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Abstract

Deep learning-based Abuse Detection in
Healthcare Insurance with Medical

Treatment Data

Jehyuk Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

As global life expectancy increases, spending on healthcare grows in accordance

in order to improve quality of life. However, due to expensive price of medical care,

the bare cost of healthcare services would inevitably places great financial burden

to individuals and households. In this light, many countries have devised and estab-

lished their own public healthcare insurance systems to help people receive medical

services at a lower price. Since reimbursements are made ex-post, unethical practices

arise, exploiting the post-payment structure of the insurance system. The archetypes

of such behavior are overdiagnosis, the act of manipulating patient’s diseases, and

overtreatments, prescribing unnecessary drugs for the patient. These abusive be-

haviors are considered as one of the main sources of financial loss incurred in the

healthcare system. In order to detect and prevent abuse, the national healthcare

insurance hires medical professionals to manually examine whether the claim fil-

ing is medically legitimate or not. However, the review process is, unquestionably,
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very costly and time-consuming. In order to address these limitations, data mining

techniques have been employed to detect problematic claims or abusive providers

showing an abnormal billing pattern. However, these cases only used coarsely grained

information such as claim-level or provider-level data. This extracted information

may lead to degradation of the model’s performance.

In this thesis, we proposed abuse detection methods using the medical treat-

ment data, which is the lowest level information of the healthcare insurance claim.

Firstly, we propose a scoring model based on which abusive providers are detected

and show that the review process with the proposed model is more efficient than

that with the previous model which uses the provider-level variables as input vari-

ables. At the same time, we devise the evaluation metrics to quantify the efficiency

of the review process. Secondly, we propose the method of detecting overtreatment

under seasonality, which reflects more reality to the model. We propose a model

embodying multiple structures specific to DRG codes selected as important for each

given department. We show that the proposed method is more robust to the sea-

sonality than the previous method. Thirdly, we propose an overtreatment detection

model accounting for heterogeneous treatment between practitioners. We proposed

a network-based approach through which the relationship between the diseases and

treatments is considered during the overtreatment detection process. Experimental

results show that the proposed method classify the treatment well which does not

explicitly exist in the training set. From these works, we show that using treat-

ment data allows modeling abuse detection at various levels: treatment, claim, and

provider-level.
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Chapter 1

Introduction

As global life expectancy increases, spending on healthcare grows in accordance in

order to improve quality of life. Figure 1.1 illustrates the annual expenditure on

health per capita of several countries in OECD [66]. It can clearly be observed

that the expenditure on healthcare is gradually increasing. In case of South Korea,

healthcare expenditure per capita jumps to double between 2008 and 2018.

Figure 1.1: Annual expenditure on health per capita

However, medical care is quite expensive. Without a certain form of a compen-
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sation system, the bare cost of healthcare services would inevitably places great

financial burden to individuals and households. In this light, many countries have

devised and established their own public healthcare insurance systems to help people

receive medical services at a lower price.

There exists a wild range of national healthcare insurance systems, and they differ

by design from country to country. The first source of variability lies in the structure

of the funding system. Canada and South Korea adopted the single-payer healthcare

system, under which the government directly pays insurance fee by the means of

general taxation. That is, in other words, citizens in these countries are legally

obligated to pay taxes for the national health insurance. In France, compulsory

contributions are made to make up the health insurance fund which are managed

by non-profit organizations which are established solely for this purpose. In other

countries, such as Germany or Belgium, a sickness fund is set up between employers

and employees, and they make contributions to the fund. Under this system, funds

are not from the government nor are they direct private payments.

On the other hand, the payment systems differ country by country. There is a

variety of payment system structures including fee-for-service, bundled-payments,

and global budgets. Fee-for-service refers to the payment system under which re-

imbursements are made for every treatment at a pre-determined unit price. This

system is widely used because patients can receive quality care while providers can

get reimbursed for their service. Bundled-payment, on the contrary, is a system

which compensates medical expenses for the amount predetermined by the disease

group to which the patient belongs to, instead of using the patient’s medical history

as a standard for compensation. The biggest strength of this system is that it is
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possible to suppress excessive treatment and increase transparency in medical ex-

penses. Finally, global budget system estimates the total amount of medical expenses

provided to the public and pays for the predetermined amount accordingly. Global

budgets also has a tendency to reduce the likelihood of overdiagnosis or overtreat-

ment. However, as compared to fee-for-service, the quality of medical care provided

under bundled-payment or the global budget systems may be lower.

