the flow of your

code according to the state of sensors and timers, etc.

ROBOLAB is another graphical environment which can be used to program

the Lego-NXT Mindstorms. It was originally developed by Tufts University for
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the first generation of LEGO Mindstorms RCX microprocessor. It was extensively

enhanced and revised to support both the RCX and the second-generation NXT.

The ROBOTC solution allows the NXT to be programmed using the industry-

standard C language. It was developed by the Robotics Academy at Carnegie

Mellon University and can be obtained from the LEGO Education Group or

directly from the Robotics Academy at www.robotc.net. Both of the graphi-

cal programming solutions had drag-and-drop capabilities for the code blocks.

ROBOTC has a similar capability, but with it, you drag and drop text.

NXJ is a JAVA implementation for the NXT. It is standard JAVA but with

a much smaller Class library. The standard Class library is far too large for

the total 256K bytes of memory on the NXT. NXJ programs are written and

compiled on the PC. The compiled programs are then transferred to the NXT

where they can be executed.

We have developed our programs for the experimentation by using NXT-G

programming environment because it is easy to be implemented and the software

is already supplied with the LEGO kit. For more details about the designed

programs for this chapter, please refer to Appendix (B).

6.3 Network Protocol Specification

In order to put the developed algorithm described in Chapter 4, into practice with

real robots, we had to consider some network protocols and definitions including

the network settings specifications. The communication properties of multi-robot
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systems can be divided into three categories:

• Implicit Communication

• State Communication

• Explicit Communication

The explicit communication is most suitable to our experimental platform model

because we are using Bluetooth broadcasting as a communication media between

the master Robot and other slaves Robots. The topology of sensors is single-

hope star topology. This type of multi-robot communication is described in the

following section.

6.3.1 Explicit Communication

Explicit communication is the intentional transmission and reception of infor-

mation. It is usually achieved with the help of an underlying communication

mechanism such as 802.11 wireless Ethernet, infrared serial, or more recently,

Bluetooth. As such, it requires special communication hardware.

Explicit communication in multi-robot systems commonly uses broadcasting

or unicasting for communication. A robot might use broadcasting to announce

its location to the whole system, or might use unicasting to communicate with

another robot right in front of it. The topology used in a multi-robot system

ranges from a complete graph, to a hierarchical (tree) based structure. An exam-

ple of this is a system that consists of workers and leaders, where each leader is in
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charge of several workers, who can only communicate with their specific leader.

One of the more interesting ideas in explicit communication in multi-robot

systems is abstract communication versus situational communication as described

in [68]. In abstract communication, the content of a message is assumed to have

all the meaning. For example, one robot R1 may send a message to another

robot R2 containing ”Go to location x”. Robot R2 would then be able to go

to location x. In situational communication, the message itself, as well as the

message content, has meaning. For example, if R1 sends ”move towards me 5

units” R2 is able to determine what it should do from the message content, as

well as the localization information from the message itself and information it

has about the position of R1. This concept is particularly powerful in situations

where a leader (or other landmark) directs a team of robots. For example, a

command ”everyone, move in closer” is now possible without the leader knowing

everyone’s position.

Properties of Explicit Communication

• Interaction distance: determined by underlying communication technology.

• Interaction explicitness: both the sender and receiver(s) intend to partici-

pate in communication, therefore interaction is explicit.

• Interaction simultaneity: interaction is instantaneous. A robot must be

receiving when another is sending.

Benefits of Explicit Communication
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• Ease of use. Just plug communication devices into robots, and they’re ready

to send and receive information.

• The ability to simulate other communication techniques using explicit com-

munication. For example, in [11] Balsh and Arkin use a light to transmit a

robot’s state, effectively simulating state communication.

Limitations of Explicit Communication

• Dependency on separate communication mechanisms and infrastructures.

• Reliability and robustness limitations due to unreliable underlying commu-

nication hardware.

