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SPECIAL ISSUE PAPER

Defense against Sybil attack in the initial deployment
stage of vehicular ad hoc network based on roadside
unit support
Soyoung Park1*, Baber Aslam2, Damla Turgut2† and Cliff C. Zou2{

1 Department of Internet and Media Engineering, Konkuk University, Seoul 143-701, South Korea
2 Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, U.S.A.

ABSTRACT

In this paper, we propose two certificate mechanisms for preventing the Sybil attack in a vehicular ad hoc network
(VANET): the timestamp series approach and the temporary certificate approach. We focus on an early-stage VANET when
the number of smart vehicles is only a small fraction of the vehicles on the road and the only infrastructure components
available are the roadside units (RSUs). Our approach does not require a dedicated vehicular public key infrastructure to certify
individual vehicles but RSUs are the only components issuing certificates. The vehicles can obtain certificates by simply
driving by RSUs, without the need to pre-register at a certificate authority. The timestamp series approach exploits the fact that
because of the variance of the movement patterns of the vehicles, it is extremely rare that the two vehicles pass by a series of
RSUs at exactly the same time points. The vehicles obtain a series of certificates signed by the RSUs, which certify their passing
by at the RSU at a certain time point. By exploiting the spatial and temporal correlation between vehicles and RSUs, we can
detect the Sybil attack by checking the similarity of timestamp series. In the temporary certificate-based approach, an RSU
issues temporary certificates valid only in a particular area for a limited time. To guarantee that each vehicle is assigned only
a single certificate, at the issuance of the first certificate, it is required that the RSU physically authenticate the vehicle. When
driving by the subsequent RSUs, however, the certificate can be updated in a chained manner. By guaranteeing that each
vehicle is issued a single certificate in a single area, the Sybil attack is prevented. We provide mathematical analysis and
simulation for the timestamp series approach. The simulation shows that it works with a small false-positive rate in simple
roadway architecture. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vehicular Ad hoc NETworks (VANETs) allow vehicles on
the road to exchange traffic information with each other.
This can contribute to a more fluent traffic, as well as to
the improvement of road safety by advance warning about
accidents and specific threats to safety. The security
considerations in VANETs [1–4] are of exceptionally high
importance, as a malicious attacker can trigger traffic jams
or even accidents by injecting false information in
the system.

In this paper, we are primarily concerned about the
defense against “Sybil attack” in a VANET. Sybil attack

was first described by Douceur [5] in the context of
peer-to-peer networks. It allows a malicious sender to
create multiple Sybil nodes (not real nodes) to impersonate
other (virtual) nodes. The Sybil attack is particularly harmful
in a VANET [3,6–11] because it can mislead the drivers
about the current traffic situation.

In order to protect against the Sybil attack, vehicles
must be issued trusted certificates [5,12], which make
impersonating impossible. In this paper, on the basis of
our preliminary work [13], we introduce two temporary
certificate-based approaches. Our schemes are designed
to satisfy two goals: (1) to minimize the requirements of
the system architecture and the computational costs for
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the certificate management; and (2) to have the ability to
deploy in an early-stage VANET.

As the deployment of VANETs will be gradual, in early-
stage VANETs, only a small fraction of the vehicles on the
road will be smart vehicles with the capability to participate
in the network [14,15]. In such a system, neighboring-based
Sybil attack defense [10,16,17] may not be applicable.

In addition, initially, only the most essential infrastructure
components will be present. A dedicated vehicular public
key infrastructure (VPKI) for certifying individual vehicles
[2–4,18–21] will be likely slow to emerge because of the
challenges of bringing the manufacturers distributed across
several countries as well as the vehicle registration
authorities to agree on a unique certificate model. The use
of long-term certificates also involve certificate-management
problems such as certificate issuing, distributing, storing,
and revocation. Additionally, the use of the long-term
certificates raises concerns about privacy because it
allows long-term tracking and collecting of information
about driver behavior.

Our architecture does not require long-term certificates
and only needs supports from a small number of roadside
units (RSUs) [22–24]. The vehicles obtain temporary
certificates driving by the RSUs. The vehicles do not need
to be pre-registered or pre-certified by trustworthy authorities
to use the temporary certificates. Only RSUs are managed by
certificate authorities (CAs).

The two approaches we propose differ in the type of the
certificates issued by RSUs (Figure 1).

Series of timestamp certificates
Each RSU issues certificates that contain the current
timestamp signed by the RSU. Thus, the vehicles
driving by the RSUs obtain a series of timestamp
certificates showing their recent driving route and
the time when they passed by at the RSUs. Because
of the variance of the movement patterns of the
vehicles, the probability that two vehicles pass by

multiple RSUs at the same time is very low. Thus,
the Sybil attack can be detected if two traffic messages
have similar timestamp series.

Temporary certificate
Each RSU issues temporary key pairs and certificates
that are only valid for a particular local area covered
by the RSU for a limited time. To obtain the first
certificate, a vehicle needs to find an RSU equipped
with a camera or other devices for which physical
authentication is performed. Once the vehicle obtains
its first temporary key and certificate, it renews its
key pair and certificate with next RSUs as a type of
chained certificate. The certificate chain binds the
current certificate with its previous certificate, which
means each vehicle uses one and only temporary
certificate for a single spatial interval. The uniqueness
of the certificate prevents the Sybil attack.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Our system model,
assumptions, and goals are specified in Section 3. We
describe our two approaches in Sections 4 and 5, and provide
system analysis in Section 6. The performance evaluations of
our schemes are included in Section 7. Finally, we conclude
our paper in Section 8.

2. RELATED WORK

Detecting and defending against the Sybil attack has been
the subject of extensive research. Deploying a public
key infrastructure for individual vehicles (VPKI) is the
most common solution for defending against Sybil attack
[3,4]. As each vehicle will be issued a single certificate,
the Sybil attack can be prevented. It still remains, however,
the possibility that the attacker uses valid certificates,
which, however, were issued to a different vehicle. This
problem can be solved with a multifactor authentication

Figure 1. Basic ideas of proposed approaches. CA, certificate authority.
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scheme [9], which provides an enhanced security of
certificate. The certificate contains not only the public
key information but also a set of physical attribute values
of a vehicle recorded by the CA: the radio frequency
fingerprint, the transmitter coverage, and so on. This makes
using of stolen keys and certificates of other vehicles
more difficult.

Studer et al. [23] proposed the use of temporary certifi-
cates for protecting the driver’s privacy. Vehicles can
obtain temporary keys and certificates anonymously from
RSUs. Updating temporary certificates from RSU is similar
to our approaches; however, in the proposed scheme, a
smart vehicle needs a long-term privacy-preserving key
pre-distributed by a trusted authority to obtain the temporary
anonymous certificate. Xue et al. [24] has proposed privacy-
preserving authentication scheme with the support of RSUs.
It exploits each RSU as a group manger of vehicles in its
covering area, then each RSU updates group signature of
vehicles joining the area.