Given the trade-off between the quality of medical care and ethical practices,

many countries run different systems simultaneously rather, than relying on a single

system, in order to alleviate systematic shortcomings. France adopted all of the three

systems, fee-for-service, global budget, and bundled payment system. Germany has

established a modified version of global budgets and combined it with fee-for-service

system. The health insurance system of South Korea, which will be the main focus

of this study, takes the form of the fee-for-service system, which compensates the

practitioners for their service. However, for seven disease groups, the reimbursement

process takes the form of bundled-payment system, which compensates the practi-

tioners by pre-determined payment, no matter how many treatments are provided

to the patient. In other words, DRG-codes are incorporated in order to complement

the limitations of the fee-for-service system with bundled payments-like apparatus.

In order to broaden the scope of the system and the range of its application, the

National Health Insurance Corporation of South Korea (NHIS) is implementing ex-

tensions to the bundled- payment system for patients who are not in pre-defined

seven patient groups.

Since reimbursements are made ex post, unethical practices arise, exploiting the

post-payment structure of the insurance system. The archetypes of such behavior
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are overdiagnosis, the act of manipulating patient’s diseases, and overtreatments,

prescribing unnecessary drugs for the patient. The loopholes in the system allow

room for medical providers to prescribe excessive medical treatment or request non-

existent medical treatment should they want to. Federal Bureau of Investigation

(FBI) provides an extensive list of medical fraud cases by type, relevant health in-

surance information along with pertinent characteristic information, in the Financial

Crime Report [27]. According to the report, the total fraudulent billing for health

care programs amounts to be at least 3% of the total health expenditure which is

estimated to be around $2.4 trillion [27]. In addition, according to a report issued

by the Korean Financial Supervisory Service, the amount of financial loss incurred

by fraudulent activities was estimated to be about $1.8 million in 2018, with further

damages expected [43]. Such practices do not only increase the burden of medical

expenses on the patients but also incur unnecessary social costs and expenditures.

Some studies have reported that approximately 10% of medical spending is wasted

due to these types of unethical practices ([22], [84]).

At this stage, let us clearly define fraud and abuse within the scope of healthcare

insurance. These words appear ubiquitously in various situations, and it is difficult

to disentangle the underlying meanings. Following the convention, We define fraud

as a type of dishonest or intentional act which leads to unauthorized benefits for

the person who commits the act or to someone else who is not entitled to the

benefit [77]. On the other hand, we define abuse as a medical service or practice not

consistent with the generally accepted sound fiscal practices [77]. Into the category

of medical frauds fall the cases where medical service is documented and charged

yet not really performed, or when a diagnosis on a patient is falsified in order to
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justify the unnecessary medical procedure. Abuse may lead to prescriptions that do

not meet the medically stable criteria, or may result in incurring unnecessary costs

by deliberately executing medically gratuitous treatments. Examples of abuse are

overtreatment or improper billing practices.

Overtreatment, in particular, is considered as one of the main sources of finan-

cial loss incurred in the healthcare system. According to the report by Institute of

Medicine, prescribing unnecessary services is the primary contributor to the loss

incurred in the U.S. healthcare system to waste in US healthcare [59]. The report

estimated that these behaviors account for approximately $210 billion out of the

$750 billion loss in a year. Furthermore, a survey study, which collected survey the

results from he Survey of overutilization of surveying 2106 physicians in the United

States, about 20.6% of treatment is perceived as unnecessary [55]. Past literature

has shown that such inappropriate or unnecessary treatments were especially con-

spicuous specialty care hospitals ([12], [32], [48]).

In order to detect and prevent abuse, the national healthcare insurance hires

medical professionals to manually examine whether the claim filing is medically

legitimate or not. However, the review process is, unquestionably, very costly and

time-consuming. Moreover, there are not enough professionals to examine millions of

claims. For example, in case of South Korea, there were only about 1,700 reviewers

for 1.5 billion claims filed in 2016 [31]. Clearly, it is not possible to manually examine

all the claims.

In response, insurance companies have resorted to an automated rule-based re-

view system [79]. Although it can save much time and effort from reviewing all the

claims manually, rule-based review system at the current level can only detect very
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simple abusive practices. Moreover, because this system is based on a set of pre-

defined rules, it cannot cope with the new types of frauds and abuses rising over

time.

