19 research outputs found

    Security and Privacy Preservation in Vehicular Social Networks

    Get PDF
    Improving road safety and traffic efficiency has been a long-term endeavor for the government, automobile industry and academia. Recently, the U.S. Federal Communication Commission (FCC) has allocated a 75 MHz spectrum at 5.9 GHz for vehicular communications, opening a new door to combat the road fatalities by letting vehicles communicate to each other on the roads. Those communicating vehicles form a huge Ad Hoc Network, namely Vehicular Ad Hoc Network (VANET). In VANETs, a variety of applications ranging from the safety related (e.g. emergence report, collision warning) to the non-safety related (e.g., delay tolerant network, infortainment sharing) are enabled by vehicle-to-vehicle (V-2-V) and vehicle-to-roadside (V-2-I) communications. However, the flourish of VANETs still hinges on fully understanding and managing the challenging issues over which the public show concern, particularly, security and privacy preservation issues. If the traffic related messages are not authenticated and integrity-protected in VANETs, a single bogus and/or malicious message can potentially incur a terrible traffic accident. In addition, considering VANET is usually implemented in civilian scenarios where locations of vehicles are closely related to drivers, VANET cannot be widely accepted by the public if VANET discloses the privacy information of the drivers, i.e., identity privacy and location privacy. Therefore, security and privacy preservation must be well addressed prior to its wide acceptance. Over the past years, much research has been done on considering VANET's unique characteristics and addressed some security and privacy issues in VANETs; however, little of it has taken the social characteristics of VANET into consideration. In VANETs, vehicles are usually driven in a city environment, and thus we can envision that the mobility of vehicles directly reflects drivers' social preferences and daily tasks, for example, the places where they usually go for shopping or work. Due to these human factors in VANETs, not only the safety related applications but also the non-safety related applications will have some social characteristics. In this thesis, we emphasize VANET's social characteristics and introduce the concept of vehicular social network (VSN), where both the safety and non-safety related applications in VANETs are influenced by human factors including human mobility, human self-interest status, and human preferences. In particular, we carry on research on vehicular delay tolerant networks and infotainment sharing --- two important non-safety related applications of VSN, and address the challenging security and privacy issues related to them. The main contributions are, i) taking the human mobility into consideration, we first propose a novel social based privacy-preserving packet forwarding protocol, called SPRING, for vehicular delay tolerant network, which is characterized by deploying roadside units (RSUs) at high social intersections to assist in packet forwarding. With the help of high-social RSUs, the probability of packet drop is dramatically reduced and as a result high reliability of packet forwarding in vehicular delay tolerant network can be achieved. In addition, the SPRING protocol also achieves conditional privacy preservation and resist most attacks facing vehicular delay tolerant network, such as packet analysis attack, packet tracing attack, and black (grey) hole attacks. Furthermore, based on the ``Sacrificing the Plum Tree for the Peach Tree" --- one of the Thirty-Six Strategies of Ancient China, we also propose a socialspot-based packet forwarding (SPF) protocol for protecting receiver-location privacy, and present an effective pseudonyms changing at social spots strategy, called PCS, to facilitate vehicles to achieve high-level location privacy in vehicular social network; ii) to protect the human factor --- interest preference privacy in vehicular social networks, we propose an efficient privacy-preserving protocol, called FLIP, for vehicles to find like-mined ones on the road, which allows two vehicles sharing the common interest to identify each other and establish a shared session key, and at the same time, protects their interest privacy (IP) from other vehicles who do not share the same interest on the road. To generalize the FLIP protocol, we also propose a lightweight privacy-preserving scalar product computation (PPSPC) protocol, which, compared with the previously reported PPSPC protocols, is more efficient in terms of computation and communication overheads; and iii) to deal with the human factor -- self-interest issue in vehicular delay tolerant network, we propose a practical incentive protocol, called Pi, to stimulate self-interest vehicles to cooperate in forwarding bundle packets. Through the adoption of the proper incentive policies, the proposed Pi protocol can not only improve the whole vehicle delay tolerant network's performance in terms of high delivery ratio and low average delay, but also achieve the fairness among vehicles. The research results of the thesis should be useful to the implementation of secure and privacy-preserving vehicular social networks