Zhou et al. [11] proposed a privacy-preserving method
for detecting the Sybil attack with trustable roadside boxes
and pseudonyms. Vehicles are assigned a pool of pseudonyms
from the department of motor vehicles, and they use them
for generating traffic messages instead of their real identi-
ties for the privacy. Because the pseudonyms belonging
to a vehicle are hashed to a unique value, the vehicles
cannot abuse those pseudonyms for the Sybil attack.
The roadside boxes and the department of motor
vehicles are connected together such that any suspicious
pseudonyms can be detected by their cooperation. Even
though the suggested scheme provides the vehicle’s
privacy, it is still based on the assumption that individual
vehicles are registered to and managed by trusted authorities.

Guette and Bryce [7] suggested a secure hardware-
based method built on the trusted platform module
(TPM). Secure information and related protocols are stored
in shielded locations of the module where any forging or
manufacturing of data is impossible. Because the platform
credentials are trusted by car manufacturers, the communi-
cations between TPMs of vehicles are protected from the
Sybil attack. But as the TPM is an improved variation of
certificate, it still needs trusted authorities for managing
individual vehicles.

The previously discussed approaches all rely on a
cryptographic certificate-based method. Another type of
proposed defenses against the Sybil attack relies on the
physical properties of the nodes.

One approach uses resource testing [5,25] based on
the computational and storage capabilities, communication
bandwidth, and so on. It is based on the idea of broadcasting
a request whose answer requires a certain amount of resource
consumption. Then, only replies given within a pre-defined
time interval are accepted. Because smart vehicles are
equipped with a powerful device to compute expensive
operations such as encryption, digital signature, and so on,
this kind of approach is not adequate for detecting the Sybil
attack in a VANET. J. Newsome et al. [25] proposed radio
resource testing and pairwise key-based Sybil attack

detection method in a static wireless sensor network. Be-
cause of the high mobility of VANET nodes and the impos-
sibility of pre-deploying shared information among vehicles,
the approach cannot be used for VANET.

Another approach uses received signal strength (RSS)
[10,16,17] to deduce the inconsistency between the claimed
identities. The RSS of the packets from the Sybil identities
will be nearly the same at an arbitrary receiver. An attacker
might, however, manipulate its transmission power to fake
the signals as coming from different positions. Such manip-
ulation, however, can be detected by the collaboration of
multiple neighbor nodes, which compute the sender’s RSS
ratio at multiple receivers. Guette et al. [8] analyzed the
effectiveness of the Sybil attack in various assumptions
of transmission signal tuning and antenna and then
showed the limitation of RSS-based Sybil detection
in VANET.

3. SYSTEM MODEL

3.1. Assumptions

We consider an early-stage VANET where no dedicated
VPKI exists and the penetration of smart vehicles is small.
The system architecture consists of RSUs and CAs for
managing the RSUs. In the following, we describe our
assumptions about each of the components of the system.

• Smart vehicle: It has an on-board unit (OBU) for net-
working and computing messages, a global positioning
system (GPS) for location detection, and a digital map
including geographical road information. It does not
have a long-term public/private key pair.

• RSU: It has a transmitter for sending and receiving
messages from vehicles passing by. It is not required
to have Internet access. It has a tamper-proof device
for storing secure information and generating either
certified random key pairs or certified timestamps.
Each RSU has its own private–public key pair and
its certificate issued by the CA. Some RSUs are
equipped with means for the physical authentication
of a vehicle (for instance, a camera).

• CA: It manages RSUs and issues certificates for the
individual RSU’s public key. The CA’s public key
is pre-installed in the OBU of each vehicle.

We assume that a malicious vehicleM has the following
abilities:

• M can collect any information spread over the network.
• M has its own manufactured computational device for
creating forged GPS information and fake traffic
information and authentication information such as
digital signature.

• M has a non-standard networking device (its own
manufactured device) that allows it to manipulate
any networking-related information.

Defense against Sybil attack in VANET based on RSU supportS. Park et al.
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3.2. Security goals

Considering an environment in which the assumptions
stated earlier hold, we aim to develop protocols that satisfy
two security goals.

• Prevention of Sybil attack: Any receiver node can
detect the Sybil attack of a malicious vehicle.

• Driver’s privacy protection: It is difficult to track or
trace the movement of a vehicle from traffic messages
in the long term.

4. TIMESTAMP SERIES-BASED
DATA PROPAGATION

In this section, we describe the timestamp series-based
scheme in detail. First, we suggest a basic protocol suitable
for simple roadway architectures such as highways. Then,
we address a couple of limitations and discuss the challenges
of extending the scheme to urban environments. Unlike
highways, urban roadways have a complex topology
with many signals, intersections, and obstacles. Finally, we
provide an architecture that can solve those challenges.

4.1. Basic scheme

On multiple lane roads with no heavy traffic congestion,
vehicles move with different speeds depending on the lim-
itations of the vehicle and the preferences of the driver.
Our scheme exploits the fact that it is extremely rare that
two vehicles pass by several RSUs situated far apart from
each other at exactly the same time. In this scheme, the
RSUs issue certificates of current timestamp signed by an
RSU. The traffic messages must be authenticated with
these certificates; traffic messages containing series of very
similar timestamps are a sign of a Sybil attack.

The timestamp certificate plays two important roles: (1)
it tells the time when a vehicle has passed by an RSU, and
(2) it shows the recent route of the vehicle by means of the
RSU information that issued the timestamp certificates.
The uniqueness of each vehicle is determined by a series
of timestamp certificates given to a vehicle. Therefore,
the timestamp certificates have to be unforgeable and
non-transferable. Only RSUs should be able to create and
issue the timestamp certificates. Only the owner of time-
stamp certificates obtained directly from RSUs can use
them in its traffic messages. Vehicles that do not own the
timestamp certificate should not be able to pass them as
their own.

4.1.1. Timestamp certificate update.
Whenever a vehicle encounters an RSU, the vehicle

carries out a timestamp certificate update protocol to obtain
an up-to-date timestamp according to its trajectory. In
order to make a vehicle unique, each vehicle needs to keep
at least two recently obtained timestamp certificates issued

by distinct RSUs. Those timestamp certificates will be
included in every traffic message for preventing Sybil attack.

A straightforward way of updating the timestamp certifi-
cate is for a vehicle to request an independent timestamp
certificate from each RSU. However, appending these time-
stamp certificates to a traffic message unnecessarily increases
the size of the message. Because each timestamp certificate is
digitally signed by the private key of the issuing RSU, a
certificate about the RSU’s public key is additionally
required to verify the validity of the timestamp certificate.
In other words, each traffic message needs not only two time-
stamp certificates but also two additional certificates about
the public keys of the two issuing RSUs.

An additional problem is that in a traffic-congested
situation, vehicles move very slowly so they could receive
similar timestamp certificates from the same RSUs located
around the congested area. In this case, more than two
timestamps may be required in order to differentiate
individual vehicle’s trajectory.

Hence, we propose an aggregated timestamp certificate
in order to minimize the traffic message size. The aggre-
gated timestamp certificate contains both the newly issued
timestamp and the previous timestamp, but it is signed
only by the latest RSU. Thus, the traffic message size is
reduced, because each traffic message needs only a single
certificate of the RSU for verifying the correctness of the
timestamp certificate.

Now, we give a detailed description about the time-
stamp certificate update protocol. Table I summarizes the
notations used through the rest of this paper.