In order to address these limitations, data mining techniques have been employed

to detect abusive claims or providers showing an abnormal billing pattern ([4], [6],

[30], [44], [52], [53], [65], [68], [79], [80], [82], [98], [103]). Based on these studies, in-

surance companies develop models detects abusive providers or problematic claims

and examine relevant claims. However, these cases only used coarsely grained in-

formation such as claim-level or provider-level data. The lowest-level of information

available from a claim, nonetheless, is the set of medical treatments, where patient’s

diseases and the set of corresponding medical activities are listed. A claim is a col-

lection of several medical treatments, while abuse may be incurred as the result of

a single or multiple medical treatments. Similarly, a provider can be represented by

filed claims, while abuse may be incurred as the result of a single claim or multiple

claims. So far, past literature has relied on the claim-level analysis or provider-level

analysis, hence losing detailed information of each abuse in their detection models.

In this dissertation, we proposed an abuse detection methods in healthcare in-

surance using the medical treatment data, which is the lowest level information of

the healthcare insurance claim. By using the lowest-level information, we show that

it is possible to detect abuse from the healthcare insurance claims more precisely

than the model with derived high-level variables. We also show that it is possible to

detect abuse at various levels such as providers, claims, and treatments. First, we

propose a scoring model based on which abusive providers are detected. We showed

that the review process with proposed method is more efficient than with previous

6



method, which is a scoring model with provider-level information. Second, we pro-

pose a detection model under the change of claim distribution, which reflects more

reality condition. The proposed method is more robust to the change of distribution

than the previous method. Third, we propose a detection model accounting for dif-

ferent prescription to the same patient, which reflects more reality condition. The

proposed method understands the context of each entity by utilizing graph embed-

ding method. The proposed model shows better performance than the model that

does not include the context of each object. As can be seen here, we have proposed

detection methods in situations similar to the real world.

This dissertation is organized as follows. In chapter 2, we proposed a neural

network-based method of measuring the degree of abuse of medical service providers

and selecting the abusive provider. Our model is, to our best knowledge, among

the first to detect abuse in healthcare insurance using medical treatment data. In

chapter 3, we propose overtreatment detection model which accounts for seasonality

in claims by exploiting the concept of diagnosis-related groups, which was originally

devised to classify patients. We showed that incorporating diagnosis-related groups

during the claim review process helps detecting abuse better. In chapter 4, we pro-

pose an overtreatment detection model which extracts the relationship between the

disease and the treatment by using graph embedding methods. Finally, we discuss

the contributions and future work of this dissertation in chapter 5.
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Chapter 2

Detection of Abusive Providers by department
with Neural Network

2.1 Background

Abuse in healthcare refers to behaviors of providing unnecessary care to the patient.

When an insurance company compensates for these unnecessary behaviors, it leads to

the loss of the company. If this company is a national healthcare insurance company,

it leads to an increase in premiums. In the case of countries with the single-payer

healthcare system, such as South Korea, all taxpayers in the country will suffer from

this loss. In other words, it can lead to a social loss in as sense that people cannot

receive healthcare services at affordable prices. Due to this reason, abuse detection

is an important task to solve for the healthcare insurance company, no matter if it

is private or public.

In order to prevent the loss, they hire medical experts to detect these unneces-

sary behaviors. The problem is there are not enough experts to examine a bunch of

claims. Moreover, to examine the healthcare claims, reviewers are required to know

much more background knowledge than the other insurance. It means that it is more

difficult to hire experts than other insurance. In order to tackle these difficulties, ef-

forts were made to increase the efficiency of the review process. Instead of examining
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all claims carefully, reviewers select some problematic claims and manually review

them. The objective here is set to reduce as much cost as possible by detecting as

much abuse as possible with limited labor.

Now, the important issue now boils down to how these problematic claims should

be selected. If a large proportion of the selected claims involves overtreatments, the

reviewers can detect lots of abuse and reduce as much waste. If not, the effect of

the examination would be insignificant. There have been studies that aim to detect

these problematic claims using datamining techniques. These studies can be divided

into two groups: detecting problematic claims and detecting abusive providers. The

key assumption underlying the literature on ‘detecting abusive providers’ is that

practitioners practice in a homogeneous pattern. This assumption would, in turn,

lead to the conclusion that claims from abusive providers are more likely to include

greater number of overtreatments. That is, in other words, if the reviewers can

determine candidates for highly likely abusive providers and examine their claims

as a priority, then there’s a greater change to detect many more abuse claims in

a shorter amount of time, hence being able to recover the loss induced by abuse.