6.4 Experimentation

The setup of the experimentation field is prepared inside the Robotics lab of De

Montfort University/Faculty of Technology, which is shown in Figure 6.2. The

dimensions of the experiments field is (2.5 x 2.5) meter. In our experiments, the

swarm communications are carried out by using Bluetooth, whilst the collision

detection is obtained by the Ultrasonic sensors which are mounted on each Robot.

The maximum number of communication channels that can be established by the

LEGO-NXT Mindstorms Robot with other Robots is three. For the experiments,

a cluster-head-robot R1 is (master) and two cluster-member-robots, R2 and R3,

will act as a swarm moving in the work space. The cluster-head-robot broadcasts
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Figure 6.2: Experimentation setup
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the new positions (direction and speed) for each cluster-member-robot via a dis-

tinct Bluetooth channel. Different mailbox numbers should be specified to the

left and right motor of each robot to avoid information overlap.

The experiments aims at testing the following:

• Can the swarm of Robots move as a group avoiding each other as well as

other obstacles while keeping the optimum deployment structure?

• Is the master Robot (representing the cluster-head) able to communicate

with other Robots whilst they are in motion?

6.4.1 Experiment-1: Navigation of Swarmed Robots

Purpose: Navigation of swarmed robots by applying different power values

supplied to the robot’s motors. The power value can be adjusted in the setting

options of the NXT-Robot. As the power value increases the speed of the driving

wheels will be higher, keeping in mind that we have to manage the limited energy

stored in the Robot’s battery and to utilise this energy in an optimum way. By

measuring the time required to reach a predefined target location in the experi-

ment field, we can have an indication for the required power value to be specified

in the setting of each Robot prior to each mission proposed to be assigned to the

swarm of Robots.

Measurements: The time required for the swarmed robots to reach a prede-

fined point in the experiment field.

Results: The Robots are moving as a swarm with continuous interaction be-
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tween the cluster-head-robot and cluster-member-robots.

The experiment is designed as follows:

The Robots shown in Figure 6.3 are deployed to form a cluster of mobile sensors

having a cluster-head Robot R1 with two cluster-members Robots R2 and R3.

The experiment starts by establishing a Bluetooth connection among the Robots

by assigning different name for each Robot. When the cluster-head Robot (R1)

start moving forward across the diagonal of the rectangle field, the other two

Robots (R2) and (R3) will combine (R1) keeping the same structure until they

reach the end of the diagonal. We have repeated this experiment five times,

each with different power value that applied to the motors. Table 6.3 shows the

measured time for each power value specified in each trial. This measure will be

useful during the planning phase, to estimate the time required for the swarmed

Robots to achieve a given goal in a specified mission.

Table 6.1: Motor’s power verses time required to reach a target point

Motor Power % Time (sec)

20 56

40 26

60 17

80 11

100 8
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Figure 6.3: Cluster of three Robots
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6.4.2 Experiment-2: Swarmed Robots starting from op-

timum positions

Purpose: Swarmed Robots starting from optimum positions to reach a pre-

specified point maintaining the swarm structure. The optimum positions for the

Robots are evolved by phase-1 of ENAMS algorithm. In this experiment the

Robots are forming a swarm and should move keeping the optimum structure

until reaching the target point in the experimentation field.

Measurements: The distances between the cluster-head-robot and the member-

robots at the final navigation point, to be within the permitted range.

Results: The final robots’ distribution should keep the optimum distances.

The Robots shown in Figure 6.4-a are deployed to form a swarm with three

mobile Robots. The initial distances between the cluster-head Robot and other

cluster-member Robots assumed to be the optimum distribution for the swarm.

While the Robots are moving, they keep measuring the distance between each oth-

ers by using the Ultrasonic sensor to achieve self-organization within the cluster.

Each Robot is programmed to continuously check the distance with cluster-head

Robot and also to avoid any obstacle that might be found within the navigation

path of the swarm. To view the video clip of this experiment please refer to

[57]. Table 6.2 shows the measured distances between the cluster-head (R1) and

cluster-members (R2) and (R3) at the final point of each trial, see Figure 6.4-b.