Suppose that a vehicle V is passing by the ith RSU Ri,
for i≥ 1. Figure 2 shows the timestamp certificate update
protocol between V and Ri.

(1) Ri periodically broadcasts its certificate Cert_Ri=
{KRi

+ | location, Sig(KCA�, KRi
+ | location)} issued

by the CA. V verifies the correctness of the certificate
on the basis of the CA’s public key, which is hard-
coded into each vehicle’s OBU.

(2) Once Ri’s certificate is verified, V randomly selects its
new private–public key pair (KVi

�, KVi
+) and gener-

ates a timestamp request. If i=1, the request only
includes {Timestamp-Request | KVi

+ } because the
vehicle has no previous timestamp. Otherwise, the
request includes {Timestamp-Request |KVi

+ |Cert_Ti� 1

| Cert_Ri� 1 | Sig(KVi� 1
� , Timestamp-Request)}. The

private–public key pair is necessary to prevent any
malicious vehicle from eavesdropping and stealing V’s
timestamp certificate. Ri can obtain the informa-
tion about V’s previous timestamp and RSU from
Cert_Ti� 1. Cert_Ri� 1 is required for Ri to verify
the correctness of Cert_Ti� 1. Lastly, the signature
is a proof that V is the owner of the certificate
Cert_Ti� 1.

(3) For the given request, Ri first checks if Cert_Ti� 1 is
issued by one of its adjacent RSUs. If so, Ri verifies
the validity of Cert_Ti� 1 with Cert_Ri� 1 and
KCA+. If invalid, Ri will give no response to the
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request. Otherwise, Ri creates a new timestamp TSi
and extracts the previous timestamp information
“TSi� 1 | TSi� 2 |. . .” from Cert_Ti� 1 as well. Then,
Ri generates an aggregated timestampATSi by concat-
enating TSi to the extracted timestamps. Finally, a
new timestamp certificate Cert_Ti={Content: “ATSi
| KRi� 1

+ | KVi
+ | KRi

+”, Sig(KRi
�, Content), Cert_Ri}

is broadcasted.

The Ri and Ri� 1 must be different. If Ri and Ri� 1

are the same, Ri only updates the aggregated timestamp
ATSi =TSi� 1 | TSi with current timestamp TSi for the same
public key KVi� 1.

The cryptographic hardness of the digital signature
guarantees that a timestamp certificate of Ri cannot be forged
by any other vehicles or RSUs that do not know about the
private key of Ri. On the other hand, vehicles can easily
intercept and collect timestamp certificates spread over the
network. A malicious vehicle may try to use V’s timestamp
certificate for its traffic messages. As shown in the aforemen-
tioned protocol, the timestamp certificate contains V’s

chosen public key. The corresponding private key is required
to generate valid traffic messages of V for Sybil attack
prevention. Thus, it is impossible for other vehicles that do
not know about the private key of V to use V’s timestamp
certificate for their messages. Finally, the timestamp certifi-
cate satisfies both unforgeability and non-transferability.

4.1.2. Aggregation of timestamps.
In this section, we describe the timestamp aggregation

algorithm in detail. The algorithm is carried out by
each RSU whenever it receives a timestamp request from
a vehicle. The aggregation is carried out by concatenating
a new timestamp to a given previous timestamps. In a
normal traffic situation, the aggregated timestamp consists
of at least two timestamps issued recently by two adjacent
RSUs. On the other hand, in a traffic-congested situation,
the aggregation may need a series of more than two time-
stamps in order to differentiate each vehicle. Thus, each
RSU needs to decide the minimum number of timestamps
for the aggregation.

Figure 2. A timestamp certificate update protocol.

Table I. Notations.

Notation Description

Ri The ith RSU encountered by the vehicle
KCA�, KCA+ A private and public key pair of the CA
KRi

�, KRi
+ A private and public key pair of Ri

KVi
�, KVi

+ The ith private and public key pair generated by a vehicle
KSi The ith random symmetric session key of a vehicle
K(M) An encryption algorithm about a message M with a key K; both public key encryption

and symmetric key encryption are available according to the key type
H( ) A cryptographic one-way hash function
Sig(K�,M) A digital signature for a messageM with a private key K�; defined as Sig(K-,M) =K�(H(M))
Enc(K+, KS, M) A hybrid encryption for a message M with a public key K+ and a session key KS; defined

as Enc(K+, KS, M) = {K+(KS), KS(M)}
TSi A timestamp created by Ri

ATSi An aggregated timestamp created by Ri

Cert_Ri A certificate for the public key of Ri, which is issued by the CA
Cert_Ti A timestamp certificate issued by Ri

Certi A temporary certificate issued by Ri

Content The basic content of each certificate
TM A traffic message
Data Traffic data created by each vehicle

RSU, roadside unit; CA, certificate authority.
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The aggregation rule is as follows. Let an RSU be R and
neighboring RSUs adjacent toR beNRj for j≥ 1.Rmaintains
a list of up-to-date timestamps issued by each NRj, which are
updated whenever R receives requests.

When R receives a request, R discovers a neighboring
RSU that created the timestamp certificate involved in the
request. Suppose that the request contains a timestamp
certificate Cert_Tn issued by NRj. Let the timestamp values
of Cert_Tn be <TSn | TSn� 1 | TSn� 2 |. . .>. Suppose that
R already stores a series of timestamps <TSj | TSj� 1 |
TSj� 2 |. . .> for NRj. The previous timestamps will be
replaced with the new timestamps after responding to
the request with a new aggregated timestamp certificate.

Second, in order to create an aggregated timestamp
certificate for the request, R creates current timestamp TSn+ 1
for the new request and then compares the given timestamps
with the stored timestamps to decide the minimum number
of timestamps required for the aggregation. R compares the
similarity of the two series of timestamps by investigating
the similarity of corresponding entries. Finally, R creates a
new aggregated timestamp as follows:

(1) R finds the first dissimilar values in the two series
(the threshold e of similarity is defined by the Sybil
attack detection procedure, which will be discussed
in the next section). R extracts a series of time-
stamps from the first value to the first dissimilar
value of the given timestamps. A new aggregated
timestamp is generated by concatenating TSn+ 1 to
the extracted series of timestamps. For example,
if TSn is different from TSj, then a new aggre-
gated timestamp is ATSn + 1 =< TSn + 1|TSn,>.
Or if < TSn, TSj> and < TSn�1;TSj�1 > are
similar but <TSn� 2, TSj� 2> are different from
each other, a new aggregated timestamp isATSnþ1 ¼
< TSnþ1 TSnj jTSn�1 TSn�2 >j .

(2) If R does not find any dissimilar values in the two
series, R keeps the entire series of timestamps of the
given certificate. A new aggregated timestamps is
generated by concatenating TSn+1 to the whole series,
that is, ATSnþ1 ¼< TSnþ1 TSnj jTSn�1 TSn�2j j . . . >.