South Korea’s HIRA screens through all the claim filings using their own scoring

model to detect abusive provider candidates. The scoring model relies on datamining

techniques, and the data the model learns is at the provider level.

However, previous studies do not use all of the detailed information residing in

raw data. Past literature utilizes derived variables computed at the claim-level in-

formation or the provider-level. This can lead to poor performance of the model.

Field experts from HIRA have expressed their aspiration to advance their existing

model and suggest points of improvement. Their belief is that the primary reason of
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poor performance resides in the limitations in the input variables. Input variables

currently in use are at the provider-level, hence incapable of accounting for different

characteristics across providers. For example, there may be providers with a rela-

tively small number of visits yet with large amounts of medical expenses, while some

other providers have a relatively large number of visits with small amounts of med-

ical expenses. Patient visits and medical expenses may vary according to the size of

the provider. Failure to account for provider-wise variations may lead to degrada-

tion of the model’s performance. Moreover, different diseases may be associated with

different forms of abuse, yet provider-level variables cannot account for disease-wise

variations either.

In this chapter, we address these issues and propose a model that scores the

degree of medical abuse by provider using medical treatment data. The proposed

method consists of two steps: training a neural network which scores the degree of

abuse from each medical treatment, and then calculating the abuse score of each

treatment by multiplying the neural network result by the claimed amount. Finally,

abuse scores of the treatments are aggregated to the provider level. We define the

resulting score to be the abuse score of the subject provider. We test the proposed

model using in-patient claim data from six different departments in the year of

2016. Experiment results show that the proposed model is more efficient than the

existing model which uses only provider-level variables. In addition, we show that

the proposed model scores providers well as compared to the previous model.

The rest of the chapter is organized as follows. In section 2.2, we review the past

literature on data mining methods for abnormality detection in healthcare insur-

ance. Section 2.3 provides detailed descriptions of the proposed model. In section
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2.4, we elaborate on experiment settings. We also describe the devised evaluation

measures in this section. Section 2.5 reports the experiment results. Finally, section

2.6 concludes the paper.

2.2 Literature Review

2.2.1 Abnormality Detection in Healthcare Insurance with Datamin-

ing Technique

There are many studies on detecting fraud or abuse in the health insurance industry.

In this subsection, we briefly survey through two major branches of health insurance

abnormality detection: detecting abnormal providers, detecting abnormal claims.

Detecting abnormal providers

First, we briefly review several studies related to detecting abnormal providers.

Here, the term ‘provider’ means medical service provider which provides medical

service to patients such as medical institutions, general practitioners. We define

abnormal providers as the providers that have different billing patterns to others.

Most studies that aim to detect these providers suggest models with provider-level

variables. In most cases, these variables are extracted from the raw data.

He et al. [30] applied the multi-layer perceptron (MLP) to detect abnormal Gen-

eral Practitioners (GPs) with sampled profile data of practicing GPs. They used 28

GP-level features that are selected by consultants. Also, the profiles were labeled

on a 1-4 scale. They trained a multilayer perceptron that with this data. Also, they

utilized the self-organized map (SOM) [42] with the MLP to classify the GP practice

profiles.

Shan et al. [79] used the association rule mining method to make rules for detect-
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ing abnormal providers. These rules include both positive rules and negative rules.

They applied the method in real claim data from Medicare Australia’s Enterprise

Warehouse. As a result, they extracted 215 rules and evaluated qualitatively and

quantitatively. Users are willing to use this method because they can interpret the

abuse though they can detect only simple abuses with these rules.

Shan et al. [80] detected abnormal providers by utilizing the local outlier factor

(LOF) method which is a kind of unsupervised learning approach. They applied

the method in the Australian optometrist dataset using 12 provider-level variables.

They found the proposed approach outperforms domain-knowledge based methods.

It means even if data is not fully labeled, the unsupervised method may be a good

method to detect providers with abnormal billing patterns.

Liou et al. [53] conducted a study of detecting abnormal providers with extracted

cost-related variables such as average drug cost, average diagnosis fee, or average

medical expenditure per day. They trained three supervised learning models with

the claim data from Taiwan’s National Health Insurance using these variables. The

three models were logistic regression, neural network, and classification tree. They

found that the proposed model classifies abnormal providers from all providers well.