The mean value, usually symbolized as x, can be calculated as the sum of

the values divided by their number. This is a sample mean, descriptive of the
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Figure 6.4: Swarmed Robots navigation: (a) Initial positions, (b) Final positions

after navigation
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Table 6.2: Distance measurements between Robots starting from optimum posi-

tions

No. Trial R1-R2 distance (cm) R1-R3 distance (cm)

1 32 27

2 30 22

3 27 29

4 33 20

5 26 19

6 24 30

7 27 18

8 41 27

9 35 20

10 26 24
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particular n - times the algorithm was run. Further, the standard deviation can

be calculated as:

σ =

√∑n
i=1(xi − x)2

n
(6.1)

which summarizes the dispersion of values around the mean for that particular

sample.

For this experiment, the mean value x(R1,R2) and the standard deviation σ(R1,R2)

for the distances measured between the Robots R1 and R2 are:

x(R1,R2) = 30.1

σ(R1,R2) = 5.2

and for the distances measured between the Robots R1 and R3 are:

x(R1,R3) = 23.6

σ(R1,R3) = 4.4

6.4.3 Experiment-3: Swarmed Robots starting from ran-

dom positions

Purpose: Swarmed Robots starting from random positions to reach a pre-

specified point after constructing a swarm structure. Swarmed Robots start nav-

igation from random positions to reach a pre-specified point after constructing

a swarm structure. This experiment is designed to show the self-organization

behaviour for the swarms and how each member in the swarm cooperates with
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others to achieve a given goal.

Measurements: The convergence of the robots from each other to form a

swarm.

Results: The robots should reconstruct a clustered configuration.

This experiment is almost similar to experiment-2 explained above. The dif-

ference here is that the Robots starts from random positions within the experi-

ment field. When the cluster-head Robot R1 starts moving forward, the cluster-

members R2 and R3 will follow it and start measuring the distance with reference

to Robot R1 and makes self adjustment to construct a cluster until they reach

the final point of the navigation path. We have measured the distances for 10

trials and it is shown in Table 6.3. Following the same calculations to find out

the mean value and the standard deviation as have been done for experiment-2

in the previous section;

x(R1,R2) = 29.9

σ(R1,R2) = 5.8

and for the distances measured between the Robots R1 and R3 are:

x(R1,R3) = 28.9

σ(R1,R3) = 8.7

It could be observed from the calculations above that the standard deviation

is getting higher because the initial positions of the Robots forming a swarm are

randomly selected.
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Table 6.3: Distance measurements between Robots starting from random posi-

tions

No. Trial R1-R2 distance (cm) R1-R3 distance (cm)

1 35 40

2 37 39

3 36 33

4 27 35

5 28 29

6 32 27

7 30 19

8 27 13

9 30 32

10 17 22
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6.5 Summary

In this Chapter, the hardware implementation for the presented algorithm is

explained by using LEGO-NXT Mindstorms Robots. The physical specifications

of the robots and communication properties with experimentation are described.

The camera shots in Figure 6.5 shows how the three Robots moves as a unit

avoiding any obstacle on the way and keeping the optimum distances between

each other. The experiments visual assessment has shown that:

• Each Robot is able to receive messages from the master Robot, within the

same local field.

• The Robots can communicate and maintain their positions in order to move

as swarm; e.g. the Robot (R1) try to join other two Robots (R2) and (R3)

after it has passed the obstacle, Figures 6.5-d and 6.5-e, shows this action

respectively.

• Running the experiment with three Robots; R1, R2 and R3, showed that

the system provide us with a small real world test bed, because getting

the information sent and received within the Bluetooth channels allows us

to analyse the Robot’s behaviour in the light of real-time responses to;

the swarming goals for mobile sensors, avoiding collisions, and moving in

clustered base.