4.1.3. Use of timestamps series for Sybil
attack prevention.

A vehicle creates and broadcasts its traffic message about
Data, which the vehicle senses periodically or occasionally.
Data may include traffic events, GPS information, moving
direction, speed, and time. After the vehicle has passed the
ith RSU, for i≥ 2, the vehicle’s current timestamp certificate
includes at least two or more timestamps. A traffic message
sent out by the vehicle has the following format:

TM ¼ Data; Sig KVi
�;Datað Þ;Cert Ti;Cert Rif g

The signature proves that the traffic data are created by a
vehicle that possesses a valid timestamp certificate Cert_Ti.
Any receiver can verify the validity of the signed Data by
the public key KVi

+ contained in the certificate Cert_Ti, as

well as the validity of Cert_Ti itself with the RSU’s certifi-
cate Cert_Ri. The verification includes a check if Cert_Ti is
issued by the nearest RSU from the GPS information in
Data. Notice that the digital map of vehicles can inform
about the nearest RSU. If all verification turned out true,
the traffic message is valid. Otherwise, the message is
ignored or discarded by a receiver.

Depending on the application, the traffic message might
be propagated through multiple hops. The signed data Sig
(KVi

�, Data) and the certificates Cert_Ti and Cert_Ri will
prevent any malicious intermediate vehicle from modifying
or forging the propagated message.

On the other hand, if i=1, the timestamp certificate would
contain only a single timestamp. Any traffic message with
such a certificate may be ignored by a receiver, because there
are not enough timestamps for Sybil attack detection.

Among all the traffic messages, a Sybil attack can be
detected as follows. Let arbitrary two traffic messages
delivered to a receiver be TM1 = {Datai, Sigi, Cert_Ti,
Cert_Ri} and TM2 = {Dataj, Sigj, Cert_Tj, Cert_Rj}. The
receiver decides that the two messages are Sybil messages
if all the following conditions are satisfied:

• The RSU information given from Cert_Ri and Cert_Rj

are identical;
• Cert_Ti and Cert_Tj are issued by the same RSU spec-
ified as in Cert_Ri and Cert_Rj;

• KRi� 1
+ in Cert_Ti andKRj-1

+ inCert_Tj are identical; and
• |TSi� TSj|< e and |TSi� 1�TSj� 1|< e, where the
value of e will be discussed in detail in Section 6.

The Sybil detection exploits the probability that arbitrary
two vehicles passing by the same two or more RSUs at the
very same time is low especially in a normal traffic situation.
If there is traffic congestion, the aggregated timestamp will
have more than two timestamp values. Even in this case,
the aforementioned Sybil attack detection procedure still
works except that the check of two timestamps should be
extended to the check of all timestamps contained in Cert_Ti
and Cert_Tj .

Some vehicles may try to make multiple timestamp
certificate requests to a single RSU to attempt a Sybil
attack with those multiple certificates. The timestamps
obtained within the transmission range of a single RSU,
however, are tied together with very short time differences.
Therefore, even if a malicious vehicle creates distinct
messages signed by different keys, those messages are
highly suspected as Sybil attack because of the similarity
of timestamp certificates.

4.2. Challenges

The basic scheme cannot be applied in a straightforward
way to an urban environment with a complex roadway
architecture consisting of many signals and intersections.
We briefly review the two main challenges of why the
basic scheme is not suitable for urban environment.
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1. Complex roadways: Even though it is impossible for a
single vehicle to follow multiple paths concurrently, a
malicious vehicle may exploit the complex road map
for making the Sybil attack. Figure 3 shows an exam-
ple. Suppose that the malicious vehicle V drove
through RSUs denoted as R1 and R2, and that V
attempts to make a new certificate request to R3. Let
Cert_T1 and Cert_T2 be the timestamp certificates
obtained from R1 and R2, respectively. V can make
two distinct timestamp requests by pretending to have
driven through R1 to R3 for one request and to have
driven through R1, R2, and R3 for the other. From the
view of R3, both R1 and R2 are adjacent to R3, so R3
should issue a new timestamp certificate Cert_T31
based on Cert_T1 and Cert_T32 based on Cert_T2.
Therefore, V can produce two Sybil messages by using
both Cert_T31 and Cert_T32 that show different
driving routes. Consequently, we need a careful
deployment of RSUs to prevent such an attack scenario.

2. Frequent stops at intersections: The urban traffic
environment has numerous intersections with signals.
Vehicles tend to become stuck together at those
intersections and hence synchronize their moving
dynamics. If RSUs are located at intersections, it may
make the Sybil attack detection difficult because of
the synchronization. Therefore, we need to avoid
deploying RSUs at intersections.

4.3. Deployment of roadside units

In this section, we provide a dedicated construction that
can solve the aforementioned two challenges. RSUs need

to be deployed with a small restriction. Suppose a directed
roadway graph, such that any merging point of distinct
roadways including intersections is defined as a vertex
and individual roadway as an edge.

Roadside units should be located on every edge as
shown in Figure 4. With this deployment, every path has
a unique combination of RSUs. Thus, a Sybil attack
exploiting the RSU deployment on the complex roadway
as mentioned in the previous section is not possible. The
deployment will also solve the second challenge as it
avoids intersections.

Excluding intersections for setting up RSUs may make
it difficult to combine our system with some special
intersection-related VANET applications including data
synchronization at the intersection or mixing vehicles
at the intersection for preserving anonymity. In such
situations, additional RSUs need to be placed at the inter-
sections for supporting other possible security issues.

5. TEMPORARY CERTIFICATE-
BASED DATA PROPAGATION

In this section, we suggest another way of building trustable
temporary certificates. The basic idea is to assign each
vehicle a single temporary certificate with a pre-defined
spatial and temporal constraint. To achieve this, each RSU
creates a random temporary key pair and certificate valid
within a particular area for a limited time. Every vehicle
can obtain such a key pair and certificate by driving by the
RSU. The vehicle needs to refresh its key pair and certificate
at every encountered RSU. Once the key pair and its certifi-
cate are updated, the previous keys and certificates become

Figure 3. Example of complex roadways. A vehicle V passed through R1 and R2, so it can attempt to obtain at least two different
certificates from roadside unit R3, because both R1 and R2 are adjacent to R3. One is based on the certificate from R1 and the other

is with the certificate from R2.

Figure 4. Deployment of roadside units on every edge of a roadway graph.
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invalid. Because a vehicle can have only one valid key pair
and certificate, the Sybil attack is prevented.

The temporary certificate scheme requires two steps: (1)
initialization to obtain an initial key pair and certificate and
(2) certificate update. In the initialization step, if a vehicle
makes an initial certificate request to an RSU, the RSU
needs to authenticate the vehicle to protect against multiple
requests originating from the same vehicle. Because we do
not assume to use VPKI for individual vehicles, the vehicle
does not possess any trustable authentication information,
such as a long-term key pair and its certificate or a certificate
on its OBU, except the vehicle itself. Thus, we propose a
practical way of physical authentication between a vehicle
and an RSU.

Once the initial key pair and its certificate are obtained,
the certificate is updated in a chain style along with the
certificate update protocol.

5.1. Initialization of temporary certificate

We borrow the basic concept of “seeing is believing” for
the initial physical authentication. To achieve this, we
assume that some RSUs are equipped with a camera and
an analyzer that can take a picture of license plate of a
moving vehicle and then extract the license information
from the picture [26]. Cameras can be easily installed at
the side or top of a road, and they have been already used
for detecting speeding in the real world. If a vehicle meets
a particular RSU equipped with a camera (knowing this
RSU’s specialty on the basis of the handshake message
sent back from the RSU), then it can issue a new certificate
request for an initial key pair and its certificate.

