13 research outputs found

    A Hybrid Mining Approach to Facilitate Health Insurance Decision: Case Study of Non-Traditional Data Mining Applications in Taiwan NHI Databases

    Get PDF
    This study examines time-sensitive applications of data mining methods to facilitate claims review processing and provide policy information for insurance decision-making vis-ร -vis the Taiwan National Health Insurance databases. In order to obtain the best payment management, a hybrid mining approach, which has been grounded on the extant knowledge of data mining projects and health insurance domain knowledge, is proposed. Through the integration of data warehousing, online analytical processing, data mining techniques and traditional data analysis in the healthcare field, an easy-to-use decision support platform, which will facilitate the health insurance decision-making process, is built. Drawing from lessons learned in case study, results showed that not only is hybrid mining approach a reliable, powerful, and user-friendly platform for diversified payment decision support, but that it also has great relevance for the practice and acceptance of evidence-based medicine. Researchers should develop hybrid mining approach combined with their own application systems in the future

    A Hybrid Mining Approach to Facilitate Health Insurance Decision: Case Study of Non-Traditional Data Mining Applications in Taiwan NHI Databases

    Get PDF
    This study examines time-sensitive applications of data mining methods to facilitate claims review processing and provide policy information for insurance decision-making vis-ร -vis the Taiwan National Health Insurance databases. In order to obtain the best payment management, a hybrid mining approach, which has been grounded on the extant knowledge of data mining projects and health insurance domain knowledge, is proposed. Through the integration of data warehousing, online analytical processing, data mining techniques and traditional data analysis in the healthcare field, an easy-to-use decision support platform, which will facilitate the health insurance decision-making process, is built. Drawing from lessons learned in case study, results showed that not only is hybrid mining approach a reliable, powerful, and user-friendly platform for diversified payment decision support, but that it also has great relevance for the practice and acceptance of evidence-based medicine. Researchers should develop hybrid mining approach combined with their own application systems in the future

    Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study

    Get PDF
    Background: We aimed to identify the indicators of healthcare fraud and abuse in general physiciansโ€™ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. Methods: We applied data mining approach to a major health insurance organization dataset of private sector general physiciansโ€™ prescription claims. It involved 5 steps: clarifying the nature of the problem and objectives, data preparation, indicator identification and selection, cluster analysis to identify suspect physicians, and discriminant analysis to assess the validity of the clustering approach. Results: Thirteen indicators were developed in total. Over half of the general physicians (54%) were โ€˜suspectsโ€™ of conducting abusive behavior. The results also identified 2% of physicians as suspects of fraud. Discriminant analysis suggested that the indicators demonstrated adequate performance in the detection of physicians who were suspect of perpetrating fraud (98%) and abuse (85%) in a new sample of data. Conclusion: Our data mining approach will help health insurance organizations in low-and middle-income countries (LMICs) in streamlining auditing approaches towards the suspect groups rather than routine auditing of all physician

    Examining the Transitional Impact of ICD-10 on Healthcare Fraud Detection

    Get PDF
    On October 1st, 2015, the tenth revision of the International Classification of Diseases (ICD-10) will be mandatorily implemented in the United States. Although this medical classification system will allow healthcare professionals to code with greater accuracy, specificity, and detail, these codes will have a significant impact on the flavor of healthcare insurance claims. While the overall benefit of ICD-10 throughout the healthcare industry is unquestionable, some experts believe healthcare fraud detection and prevention could experience an initial drop in performance due to the implementation of ICD-10. We aim to quantitatively test the validity of this concern regarding an adverse transitional impact. This project explores how predictive fraud detection systems developed using ICD-9 claims data will initially react to the introduction of ICD-10. We have developed a basic fraud detection system incorporating both unsupervised and supervised learning methods in order to examine the potential fraudulence of both ICD-9 and ICD-10 claims in a predictive environment. Using this system, we are able to analyze the ability and performance of statistical methods trained using ICD-9 data to properly identify fraudulent ICD-10 claims. This research makes contributions to the domains of medical coding, healthcare informatics, and fraud detection