Lin et al. [52] suggested a knowledge discovery in database (KDD) approach

based method that aims to detect abnormal GPs. The proposed method includes

these processes. First, extract GPs’ profiles from the claim databases. Here, the

profile means the provider-level information such as the amount of fee, amount of

prescription days, or average drug fee per case. From these variables, segment the

providers using clustering methods such as SOM or PCA. Then, they described the

billing patterns of each segment and provided the detailed managerial guidance that
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is from domain experts. They selected abnormal segments based on this guidance.

Finally, the providers in such segments are considered as abnormal providers. They

applied this method to the claim data from the National Health Insurance of Taiwan.

The result was promising in that the model detects the abnormal providers efficiently.

Shin et al. [82] devised a scoring model that scores the provider’s degree of abuse.

Also, they claimed that the score from their model can be used to detect the abusive

providers. The scoring model is includes following steps. First, calculate the degree

of anomaly (DA) for each variable which means the deviation from the average value.

Then, define the composite degree of anomaly (CDA) as a weighted average of DA

and calculate CDA for each provider. The provider’s CDA value is considered as

the provider’s degree of abuse. After the CDA value for each provider is calculated,

derive the grade for degree of anomaly (GDA) by segment the CDA into several

groups. In order to use these scores in detecting abusive providers, train a decision

tree model using provider’s profiles as input variables, and GDA value as a target

variable. They applied this method to the outpatient claim data from HIRA in South

Korea. They found that the proposed model is able to detect abusive providers well

and easy to update.

These studies are about detecting abnormal providers using each provider’s pro-

file information. In other words, these models only use each provider’s information,

not the provider-provider relationship. A study conducted by Wang et al. [98] is

about detecting abusive providers using the relationship. They constructed a so-

cial network of patients and providers from patients’ visit sequences. For example,

suppose a patient visits provider A. If the patient shows no improvement, he may

visit different provider B. If then, make a directed edge from provider A to provider
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B. It means if a node has high out-degree, the provider corresponding to the node

can be considered suspicious. After the network is constructed, calculate the trust-

worthiness score for each node. Then, select suspicious providers and consider them

as abnormal providers. They applied this method to both simulated and real-world

claim data from National Health Insurance of Taiwan. They found that their method

is effective in identifying abnormal providers. Also, they claimed that reviewers can

detect abnormal providers effectively if the proposed method is used with traditional

methods.

Detecting abnormal claims

We can define abnormal claims as the claims that have different billing patterns

to others or including overtreatment. Most papers that aims to detect these claims

suggest models with claim-level variables. The variables are also extracted from

the raw data. Yang and Hwang [103] used the process mining framework to detect

abnormal claims. They define a term clinical pathway, which means frequent clinical

patterns from clinical instances. If an instance deviated from the pathway, it is

considered as an abnormal claim. They applied the proposed method in claim data

from NHI program of Taiwan. Their experiment shows that the proposed method is

more efficient than manually constructed detection models.

Ortega et al. [68] suggest a framework that detects abnormalities using the neural

network. This model is not aimed to detect abnormal claims only. It aims to detect

‘abnormalities’. First, they define four import entities that play important roles in

healthcare insurance: medical claims, affiliates, medical professionals, and employers.

Then, train neural networks for each entity that detects abnormalities. Also, the

classification model and result from one entity give feedback to other models to
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improve the model performance. They applied the proposed framework in real claim

data from private pre-paid health insurance plans(ISAPRE) in Chile. They found

that the proposed model shows better performance. Also, the model shows good

performance even if a new input data has quite different patterns to previous data.

Aral et al. [4] supposed a model that calculates the fraudulent risk of a claim

with cross-feature analysis. The fraudulent risk is calculated from incidence matrices

that are derived from a correlated variable pair. Risk metrics from both categori-

cal features and ordinal features are calculated from the incidence matrices. They

applied the proposed method to real claim data from Turkey. It shows that their

approach is capable of detecting abnormalities. Moreover, another important feature

of the model is the fact that it can be used in online because the inference time of

this model is very short.

A framework that Bayerstadler et al. [6] devised is quite different. They try to

model the claim with Bayesian multinomial latent variable. They assumed every

claim is in one of following categories: ‘Unperformed services’(UP), ‘Unjustified ser-

vices’(UJ), ‘Other billing issues’(BI), and ‘No irregularities’(NI). Then, a claim i fol-

lows the multinomial distribution with several parameters. In order to estimate these

parameters, they used the multinomial logit model and Markov Chain Monte Carlo

(MCMC) sampling. They confirmed that the performance of their model showed

better performance than other benchmark models.