Let R1 be a camera-equipped RSU that a vehicle V
meets for the first time. Figure 5 shows the initialization
protocol between V and R1.

(1) R1 periodically broadcasts a random nonce RN and
its certificate Cert_R1 (containing RSU type and its
public key KR1

+). In addition, it takes a picture of
every vehicle entering into its camera zone.

(2) V checks the validity of R1’s public key KR1
+ with

Cert_R1. If the certificate is valid, V selects a
random symmetric session key KS1 and creates
New Request that includes {RN | Initial key request
| plate number | KS1}. Then, V sends out an
encrypted request Enc(KR1

+, KS1, New Request).
(3) R1 checks if the plate number in the request matches

with one of camera-sensed values and if the request

includes a valid RN issued by the RSU recently. If
every condition is satisfied, R1 creates a random
key pair (KV1

�, KV1
+) and its certificate Cert1 for V.

Cert1 basically includes {Content: “KV1
+ | KR1

+ |
Issuing Time | Expiration Time | Valid Area”, Sig
(KR-,Content)}. The Valid Area is a single road
section defined as a spatial interval between two adja-
cent RSUs. Finally, R1 sends a replyKS1(KV1

- | Cert1)
encrypted with the vehicle’s symmetric key.

A camera that can precisely determine the license plate
number of a vehicle requires high resolution and high
demand on image processing. For cost efficiency, cheaper
cameras, which can detect a vehicle’s physical features
such as color, contour, and driving lane, can be used
alternatively. In this case, a combination of multiple features
is required to differentiate the limited number of vehicles
nearby an RSU.

5.2. Temporary certificate update

Once a vehicle obtains an initial valid key pair and certificate,
it can refresh themwhenever it meets an RSU. The certificate
update protocol is very similar to the initialization protocol
except for two points. First, the update can be carried out
by every RSU. Second, the update needs a right previous
certificate to issue a new chained certificate, such as a hash
chain. This certificate chain is required to prevent a Sybil
attack on complex roadways as shown in Figure 3.

Suppose that a vehicle V meets the ith RSU Ri for i≥ 2.
Figure 6 shows the temporary certificate update protocol
between V and the Ri.

(1) The first step is identical to the initialization
protocol.

(2) V carries out the same step as the initialization
except that V generates a Key Update request. The
content of the request depends on the type of
RSU. If Ri does not have a camera, the request
includes {Certi� 1 | KSi | RN | Sig(KVi� 1

� , RN)}.
Otherwise, the request additionally includes V’s
plate number, such as {Certi� 1 | KSi | RN | plate
number | Sig(KVi� 1

� , RN)}. If Ri has a camera, a
malicious V may try to make an additional new
request along with its update request at the same
time in order to acquire two different key pairs
and certificates. Thus, for only a camera-equipped
RSU, the update protocol needs the physical

Figure 5. Initialization protocol for the temporary certificate.
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authentication to avoid the aforementioned attack.
The signature on RN is required to show that V is
the owner of its previous certificate Certi� 1. A
valid signature proves that V knows the
corresponding private key of the public key written
in Certi� 1.

(3) Ri first checks if Certi� 1 is issued by one of its
neighboring RSUs. If not, it rejects the request.
Otherwise, it verifies the validity of the signature
about RN. If the signature is valid, Ri creates a
new key pair and its certificate. At this point, the
new certificate Certi additionally includes the hash
value of the previous certificate H(Certi� 1).

The update succeeds only if the request has a valid
previous certificate. Therefore, V receives a single alternate.
Ri declines a trial of V to update old and expired certificates.
Thus, V always keeps a single valid temporary key pair and
its certificate.

5.3. Use of the temporary certificate for
Sybil attack prevention

The creation and verification of a traffic message is the same
as described in Section 4.1.3, except that a temporary certif-
icate is used instead of timestamp certificate as follows:

TM ¼ Data; Sig KVj
�;Data

� �
;Certj;Cert Rj

� �

Unlike in the timestamp series-based approach, a vehicle
obtains one and only certificate at any time so Sybil attack is
prevented.

Nevertheless, there could be a possibility that a vehicle
can try to have two valid certificates. For a complex roadway
as shown in Figure 3, suppose that a malicious vehicle V
passed through R1 and R2, then it makes a certificate update
request to R3. Let the certificates issued by R1 and R2 be
Cert1 and Cert2, respectively. V may attempt to make two
distinct certificate update requests: one is using Cert1 and
the other with Cert2. If both Cert1 and Cert2 were valid, R3
would respond with two different key pairs and certificates,
because both R1 and R2 are adjacent to R3. To prevent this
vulnerability, a certificate chain is used. For V to obtain
Cert2, V had to submit Cert1 to R2. Thus, Cert2 has a hash
value of Cert1. If both Cert1 and Cert2 are submitted to R3,
then R3 can easily detect that Cert1 and Cert2 belong to the

same vehicle, because Cert2 includes the information about
Cert1. R3 will ignore and discard the request about Cert1.

It is by using this scheme that a Sybil attack can be
detected as follows. Let TM1 and TM2 be the arbitrary
two traffic messages delivered to a receiver. Cert1 and
Cert2 are the two certificates belonging to TM1 and TM2,

respectively. The receiver decides that the two messages
are Sybil messages if either Cert1 contains the hash value
of Cert2, or Cert2 contains the hash value of Cert1.

6. SYSTEM ANALYSIS

6.1. Comparison of two schemes

The advantage of the timestamp series-based approach is
that it does not require RSUs with the ability to perform
physical authentication. However, the approach requires a
careful deployment of RSUs in urban environments. The
main drawback is that the traffic message could be long
and the message verification might take a long time as well.
The detection of the Sybil attack relies on the probability of
vehicle distribution, allowing false positives. However,
the false-positive rate is low and will be analyzed in Section
6.4.1.

On the other hand, the main advantage of the temporary
certificate approach is that the Sybil attack can be always
detected because of the unique assignment of temporary
certificate to each vehicle. The size of traffic message is
fixed and shorter than that in the first approach. The main
drawback is the fact that this approach needs an initialization
step and at least some RSUs must be equipped for the initial
physical authentication between vehicles and the RSUs. The
initial certificate is not issued until the vehicle meets a
camera-equipped RSU. However, once the initial certificate
is obtained, certificate update can be carried out at every RSU.

6.2. Driver’s privacy protection

Let us now consider the privacy implications of our model.
As the traffic messages are transmitted wirelessly and
contain the certificates, an opponent can collect this informa-
tion and use it to analyze and trace the movement patterns of
the vehicles. This creates privacy issues. In general, we
accept the fact that the current location of a vehicle is
disclosed by its participation in the VANET. However, an

Figure 6. A temporary certificate update protocol.
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attacker should not be able to perform long-term tracking of
the vehicle’s trajectory.