    Routing protocol for V2X communications for Urban VANETs

    Get PDF
    Intelligent Transportation Systems (ITSs) have been attracting tremendous attention in both academia and industry due to emerging applications that pave the way towards safer enjoyable journeys and inclusive digital partnerships. Undoubtedly, these ITS applications will demand robust routing protocols that not only focus on Inter-Vehicle Communications but also on providing fast, reliable, and secure access to the infrastructure. This thesis aims mainly to introduce the challenges of data packets routing through urban environment using the help of infrastructure. Broadcasting transmission is an essential operational technique that serves a broad range of applications which demand different restrictive QoS provisioning levels. Although broadcast communication has been investigated widely in highway vehicular networks, it is undoubtedly still a challenge in the urban environment due to the obstacles, such as high buildings. In this thesis, the Road-Topology based Broadcast Protocol (RTBP) is proposed, a distance and contention-based forwarding scheme suitable for both urban and highway vehicular environments. RTBP aims at assigning the highest forwarding priority to a vehicle, called a mobile repeater, having the greatest capability to send the packet in multiple directions. In this way, RTBP effectively reduces the number of competing vehicles and minimises the number of hops required to retransmit the broadcast packets around the intersections to cover the targeted area. By investigating the RTBP under realistic urban scenarios against well-known broadcast protocols, eMDR and TAF, that are dedicated to retransmitting the packets around intersections, the results showed the superiority of the RTBP in delivering the most critical warning information for 90% of vehicles with significantly lower delay of 58% and 70% compared to eMDR and TAF. The validation of this performance was clear when the increase in the number of vehicles. Secondly, a Fast and Reliable Hybrid routing (FRHR) protocol is introduced for efficient infrastructure access which is capable of handling efficient vehicle to vehicle communications. Interface to infrastructure is provided by carefully placed RoadSide Units (RSUs) which broadcast beacons in a multi-hop fashion in constrained areas. This enables vehicles proactively to maintain fresh minimum-delay routes to other RSUs while reactively discovering routes to nearby vehicles. The proposed protocol utilizes RSUs connected to the wired backbone network to relay packets toward remote vehicles. A vehicle selects an RSU to register with according to the expected mean delay instead of the device’s remoteness. The FRHR performance is evaluated against established infrastructure routing protocols, Trafroute, IGSR and RBVT-R that are dedicated to for urban environment, the results showed an improvement of 20% to 33% in terms of packet delivery ratio and lower latency particularly in sparse networks due to its rapid response to changes in network connectivity. Thirdly, focusing on increasing FRHR’s capability to provide more stable and durable routes to support the QoS requirements of expected wide-range ITS applications on the urban environment, a new route selection mechanism is introduced, aiming at selecting highly connected crossroads. The new protocol is called, Stable Infrastructure Routing Protocol (SIRP). Intensive simulation results showed that SIRP offers low end-to-end delay and high delivery ratio with varying traffic density, while resolving the problem of frequent link failures

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    Defense against Sybil attack in the initial deployment stage of vehicular ad hoc network based on roadside unit support

    Get PDF
    In this paper, we propose two certificate mechanisms for preventing the Sybil attack in a vehicular ad hoc network (VANET): the timestamp series approach and the temporary certificate approach. We focus on an early-stage VANET when the number of smart vehicles is only a small fraction of the vehicles on the road and the only infrastructure components available are the roadside units (RSUs). Our approach does not require a dedicated vehicular public key infrastructure to certify individual vehicles but RSUs are the only components issuing certificates. The vehicles can obtain certificates by simply driving by RSUs, without the need to pre-register at a certificate authority. The timestamp series approach exploits the fact that because of the variance of the movement patterns of the vehicles, it is extremely rare that the two vehicles pass by a series of RSUs at exactly the same time points. The vehicles obtain a series of certificates signed by the RSUs, which certify their passing by at the RSU at a certain time point. By exploiting the spatial and temporal correlation between vehicles and RSUs, we can detect the Sybil attack by checking the similarity of timestamp series. In the temporary certificate-based approach, an RSU issues temporary certificates valid only in a particular area for a limited time. To guarantee that each vehicle is assigned only a single certificate, at the issuance of the first certificate, it is required that the RSU physically authenticate the vehicle. When driving by the subsequent RSUs, however, the certificate can be updated in a chained manner. By guaranteeing that each vehicle is issued a single certificate in a single area, the Sybil attack is prevented. We provide mathematical analysis and simulation for the timestamp series approach. The simulation shows that it works with a small false-positive rate in simple roadway architecture

    Reliable Communications over Heterogeneous Wireless Networks

    Get PDF
    The recent years have seen an enormous advance in wireless communication technology and co-existence of various types of wireless networks, which requires effective inter-networking among the heterogeneous wireless networks in order to support user roaming over the networks while maintaining the connectivity. One of main challenges to achieve the connectivity over heterogeneous wireless networks is potential intermittent connections caused by user roaming. The issue is how to maintain the connection as the user roams and how to ensure service quality in the presence of a long disconnection period. In this dissertation, we apply the delay tolerant network (DTN) framework to heterogeneous terrestrial wireless networks, and propose a system architecture to achieve the connectivity in the presence of excessive long delays and intermittent paths. We study several possible approaches, discuss the applicability of each of the approaches and propose the super node architecture. To demonstrate the effectiveness of the proposed super node architecture, we give a simulation study that compares the system performance under the super node architecture and under the epidemic based architecture. Within the proposed architecture that employs the idea of super nodes, we further study how to effectively route a message over access networks. We present a new routing technique for mobile ad-hoc networks (MANETs) based on the DTN system architecture. We introduce the concept of virtual network topology and redefine the dominating-set based routing for the challenged network environment under consideration. In addition, we propose a time based methodology to predict the probability of future contacts between node pairs to construct the virtual network topology. We present a simulation study that demonstrates the effectiveness of the proposed routing approach as compared with the epidemic routing, and that the time based technique for predicting the future contacts gives better performance compared with that using the number of previous contacts. We further extend the dominating set routing technique through analyzing the underlying node mobility model. We shed some light on how using node mobility model can improve contact probability estimation. Based on our findings we propose a new algorithm that improves the routing performance by minimizing the selected dominating set size. Information security challenges in the super node architecture are introduced. We further address two main security challenges: The first is how to prevent unauthorized nodes from using the network resources, and the second is how to achieve end-to-end secure message exchange over the network. Our proposed solutions are based on asymmetric key cryptography techniques. Moreover, we introduce a new idea of separating the problem of source authentication from the problem of message authorization. We propose a new technique that employs the one-way key chain to use symmetric key cryptographic techniques to address the problems under consideration