    Data-Driven Implementation To Filter Fraudulent Medicaid Applications

    Get PDF
    There has been much work to improve IT systems for managing and maintaining health records. The U.S government is trying to integrate different types of health care data for providers and patients. Health care fraud detection research has focused on claims by providers, physicians, hospitals, and other medical service providers to detect fraudulent billing, abuse, and waste. Data-mining techniques have been used to detect patterns in health care fraud and reduce the amount of waste and abuse in the health care system. However, less attention has been paid to implementing a system to detect fraudulent applications, specifically for Medicaid. In this study, a data-driven system using layered architecture to filter fraudulent applications for Medicaid was proposed. The Medicaid Eligibility Application System utilizes a set of public and private databases that contain individual asset records. These asset records are used to determine the Medicaid eligibility of applicants using a scoring model integrated with a threshold algorithm. The findings indicated that by using the proposed data-driven approach, the state Medicaid agency could filter fraudulent Medicaid applications and save over $4 million in Medicaid expenditures

    Data-Driven Implementation To Filter Fraudulent Medicaid Applications

    Get PDF
    There has been much work to improve IT systems for managing and maintaining health records. The U.S government is trying to integrate different types of health care data for providers and patients. Health care fraud detection research has focused on claims by providers, physicians, hospitals, and other medical service providers to detect fraudulent billing, abuse, and waste. Data-mining techniques have been used to detect patterns in health care fraud and reduce the amount of waste and abuse in the health care system. However, less attention has been paid to implementing a system to detect fraudulent applications, specifically for Medicaid. In this study, a data-driven system using layered architecture to filter fraudulent applications for Medicaid was proposed. The Medicaid Eligibility Application System utilizes a set of public and private databases that contain individual asset records. These asset records are used to determine the Medicaid eligibility of applicants using a scoring model integrated with a threshold algorithm. The findings indicated that by using the proposed data-driven approach, the state Medicaid agency could filter fraudulent Medicaid applications and save over $4 million in Medicaid expenditures

    A model for the automated detection of fraudulent healthcare claims using data mining methods

    Get PDF
    Abstract : The menace of fraud today cannot be underestimated. The healthcare system put in place to facilitate rendering medical services as well as improving access to medical services has not been an exception to fraudulent activities. Traditional healthcare claims fraud detection methods no longer suffice due to the increased complexity in the medical billing process. Machine learning has become a very important technique in the computing world today. The abundance of computing power has aided the adoption of machine learning by different problem domains including healthcare claims fraud detection. The study explores the application of different machine learning methods in the process of detecting possible fraudulent healthcare claims fraud. We propose a data mining model that incorporates several knowledge discovery processes in the pipeline. The model makes use of the data from the Medicare payment data from the Centre for Medicare and Medicaid Services as well as data from the List of Excluded Individual or Entities (LEIE) database. The data was then passed through the data pre-processing and transformation stages to get the data to a desirable state. Once the data is in the desired state, we apply several machine learning methods to derive knowledge as well as classify the data into fraudulent and non-fraudulent claims. The results derived from the comprehensive benchmark used on the implemented version of the model, have shown that machine learning methods can be used to detect possible fraudulent healthcare claims. The models based on the Gradient Boosted Tree Classifier and Artificial Neural Network performed best while the Naรฏve Bayes model couldnโ€™t classify the data. By applying the correct pre-processing method as well as data transformation methods to the Medicare data, along with the appropriate machine learning methods, the healthcare fraud detection system yields nominal results for identification of possible fraudulent claims in the medical billing process.M.Sc. (Computer Science

    ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ฑด๊ฐ•๋ณดํ—˜ ๋‚จ์šฉ ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ์กฐ์„ฑ์ค€.As global life expectancy increases, spending on healthcare grows in accordance in order to improve quality of life. However, due to expensive price of medical care, the bare cost of healthcare services would inevitably places great financial burden to individuals and households. In this light, many countries have devised and established their own public healthcare insurance systems to help people receive medical services at a lower price. Since reimbursements are made ex-post, unethical practices arise, exploiting the post-payment structure of the insurance system. The archetypes of such behavior are overdiagnosis, the act of manipulating patients diseases, and overtreatments, prescribing unnecessary drugs for the patient. These abusive behaviors are considered as one of the main sources of financial loss incurred in the healthcare system. In order to detect and prevent abuse, the national healthcare insurance hires medical professionals to manually examine whether the claim filing is medically legitimate or not. However, the review process is, unquestionably, very costly and time-consuming. In order to address these limitations, data mining techniques have been employed to detect problematic claims or abusive providers showing an abnormal billing pattern. However, these cases only used coarsely grained information such as claim-level or provider-level data. This extracted information may lead to degradation of the model's performance. In this thesis, we proposed abuse detection methods using the medical treatment data, which is the lowest level information of the healthcare insurance claim. Firstly, we propose a scoring model based on which abusive providers are detected and show that the review process with the proposed model is more efficient than that with the previous model which uses the provider-level variables as input variables. At the same time, we devise the evaluation metrics to quantify the efficiency of the review process. Secondly, we propose the method of detecting overtreatment under seasonality, which reflects more reality to the model. We propose a model embodying multiple structures specific to DRG codes selected as important for each given department. We show that the proposed method is more robust to the seasonality than the previous method. Thirdly, we propose an overtreatment detection model accounting for heterogeneous treatment between practitioners. We proposed a network-based approach through which the relationship between the diseases and treatments is considered during the overtreatment detection process. Experimental results show that the proposed method classify the treatment well which does not explicitly exist in the training set. From these works, we show that using treatment data allows modeling abuse detection at various levels: treatment, claim, and provider-level.์‚ฌ๋žŒ๋“ค์˜ ๊ธฐ๋Œ€์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‚ถ์˜ ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณด๊ฑด์˜๋ฃŒ์— ์†Œ๋น„ํ•˜๋Š” ๊ธˆ์•ก์€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋น„์‹ผ ์˜๋ฃŒ ์„œ๋น„์Šค ๋น„์šฉ์€ ํ•„์—ฐ์ ์œผ๋กœ ๊ฐœ์ธ๊ณผ ๊ฐ€์ •์—๊ฒŒ ํฐ ์žฌ์ •์  ๋ถ€๋‹ด์„ ์ฃผ๊ฒŒ๋œ๋‹ค. ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋งŽ์€ ๊ตญ๊ฐ€์—์„œ๋Š” ๊ณต๊ณต ์˜๋ฃŒ ๋ณดํ—˜ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜์—ฌ ์‚ฌ๋žŒ๋“ค์ด ์ ์ ˆํ•œ ๊ฐ€๊ฒฉ์— ์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ํ™˜์ž๊ฐ€ ๋จผ์ € ์„œ๋น„์Šค๋ฅผ ๋ฐ›๊ณ  ๋‚˜์„œ ์ผ๋ถ€๋งŒ ์ง€๋ถˆํ•˜๊ณ  ๋‚˜๋ฉด, ๋ณดํ—˜ ํšŒ์‚ฌ๊ฐ€ ์‚ฌํ›„์— ํ•ด๋‹น ์˜๋ฃŒ ๊ธฐ๊ด€์— ์ž”์—ฌ ๊ธˆ์•ก์„ ์ƒํ™˜์„ ํ•˜๋Š” ์ œ๋„๋กœ ์šด์˜๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ œ๋„๋ฅผ ์•…์šฉํ•˜์—ฌ ํ™˜์ž์˜ ์งˆ๋ณ‘์„ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํ•˜๋Š” ๋“ฑ์˜ ๋ถ€๋‹น์ฒญ๊ตฌ๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ–‰์œ„๋“ค์€ ์˜๋ฃŒ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ์žฌ์ • ์†์‹ค์˜ ์ด์œ  ์ค‘ ํ•˜๋‚˜๋กœ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋ณดํ—˜ํšŒ์‚ฌ์—์„œ๋Š” ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋ฅผ ๊ณ ์šฉํ•˜์—ฌ ์˜ํ•™์  ์ •๋‹น์„ฑ์—ฌ๋ถ€๋ฅผ ์ผ์ผํžˆ ๊ฒ€์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์€ ๋งค์šฐ ๋น„์‹ธ๊ณ  ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์„ ํšจ์œจ์ ์œผ๋กœ ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š” ์ฒญ๊ตฌ์„œ๋‚˜ ์ฒญ๊ตฌ ํŒจํ„ด์ด ๋น„์ •์ƒ์ ์ธ ์˜๋ฃŒ ์„œ๋น„์Šค ๊ณต๊ธ‰์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ฒญ๊ตฌ์„œ ๋‹จ์œ„๋‚˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์œ ๋„ํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ์‚ฌ๋ก€๋“ค๋กœ, ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ฒญ๊ตฌ์„œ์—์„œ ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ€๋‹น์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ๋น„์ •์ƒ์ ์ธ ์ฒญ๊ตฌ ํŒจํ„ด์„ ๊ฐ–๋Š” ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ๊ธฐ์กด์˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ์‹ฌ์‚ฌ๊ฐ€ ์ด๋ฃจ์–ด ์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๋•Œ, ํšจ์œจ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ์ฒ™๋„๋„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ๋กœ, ์ฒญ๊ตฌ์„œ์˜ ๊ณ„์ ˆ์„ฑ์ด ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋•Œ, ์ง„๋ฃŒ ๊ณผ๋ชฉ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ์šด์˜ํ•˜๋Š” ๋Œ€์‹  ์งˆ๋ณ‘๊ตฐ(DRG) ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค ๊ณ„์ ˆ์„ฑ์— ๋” ๊ฐ•๊ฑดํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ๋กœ, ๋™์ผ ํ™˜์ž์— ๋Œ€ํ•ด์„œ ์˜์‚ฌ๊ฐ„์˜ ์ƒ์ดํ•œ ์ง„๋ฃŒ ํŒจํ„ด์„ ๊ฐ–๋Š” ํ™˜๊ฒฝ์—์„œ์˜ ๊ณผ์ž‰์ง„๋ฃŒ ํƒ์ง€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Š” ํ™˜์ž์˜ ์งˆ๋ณ‘๊ณผ ์ง„๋ฃŒ๋‚ด์—ญ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋Š”๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ํ•™์Šต ๋ฐ์ดํ„ฐ์—์„œ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š” ์ง„๋ฃŒ ํŒจํ„ด์— ๋Œ€ํ•ด์„œ๋„ ์ž˜ ๋ถ„๋ฅ˜ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค๋กœ๋ถ€ํ„ฐ ์ง„๋ฃŒ ๋‚ด์—ญ์„ ํ™œ์šฉํ•˜์˜€์„ ๋•Œ, ์ง„๋ฃŒ๋‚ด์—ญ, ์ฒญ๊ตฌ์„œ, ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž ๋“ฑ ๋‹ค์–‘ํ•œ ๋ ˆ๋ฒจ์—์„œ์˜ ๋ถ€๋‹น ์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 Chapter 2 Detection of Abusive Providers by department with Neural Network 9 2.1 Background 9 2.2 Literature Review 12 2.2.1 Abnormality Detection in Healthcare Insurance with Datamining Technique 12 2.2.2 Feed-Forward Neural Network 17 2.3 Proposed Method 21 2.3.1 Calculating the Likelihood of Abuse for each Treatment with Deep Neural Network 22 2.3.2 Calculating the Abuse Score of the Provider 25 2.4 Experiments 26 2.4.1 Data Description 27 2.4.2 Experimental Settings 32 2.4.3 Evaluation Measure (1): Relative Efficiency 33 2.4.4 Evaluation Measure (2): Precision at k 37 2.5 Results 38 2.5.1 Results in the test set 38 2.5.2 The Relationship among the Claimed Amount, the Abused Amount and the Abuse Score 40 2.5.3 The Relationship between the Performance of the Treatment Scoring Model and Review Efficiency 41 2.5.4 Treatment Scoring Model Results 42 2.5.5 Post-deployment Performance 44 2.6 Summary 45 Chapter 3 Detection of overtreatment by Diagnosis-related Group with Neural Network 48 3.1 Background 48 3.2 Literature review 51 3.2.1 Seasonality in disease 51 3.2.2 Diagnosis related group 52 3.3 Proposed method 54 3.3.1 Training a deep neural network model for treatment classi fication 55 3.3.2 Comparing the Performance of DRG-based Model against the department-based Model 57 3.4 Experiments 60 3.4.1 Data Description and Preprocessing 60 3.4.2 Performance Measures 64 3.4.3 Experimental Settings 65 3.5 Results 65 3.5.1 Overtreatment Detection 65 3.5.2 Abnormal Claim Detection 67 3.6 Summary 68 Chapter 4 Detection of overtreatment with graph embedding of disease-treatment pair 70 4.1 Background 70 4.2 Literature review 72 4.2.1 Graph embedding methods 73 4.2.2 Application of graph embedding methods to biomedical data analysis 79 4.2.3 Medical concept embedding methods 87 4.3 Proposed method 88 4.3.1 Network construction 89 4.3.2 Link Prediction between the Disease and the Treatment 90 4.3.3 Overtreatment Detection 93 4.4 Experiments 96 4.4.1 Data Description 97 4.4.2 Experimental Settings 99 4.5 Results 102 4.5.1 Network Construction 102 4.5.2 Link Prediction between the Disease and the Treatment 104 4.5.3 Overtreatment Detection 105 4.6 Summary 106 Chapter 5 Conclusion 108 5.1 Contribution 108 5.2 Future Work 110 Bibliography 112 ๊ตญ๋ฌธ์ดˆ๋ก 129Docto