The aggregated timestamp in the first approach shows
two recent RSU information of a vehicle. Similarly, the
temporary certificate in the second approach contains a
hash value of its previous certificate. Thus, both certificates
expose limited information of a vehicle’s trajectory. This
will facilitate the attacker in tracking a vehicle. However,
if an eavesdropped sequence of certificates has any gap,
the attacker cannot trace the vehicle anymore. Because of
the dynamic mobility of vehicles and the temporary use
of certificates, the driver’s privacy can be protected.

For the first approach, the timestamp update protocol
can be modified slightly to provide stronger privacy
protection. A simple way is to remove the previous RSU
information from the certificate. However, this could create
the following problem (shown in Figure 7). If two vehicles
V1 and V2 pass by two different RSUs R1 and R2, respec-
tively, almost at the same time, then both vehicles arrive
at R3 at the same time. Subsequently, both V1 and V2 will
have a sequence of very similar timestamps. Without the
previous RSU information, traffic messages with those
timestamps will be treated as a Sybil attack.

An alternative way is to use pseudo-ids for previous
RSUs instead of real public key information. When a vehicle
makes a timestamp update request to R3, R3 can create
pseudo-ids about its adjacent RSUs, such as PID1 for R1
and PID2 for R2. Then, Cert_T3 for V1 includes {Content:
“ATS3 | PID1 | KV3

+ | KR3
+”, Sig(KR3

- , Content), Cert_R3}
instead ofKR1

+. Likewise,Cert_T30 for V2 includes {Content:
“ATS30 | PID2 | KV3

+0| KR3
+”, Sig(KR3

�, Content), Cert_R3}
instead of KR2

+. Nobody but R3 knows the exact RSU
corresponding to the pseudo-id from the certificate. Because
the previous RSU information is hidden from others, it is
impossible to link any two certificates belonging to a vehicle.
Besides, the modified protocol figures out the aforemen-
tioned particular situation. Even though the aggregated time-
stamps ATS3 of V1 and ATS30 of V2 are very similar, the
certificates have different previous RSU information PID1

and PID2. Therefore, the certificates can avoid the misjudg-
ment. The RSU may be able to change the pseudo-ids
periodically or while there are no requests.

6.3. Tolerance to roadside unit failures

Both proposed schemes need at least two certificates issued
by two recent adjacent RSUs for the certificate update and
the Sybil attack detection. If an RSU is shut down by either
any kind of attack or systemic errors, then vehicles that
have passed through the RSU will fail to update their
certificates and cannot generate valid traffic messages.

We suggest two approaches to solve this problem. The
first approach is based on vehicle-assisted alerts. Every
vehicle that detected a broken RSU Ri gives a notice about
the broken RSU to the next RSUs according to each
vehicle’s trajectory. Subsequently, the next RSU Ri+ 1 will
collect similar messages from various vehicles. If a certain
amount of messages is collected, Ri + 1 will begin to create
a certificate that contains the fact about the broken RSU Ri.
Without a certificate issued from Ri, the vehicles can
update their certificates at Ri+ 1 with the certificate given
from Ri� 1 so that those certificates will be used for
the Sybil attack detection. However, there is a delay until
the nearby RSU recognizes the broken RSU. Thus, the
vehicles detecting the broken RSU for the first time will
not obtain valid certificates and will need to restart their
certificates from Ri+ 1.

The second approach assumes that RSUs have the Internet
access. In this case, broken RSUs can be detected by the
absence of heartbeat messages. If an RSU is broken,
the nearby RSUs will create a certificate that contains
the particular event. The vehicles can keep obtaining
valid certificates and creating valid traffic messages without
any delay.

6.4. Analysis of false-positive rate

6.4.1. Mathematical analysis.
The timestamp series approach relies on the observation

that it is rare for two vehicles to have the same trajectory, that
is, to pass two (or more) different RSUs at almost the same
time. If such an event happens, the Sybil detection procedure
will mistakenly treat messages issued by these vehicles as a
Sybil attack. In this section, we provide the mathematical
analysis of this approach’s false-positive rate.

We assume that vehicles drive independently with each
other. This assumption is reasonable when: (1) no heavy
congestion occurs; and (2) the road has two or more driving
lanes. If these two assumptions are not satisfied, multiple
vehicles could move as a cluster with a similar trajectory.
This will make these vehicles have a higher false-positive
rate in Sybil attack detection than what we analyze here.

Let us assume that vehicles’ average driving speed is s,
the radio transmission range of an RSU is Q, and the
distance between two RSUs is D. Thus, the time for a
vehicle driving through an RSU’s transmission range is
T= 2Q/s. A vehicle could receive its timestamp from an
RSU at any time when it passes through the RSU’s radio
coverage area; thus, a single vehicle could obtain
multiple timestamps from an RSU within time T. For

Figure 7. A special situation where two vehicles V1 and V2 have
passed through roadside units R1 and R2 at the same time and

then have passed by R3 at the same time as well.
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this reason, in the proposed timestamp series approach,
a Sybil attack is detected if (procedure in Section 4.1.3)

TSi � TSj
�� �� < T and TSi�1 � TSj�1

�� �� < T (1)

Therefore, the e of the Sybil attack detection procedure
described in Section 4.1.3 is defined as T.

The false-positive rate of this approach is the probability
that two vehicles driving on the same road satisfy the condi-
tion in Equation (1).

When vehicles move independently, it is reasonable to
assume that the arrival process of vehicles at the first
RSU can be modeled as a Poisson arrival stochastic
process (if we assume each lane’s vehicle arrival follows
Poisson process, because of independence, vehicle arrival
on the whole road can also be modeled as a Poisson
process with a rate equal to the summation of each lane’s
Poisson process rate). Suppose that the arrival rate is l. Then,
the probability that two vehicles have TSi�1 � TSj�1

�� �� < T
at the first RSU is as follows:

Prob Two arrival vehicles have TSi�1 � TSj�1

�� �� < T
� �

¼ Prob Inter-arrival time < Tð Þ
¼ 1� e�lT

(2)

Because the average speed of a vehicle is s and the
distance between these two RSUs is D, it will take D/s time
on average for a vehicle to arrive at the second RSU. It is
reasonable to assume that each vehicle takes a normal
distributed time to arrive at the second RSU, that is,
(TSi�TSi� 1) and (TSj� TSj� 1) follow the normal distribu-
tion with the mean value of D/s and the variance denoted
by s2.

Comparing with D/s, the time T in Equation (2) is
usually negligible when RSUs are not densely distributed.
Thus, those two vehicles satisfying Equation (2) can be
treated as leaving the first RSU at the same time to move
towards the second RSU; hence, the variable

TSi � TSj � TSi � TSi�1ð Þ � TSj � TSj�1

� �
(3)

also follows the normal distribution with mean 0 and
variance 2s2 [27]. Therefore, we can derive

Prob TSi � TSj
�� �� < T given TSi�1 � TSj�1

�� �� < T
� �

¼ 1ffiffiffiffiffiffi
4p

p
s

Z T

�T
e�x2=4s2dx

(4)

From Equations (2) and (4) and the formula of condi-
tional probability [27], we can derive the false-positive rate
of our approach as

Prob TSi � TSj
�� �� < T and TSi�1 � TSj�1

�� �� < T
� �
¼ Prob TSi�1 � TSj�1

�� �� < T
� ��

Prob TSi � TSj
�� �� < T given TSi�1 � TSj�1

�� �� < T
� �

¼ 1� e�lT
� �� 1ffiffiffiffiffiffi

4p
p

s

Z T

�T
e�x2=4s2dx

(5)

As the distance between two RSUs becomes larger,
(TSi�TSi� 1), (TSj�TSj� 1), and the variance s2 will
become bigger. This will result in a smaller false-positive
rate as shown in Equation (5). In addition, if an RSU has
smaller transmission range Q or vehicles drive at higher
speed s, T becomes smaller. Consequently, the false-positive
rate becomes smaller by Equation (5).