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    IP Mobility Support in Multi-hop Vehicular Communications Networks

    Get PDF
    The combination of infrastructure-to-vehicle and vehicle-to-vehicle communications, namely the multi-hop Vehicular Communications Network (VCN) , appears as a promising solution for the ubiquitous access to IP services in vehicular environments. In this thesis, we address the challenges of multi-hop VCN, and investigate the seamless provision of IP services over such network. Three different schemes are proposed and analyzed. First, we study the limitations of current standards for the provision of IP services, such as 802.11p/WAVE, and propose a framework that enables multi-hop communications and a robust IP mobility mechanism over WAVE. An accurate analytical model is developed to evaluate the throughput performance, and to determine the feasibility of the deployment of IP-based services in 802.11p/WAVE networks. Next, the IP mobility support is extended to asymmetric multi-hop VCN. The proposed IP mobility and routing mechanisms react to the asymmetric links, and also employ geographic location and road traffic information to enable predictive handovers. Moreover, since multi-hop communications suffer from security threats, it ensures that all mobility signalling is authenticated among the participant vehicles. Last, we extend our study to a heterogeneous multi-hop VCN, and propose a hybrid scheme that allows for the on-going IP sessions to be transferred along the heterogeneous communications system. The proposed global IP mobility scheme focuses on urban vehicular scenarios, and enables seamless communications for in-vehicle networks, commuters, and pedestrians. The overall performance of IP applications over multi-hop VCN are improved substantially by the proposed schemes. This is demonstrated by means of analytical evaluations, as well as extensive simulations that are carried out in realistic highway and urban vehicular scenarios. More importantly, we believe that our dissertation provides useful analytical tools, for evaluating the throughput and delay performance of IP applications in multi-hop vehicular environments. In addition, we provide a set of practical and efficient solutions for the seamless support of IP tra c along the heterogeneous and multi-hop vehicular network, which will help on achieving ubiquitous drive-thru Internet, and infotainment traffic access in both urban and highway scenarios

    Quality-aware Tasking in Mobile Opportunistic Networks - Distributed Information Retrieval and Processing utilizing Opportunistic Heterogeneous Resources.

    Get PDF
    Advances in wireless technology have facilitated direct communication among mobile devices in recent years, enabling opportunistic networks. Opportunistic networking among mobile devices is often utilized to offload and save cellular network traffic and to maintain communication in case of impaired communication infrastructure, such as in emergency situations. With a plethora of built-in capabilities, such as built-in sensors and the ability to perform even intensive operations, mobile devices in such networks can be used to provide distributed applications for other devices upon opportunistic contact. However, ensuring quality requirements for such type of distributed applications is still challenging due to uncontrolled mobility and resource constraints of devices. Addressing this problem, in this thesis, we propose a tasking methodology, which allows for assigning tasks to capable mobile devices, considering quality requirements. To this end, we tackle two fundamental types of tasks required in a distributed application, i.e., information retrieval and distributed processing. Our first contribution is a decentralized tasking concept to obtain crowd collected data through built-in sensors of participating mobile devices. Based on the Named Data Networking paradigm, we propose a naming scheme to specify the quality requirements for crowd sensing tasks. With the proposed naming scheme, we design an adaptive self-organizing approach, in which the sensing tasks will be forwarded to the right devices, satisfying specified quality requirements for requested information. In our second contribution, we develop a tasking model for distributed processing in opportunistic networks. We design a task-oriented message template, which enhances the definition of a complex processing task, which requires multiple processing stages to accomplish a predefined goal. Our tasking concept enables distributed coordination and an autonomous decision of participating device to counter uncertainty caused by the mobility of devices in the network. Based on this proposed model, we develop computation handover strategies among mobile devices for achieving quality requirements of the distributed processing. Finally, as the third contribution and to enhance information retrieval, we integrate our proposed tasking concept for distributed processing into information retrieval. Thereby, the crowd-collected data can be processed by the devices during the forwarding process in the network. As a result, relevant information can be extracted from the crowd-collected data directly within the network without being offloaded to any remote computation entity. We show that the obtained information can be disseminated to the right information consumers, without over-utilizing the resource of participating devices in the network. Overall, we demonstrate that our contributions comprise a tasking methodology for leveraging resources of participating devices to ensure quality requirement of applications built upon an opportunistic network
    corecore