    Data-Driven Models, Techniques, and Design Principles for Combatting Healthcare Fraud

    Get PDF
    In the U.S., approximately 700billionofthe700 billion of the 2.7 trillion spent on healthcare is linked to fraud, waste, and abuse. This presents a significant challenge for healthcare payers as they navigate fraudulent activities from dishonest practitioners, sophisticated criminal networks, and even well-intentioned providers who inadvertently submit incorrect billing for legitimate services. This thesis adopts Hevnerโ€™s research methodology to guide the creation, assessment, and refinement of a healthcare fraud detection framework and recommended design principles for fraud detection. The thesis provides the following significant contributions to the field:1. A formal literature review of the field of fraud detection in Medicaid. Chapters 3 and 4 provide formal reviews of the available literature on healthcare fraud. Chapter 3 focuses on defining the types of fraud found in healthcare. Chapter 4 reviews fraud detection techniques in literature across healthcare and other industries. Chapter 5 focuses on literature covering fraud detection methodologies utilized explicitly in healthcare.2. A multidimensional data model and analysis techniques for fraud detection in healthcare. Chapter 5 applies Hevner et al. to help develop a framework for fraud detection in Medicaid that provides specific data models and techniques to identify the most prevalent fraud schemes. A multidimensional schema based on Medicaid data and a set of multidimensional models and techniques to detect fraud are presented. These artifacts are evaluated through functional testing against known fraud schemes. This chapter contributes a set of multidimensional data models and analysis techniques that can be used to detect the most prevalent known fraud types.3. A framework for deploying outlier-based fraud detection methods in healthcare. Chapter 6 proposes and evaluates methods for applying outlier detection to healthcare fraud based on literature review, comparative research, direct application on healthcare claims data, and known fraudulent cases. A method for outlier-based fraud detection is presented and evaluated using Medicaid dental claims, providers, and patients.4. Design principles for fraud detection in complex systems. Based on literature and applied research in Medicaid healthcare fraud detection, Chapter 7 offers generalized design principles for fraud detection in similar complex, multi-stakeholder systems.<br/

    Leadership Strategies and Initiatives for Combating Medicaid Fraud and Abuse

    Get PDF
    An estimated 3-10% of the $2 trillion spent annually on health care in the United States is lost to fraud. Improper payments undermine the integrity and financial sustainability of the Medicaid program and affect the ability of federal and state governments to provide health care services for individuals and families living at or below the poverty level. This study explored how health care leaders in the state of Arizona described factors contributing to the invisible nature of Medicaid fraud and abuse and necessary strategies for counteracting the business opportunities of Medicaid fraud and abuse. The institutional choice analytic framework grounded the study. Data were gathered from the review of documents and information received from 10 interviews with health care leaders responsible for the administration, delivery, and regulation of Medicaid services in Arizona. Collected data were coded to identify underlying themes. Key themes that emerged from the study included the need for health care leaders to use modern technologies to combat Medicaid fraud and abuse and concentrate and strengthen Medicaid fraud and abuse mitigation efforts at the state level. Study data might contribute to social change by identifying Medicaid fraud and abuse mitigation strategies that will protect the financial and structural integrity of the Medicaid program, ensuring Americans living at or below the poverty level have access to quality health care services
    corecore