If we rely on more than two consecutive timestamps to
make the Sybil attack decision, we will have smaller false-
positive rate, which can be derived in a similar way to the
aforementioned analysis.

6.4.2. Simulation verification.
We simulated the timestamp series-based data propaga-

tion to study its false-positive rate by using the same
assumptions as in the aforementioned mathematical analysis.
We assumed that vehicles arrive at the first RSU following the
Poisson arrival process. Each vehicle takes a normal distrib-
uted time to reach the second RSU (average time is D/s). If
we assume that the density of vehicles, denoted by Density,
is known, then vehicle Poisson arrival process should have
a rate of l=Density� s.

The simulation is carried out with various s, Q, D, and
Density. We conduct 1000 simulation runs for each set of
simulation setting in order to obtain the average false-
positive rate.

With Q=150m, s = 80km/h, and the stand deviation
s=0.2�D/s, Figure 8 shows the comparison of simulation
results and the analytical results based on Equation (5) for
two different vehicles’ density scenarios. This figure shows
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Figure 8. False-positive rate for the time series approach for
different vehicular density (q=150m, s=80km/h, s=0.2� d/s).

RSUs, roadside units.
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that our analysis, Equation (5), is accurate. As the distance
between RSUs increases, vehicles will have less chance to
move with the same dynamics, and the false-positive rate
drops quickly to around 3%.

Figure 9 shows the results under different vehicular
moving variability. If vehicles have less variant moving
speeds, that is, smaller value of the standard deviation s,
the false-positive rate of the approach will increase because
many vehicles will obtain similar timestamps from RSUs.

7. SIMULATION AND
PERFORMANCE EVALUATION

In this section, we present a qualitative evaluation of the
performance for issuing and updating certificates in diverse
traffic situations. The simulation scenario includes multiple
vehicles and a single RSU. We have examined the perfor-
mance in terms of four matrices including scalability,
packet overhead, processing time, and latency. They are
defined as follows:

• Scalability measures how much the network perfor-
mance changes as the number of vehicles increases.
We show the scalability of our approaches by carrying
out simulation with numbers of vehicles of 10, 30, 50,
100, and 200 within a range of 500m.

• Packet overhead measures how many bytes of addi-
tional data were appended to each traffic data message
in order to provide the required security in our
approaches.

• Processing time measures the computational resources
required for computing and processing the certificate
update in our approaches.

• Latency is the time delay for updating timestamp
certificate between vehicles and an RSU according to
various densities of vehicles with different levels of
speed. The simulation was carried out with different
vehicular speeds of 10, 30, 70, and 100 km/h.

Simulation experiments were carried out in NS-2 simula-
tor using the MAC 802.11a module. In order to reduce the
packet overhead, we assume elliptic curve cryptosystem for
our basic signature scheme. Table II shows the summary of
our simulation environment.

The key length of elliptic curve digital signature algorithm
is 163bits (21bytes), and the corresponding signature size is
28bytes [28]. The estimated signature generation time is
36.82ms, and the verification requires 38.05ms [18]. SHA-1
generates a hash value of 20bytes long.

7.1. Packet overhead

As shown in Figure 2, the timestamp certificate Cert_T is
Cert_Ti = {Content: “ATSi | KRi� 1

+ | KVi
+ | KRi

+”, Sig
(KRi, Content)} and includes an aggregated timestamp,
two public keys of adjacent RSUs, one public key of a
vehicle, and one digital signature about the message.
Because every vehicle keeps only two adjacent timestamps
in a normal traffic situation, the length of the aggregated
timestamp is usually twice as long as a single timestamp.
Let len() denote the length of an argument in bytes. Thus,
the total packet overhead for a single timestamp certificate
is as follows:

len CertTð Þ ¼ 2� len Timestampð Þ þ 3� len Keyð Þ þ len Sigð Þ
¼ 2� 8bytesþ 3 � 21 bytes þ 28 bytes

¼ 107 bytes

In a traffic jam situation, described in Section 4.1.2, as
the length of jammed road section increases, the length of
aggregated timestamp will increase proportionally to the
number of RSUs belonging to the jammed section. For
example, if a jammed road section covers three adjacent
RSUs, the size of the aggregated timestamp will be 4� len
(Timestamp). In such a situation, only the length of time-
stamps increases, and the additional overhead will be
16 bytes. Because of the long distance between two RSUs,
the aggregated timestamps will not have more than four
timestamps.
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Figure 9. False-positive rate for the timestamp series approach
for different vehicular moving variability (q=150m, s=80 km/h,

density=5/km). RSUs, roadside units.

Table II. Simulation environments.

Item Values

Simulation distance 500m
The number of vehicles 10, 30, 50, 100, and 200
Average driving speed 10, 30, 70, and 100 km/h
Signature algorithm ECDSA with a key of 163 bits
Asymmetric Encryption ECC with a key of 163 bits
Hash algorithm SHA-1
Transmission range 150m
Bandwidth 2MB
The length of timestamp 64bits
Packet size 107 and 226 bytes

ECDSA, elliptic curve digital signature algorithm; ECC, elliptic curve

cryptography.
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Whenever a vehicle meets an RSU, it requests certificate
update. As shown in Figure 2, the request message contains
{Timestamp-Request | KVi+ | Cert_Ti� 1 | Cert_Ri� 1 | Sig
(Timestamp-Request)}. The certificate of RSU Cert_R is a
regular certificate to certify the public key of the RSU. It
basically includes {KR+ | Sig(KR+)}. Thus, the minimum
size of the certificate is 21 bytes + 28bytes = 49bytes. How-
ever, it may contain additional RSU information including
the RSU ID (8 bytes), timestamp (8 bytes), and valid period
(5 bytes). Thus, we estimated the maximum size of certificate
as 70 bytes. Consequently, the packet overhead of the
request can be obtained as follows:

len Requestð Þ ¼ len KVþð Þ þ len Cert Tð Þ þ len Cert Rð Þ
þlen Sigð Þ

¼ 21 bytesþ 107 bytesþ 70 bytesþ 28 bytes

¼ 226 bytes

Next, we analyze the packet overhead in the temporary
certificate approach. We only consider the temporary certifi-
cate update protocol, which happens at the RSU without a
camera because most RSUs are not equipped with a camera.
Unlike in the timestamp certificate approach, the temporary
certificate has a fixed size of length regardless of traffic
situation. As shown in Figure 6, the temporary certificate is
{Content: “KVi