6.5 Summary 138

Figure 6.5: Snapshots of swarmed Robots navigation



Chapter 7

Conclusions and Future Work

7.1 Introduction

Wireless Sensor Networks are embedded in the real world and interact closely with

the physical environment in which they reside. These networks must be designed

to effectively deal with the network’s dynamically changing resources, including

energy, bandwidth, processing power, node density, and connectivity. Hence, it

is important that these sensor networks must be designed to be responsive to

such changing conditions while supporting a wide range of traffic demands from

the sensor nodes. Traffic demands in sensors networks are different from other

traditional networks that have been studied previously because the injected traffic

is strongly influenced by, and coupled to, changes in the physical environment

that has been instrumented. Furthermore, sensor networks have to deal with the

adverse effects from uncertain and dynamic physical environments.
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7.2 Research Summary

As a comparison with the previous work, the research in this thesis is presenting

an efficient and flexible algorithm for energy optimization of mobile WSNs by

dividing the sensor-nodes into clusters to decrease the communication distance

and enabling these sensors to move as swarms avoiding unnecessary movements

while they are directed to achieve a given goal. The presented algorithm is

applicable for both uniform and non-uniform network topologies and suitable

for a wide range of WSNs applications, in which the number and the positions

of cluster-heads are not predefined. Furthermore, the membership of the sensor-

nodes to the cluster-head is related to the shortest distance and it is not necessary

that the clusters are uniformly distributed within the network field.

Simulation results show that the presented approach is an efficient and effec-

tive method for solving the problem of energy dissipation in mobile WSNs with

respect to distance minimization. The ENAMS algorithm was able to find quickly

efficient solutions, for example with an 80-node problem, a good solution can be

achieved after around 130 generations, as shown in Figure 5.6. This is relatively

a high speed to reach the optimum solution with a small number of generations

in such optimization problem.

The number of cluster-heads decreases over generations to reach around 25% from

the overall number of sensor-nodes in the network as shown in Figure 5.7. This

verifies the effectiveness of our algorithm because, as expected, the total distance

will be minimized as the number of heads decreases. Our algorithm was able to
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achieve a distance optimization in an average value of 84% as compared with the

required distance when direct transmission is used.

When a single node is near to the sink, that node itself becomes a cluster-head

and sends data directly to the sink. Experiments also show that more cluster-

heads are needed when a sink is close to the center of a network than when it

is located at a network corner. This observation is expected because when the

sink is at the center, all regular nodes are located around the sink. As a result,

cluster-heads tend to be distributed around the sink. In a densely-deployed re-

gion, a middle node is generally elected as cluster-head. Figure 5.2 and Figure

5.3 clearly shows this. No two cluster-heads are near to each other. The GA is

likely to merge two nearby cluster-heads into one head to eliminate essentially

duplicated communication distances.

Observing the swarm’s performance in terms of quality for the average opti-

mum value for the PSO-models; PSO-TVIW and PSO-SSM, it is concluded that

PSO-TVIW convergence is slower as compared with PSO-SSM. This is due to

constant acceleration coefficients used in PSO-TVIW which affects the rate of

convergence.

7.3 Thesis Contributions

This thesis contributes toward the design of a new hybrid optimization algorithm;

ENAMS (Energy optimizatioN Algorithm for Mobile Sensor networks) which is

based on the Evolutionary Computation and Swarm Intelligence to increase the
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life time of mobile wireless sensor networks.

• Evolving the Clustered Sensor Nodes

The first major contribution of this research is the clustering algorithm

(phase-1 of ENAMS algorithm) by using Evolutionary Computations, specif-

ically, Genetic Algorithms (GAs), which is designed to be suitable for large

scale mobile wireless sensor networks and provides a robust and energy-

efficient communication mechanism by dividing the sensor-nodes into clus-

ters, where the number of clusters is not predefined and the sensors within

each cluster are not necessary to be distributed in the same density.

• Mobile Swarms of Sensors

The second major contribution of this research is the swarmed clusters of the

mobile wireless sensor networks (phase-2 of ENAMS algorithm). This phase

of the presented algorithm enables the sensor nodes to move as swarms

within the search space while keeping optimum distances by achieving self-

organization between the sensor nodes.
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7.4 Future Work

The idea of the presented ENAMS algorithm could be expanded to cover a wider

range of mobile Ad hoc wireless sensor networks by considering a hierarchical

structure for the sensor nodes where a cluster-head can have a super cluster-head

which sends data directly to the sink.

The simulation program could be developed to be suitable for both static

and mobile Ad hoc mobile WSNs. Also, more user interaction facilities could be

added to the main menu to give the users additional flexibilities for choosing the

proper constraints which suits their own inspected algorithms.

The presented ENAMS algorithm could be implemented by using other types

of Robots with higher hardware specifications. This will give the possibility of

designing more complicated programs that can be fit in the Robot’s memory to

produce more intelligent and autonomous interactions between the swarms of

Robots.



Appendix A

Sample Code for Simulator

Design

The code listed below shows the main functions and the important sections of

the program used to design the simulator of our proposed ENAMS algorithm.
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Figure A.1: The Crossover Function
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Figure A.2: The Mutation Function

Figure A.3: The Selection Function
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Figure A.4: The Distance Function

Figure A.5: The Search Function for Nearest Cluster Head
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Figure A.6: Sample code to calculate the fitness of PSO

Figure A.7: Sample code to generate the particles of the swarm
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Figure A.8: Threading code for displaying Swarm’s movement



Appendix B

Robot Programming using

NXT-G Graphical Language

B.1 Robot Programming

We have developed our programs for the LEGO-NXT Mindstorms Robots by

using the NXT-G graphical programming environment developed by National

Instruments for LEGO Robots. Writing an NXT-G program is very much like

creating a flowchart. Using a variety of code blocks, you can control motors,

introduce delays, play sounds and direct the flow of your code according to the

state of sensors and timers, etc.

The main functions which are used in our hardware experimentations are ex-

plained in the following sections.



B.1 Robot Programming 152

B.1.1 Controller Function

The controller function shown in Figure B.1 below consists of two parts; The first

part is used to ”initialize” the driving Motors and the second part is the ”position

loop”.

Figure B.1: The Controller Function

B.1.1.1 Motors’ initialization

The initialization of the driving motors B and C will effectively makes the starting

location for the Robots at the beginning of the program execution to be in the

points at which zero velocity will occur.

B.1.1.2 Position Loop

This loop captures the present positions of each motor, encodes the separate sign

and magnitude properties into a single signed number and transmits them to

separate mailboxes to the receiver module of other Robots.
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B.1.2 Encode Angle function

This function uses the direction component (true for forward, false for backward)

to determine the appropriate sign of magnitude, and perform the appropriate

multiplication (1 for positive or -1 for negative value respectively). This function

is shown in Figure B.2.

Figure B.2: The Encode Angle Function

B.1.3 Decode Angle function

This function is responsible to decode the angle and speed of the motor movement.

It works exactly opposite to the ”Encode Angle” function explained above. This

function is shown in Figure B.3.
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Figure B.3: The Decode Angle Function

B.1.4 Receive function

This function is responsible of capturing the data received through the Bluetooth

channel of each Robot. It consists of two parts; the primary thread and the

secondary threads as shown in FigureB.4.

The primary thread is responsible for examining the data captured by the

Bluetooth receiver module, decomposing these values back into separate sign/magnitude

values usable by the motor commands, and mapping the values to the motors.

Each of the secondary threads is responsible for waiting in a loop-state until

they detect a message received in the appropriate mailbox. When a message is

detected, the inner loop exits and the value received is assigned to the appropriate

variable for use by the main thread. The inner loop resumes after the assignment

is completed.
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Figure B.4: The Receive Function
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