+ | KRi
+ | Issuing Time | Expiration Time |

Valid Area | H(Certi� 1)”, Sig(Content)}. Thus, the certifi-
cate size is

len Certð Þ ¼ 2� len Keyð Þ þ 2� len Timestampð Þ
þlen validareað Þ þ len hashð Þ þ len Sigð Þ

¼ 2� 8 bytesþ 2� 21 bytesþ 8 bytes

þ28 bytesþ 20 bytes ¼ 114 bytes

The certificate update request message Key Update issued
by a vehicle in Figure 6 is {Certi� 1 | KSi | RN | Sig(KVi� 1

� ,
RN). Then, the request size is

len Key Updateð Þ ¼ len Certð Þ þ len SymmetricSessionKeyð Þ
þlen RNð Þ þ len Sigð Þ

¼ 114 bytesþ 16 bytesþ 4 bytes

þ28 bytes ¼ 162 bytes

7.2. Processing time

In the certificate update protocol in both proposed
approaches, the most time-consuming processes are asym-
metric cryptographic computations including asymmetric
encryption/decryption and signature generation/verification.
We only consider such heavy computations for estimating
the processing time of our proposed schemes.

In the timestamp certificate updating, generating a request
by a vehicle requires only one signature generation
(36.82ms) [18]. On the other hand, creating a new timestamp
certificate by an RSU needs two signature verifications and

one signature generation. The total processing time of RSU
is 2� 38.05ms+36.82ms=112.92ms.

The temporary certificate updating protocol performs
encrypted message communication. For the consistency
with signature, we adopt elliptic curve cryptography
encryption and decryption with a key of 163 bits for our
asymmetric algorithm. The estimated encryption and
decryption time are 2.65 and 1.31ms, respectively [18].
Generating an update request by a vehicle requires one
signature generation (36.82ms), one asymmetric encryption
(2.65ms), and one symmetric encryption (ignored). So the
total processing time is 39.47ms.

Issuing a new certificate by an RSU requires one asym-
metric decryption (1.31ms), one symmetric decryption
(ignored), two signature verifications (76.1ms), one hash
function (ignored), one signature generation (36.82ms),
and one symmetric encryption (ignored). Therefore, the
estimated total processing time is equal to 114.23ms.

Consequently, both approaches require similar proces-
sing time. Table III shows the detailed comparison of our
two approaches in packet size and processing time.

7.3. Latency

Finally, we analyze the transmission delay and the transmis-
sion accuracy in the certificate update protocols in different
traffic situations. For this simulation, a single RSU broad-
casts its certificate periodically with an interval of 500ms.
Once a vehicle catches the RSU broadcasting, it generates
its certificate update request and broadcasts it. Then, the
RSU issues a certificate for a given request and broadcasts
it back. We define the transmission delay as a round-trip
delay of messages. It computes the total time difference from
the creation time of the request by a vehicle to the arrival
time of the corresponding certificate at the vehicle as follows:

T Delayð Þ ¼ T Requestð Þ þ T Certificateð Þ þ 2

�T Transmissionð Þ

where T() means the processing time for its argument.
The simulation is implemented from 10 to 200 vehicles

randomly distributed within the range of 500m. In addi-
tion, for each density, the simulation is repeated with the
same distribution of vehicles for average moving speeds
of 30, 70, and 100 km/h. However, we excluded some

Table III. Comparison of packet size and processing time.

Items Approaches

Timestamp
certificate

Temporary
certificate

Packet size (bytes) Certificate 107 114
Request 226 162

Processing time
(ms)

Certificate 112.92 114.23
Request 36.82 39.47
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unrealistic situations such as 200 vehicles within a
range of 500m at a speed of 100 km/h. We have run
the simulation 10 times for each case to obtain correct
average values.

Figure 10 shows the simulation results of the total trans-
mission delay. Ten vehicles drive with an average speed of
30 km/h generates the average transmission delay of
155.173ms. On the other hand, when 100 vehicles move
at a speed of 100 km/h, the average transmission delay is
159.665ms. When a small number of vehicles drive
slowly, the transmission delay is almost the same as the pro-
cessing time for generating request and issuing certificate.
The transmission delay is highly affected by the density of
vehicles and the moving speed of vehicles. As the density
increases, because of the bottleneck at the RSU by many
update requests and certificate responses, the transmission
delay takes longer. However, the difference is not that
significant because the maximal transmission delay only
takes about 9ms longer than the minimum transmission
delay.

When a vehicle does not receive the response from the
RSU for its first request within a pre-defined timeout period,

it must retransmit the request, which will create additional
delay. In order to know how often this retransmission
happens, we come up with a metric “transmission accuracy,”
defined as the success probability of the RSU receiving the
first request from a vehicle. Figure 11 shows the simulation
results of the transmission accuracy. In the case of 30
vehicles, the transmission accuracy is 100%. When 200
vehicles drive at a speed of 30 km/h, the accuracy is 99%.
In a case of 50 vehicles moving at 100km/h, the accuracy
is 98%. The worst case of accuracy of 96% is observed when
100 vehicles move with the speed of 100km/h.

8. CONCLUSIONS

We proposed two practical ways of building trustable
temporary certificates for defending against the Sybil
attack in an early-deployment stage VANET environment.
Our schemes require only RSUs on the roadway for issuing
the certificates without any dedicated vehicular public key
infrastructure for individual vehicle. Vehicles can obtain the
certificates by driving by the RSUs. In the timestamp series-
based data propagation, vehicles obtain non-transferable
timestamps from RSUs. The aggregated timestamp given
to a vehicle shows the vehicle’s most recent trajectory
and the time at particular locations. Because of the vari-
ance in the movement pattern of vehicles, a Sybil attack
can be detected by the similarity of the timestamps of
the impersonated vehicles.

In the temporary certificate-based data propagation, a
single temporary key pair and its certificate valid in a
particular area for a limited time are assigned to a single
vehicle. In order to satisfy the goal of assigning only one
temporary certificate to one vehicle, two methods of physical
authentication and certificate chain were used. Each vehicle
obtains its initial key pair and certificate from a camera-
equipped RSU by the physical authentication. After the
initialization, a vehicle updates its key pair and certificate
at every RSU. Because of the uniqueness of certificate, Sybil
attack can be prevented all the time.

Because the Sybil attack detection mechanism of the
timestamp series-based approach is based on the probability
of vehicle distribution, we analyzed the false-positive
decision rate mathematically.We also simulated it for simple
roadway architecture. The result shows that the false-positive
rate is less than 5% under the following conditions: (1)
vehicle’s average speed is 80 km/h, (2) RSU’s transmis-
sion range is150m, and (3) the distance between RSUs is
20 km.

Finally, we analyzed the performance of our approaches
in terms of packet size, processing time, transmission
delay, and transmission accuracy for different traffic
situations. The simulation results show that our schemes
are practical and suitable for a large scale of VANET
applications. For the future work, we plan to expand our
techniques suitable for a large scale of more complex
VANET environments.

Figure 10. Transmission delay in updating certificate for various
numbers of vehicles with different moving speeds (q=150m,

packet size= 226 bytes).

Figure 11. Transmission accuracy in updating certificate for
various numbers of vehicles with different moving speeds

(q=150m, packet size= 226 bytes).
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