One of the weaknesses of previous models is that they are not proper models to

detect evolving frauds or abuses. In order to detect these changing abnormalities,

the model needs to be re-training. However, it is difficult to know the right time

to retrain, because medical claim data is different from stream data. Ngufor and
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Wojtusiak [65] suggested a change point detection model with the concept drift

method to solve this problem. Also, they suggested an abnormal claim detection

method after detecting these change points. They applied the proposed method to

simulated data and real claim data from INOVA Health System of Northern Virginia.

The approach of Kose et al. [44] suggested is quite different from previous models.

They asserted that fraudulent behavior should be considered as provider-claim pair,

not the claim or provider itself. They claimed that frauds are from the behaviors

of multiple actor types (providers) and multiple commodities(claims). Also, they

utilized the interactive machine learning approach in order to make the model adapt

to changing fraud types. They found the proposed method is capable of detecting

abnormalities well.

2.2.2 Feed-Forward Neural Network

The feed-forward neural network is a type of an artificial neural network, in which

the nodes in the model do not form a cycle [105]. In other words, the information

only moves from input nodes to output nodes through hidden nodes without any

backward moves. It is the simplest form of the artificial neural network. If there is

only a single layer of output nodes, it is called a single-layer perceptron network.

If the network consists of several layers, then it is called a multilayer perceptron

(MLP) network.

The main goal of the feed-forward network is to approximate a function. Accord-

ing to the universal approximation theorem, a feed-forward neural network compris-

ing a single hidden layer with an activation function and a linear output layer can

approximate continuous functions on the compact subset of Rn ([19], [34]). That is,

17



Table 2.1: Previous studies about the abnormal detection in healthcare insurance

Type of
abnormality

Authors
Data mining

approach
Method

Provider He et al. [30] Supervised Neural network

Lin et al. [52] Unsupervised PCA, SOM

Liou et al. [53] Supervised
Classification tree,
logistic regression,
neural network

Shan et al. [79] Unsupervised Association rules

Shan et al. [80] Unsupervised
Local density based
outlier detection

Shin et al. [82] Supervised
Distance based method
for univariate variable,
decision tree

Wang et al. [98] Unsupervised Network analysis

Claim Yang and Hwang [103] Supervised
Process mining,
association rules

Ortega et al. [68] Supervised Neural network

Aral et al. [4] Hybrid
Distance based correlation
and risk matrices

Ngufor and
Wojtusiak [65]

Hybrid
Change point detection,
unsupervised data labeling,
classification model

Bayerstadler et al. [6] Supervised
Latent variable modeling,
MCMC

Behavior
(Providers-claims)

Kose et al. [44] Interactive
Analytic hierarchical processing(AHP),
EM algorithm, data visualization
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in other words, a large MLP may represent any function given proper parameters.

However, it does not guarantee that the training algorithm will be able to learn that

function for sure.

In many cases, the back-propagation algorithm is used to train a neural network

[78]. When the input value x generates an output value ŷ, the scalar error E(θ)

is calculated, with θ representing the set of parameters in the model. The back-

propagation algorithm allows moving this information from the output layer to the

input layer while computing the gradient. The network parameters are updated

according to these gradients by ∆θ = −α · (δE(θ)/δθ), in order to minimize the

error function.
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Consider a m-layer feed-forward neural network which is fully connected. The input

dimension is n, and the output dimension is 1. Let us define some notations as

follows.

• wkij : weight for perceptron j in the k-th hidden layer for the incoming node i

in the (k − 1)-th hidden layer

• bki : bias of perceptron i in the k-th hidden layer

• hki : the product sum plus the bias of perceptron i in the k-th hidden layer

• gh: activation function of the hidden layers

• go: activation function of the output layers

• oki : the output of the node i in the k-th hidden layer

• rk: number of the nodes in the k-th hidden layer

• wki : weight vector of perceptron i in the k-th layer. wki = {wk1i, ..., wkrki}

• ok: output vector of k-th layer. ok = {ok1, ..., orki}

Then, the output of the neural network can be expressed as follows

ŷ = go(w
m
i · om−1 + bm1 )

Where hki = wki · ok−1 + bki , o
k
i = gh(hki ), for i = 1, 2, ..., rk
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2.3 Proposed Method

This section presents a scoring model that measures provider’s degree of abuse

by using medical treatments. The model should give higher score to more abusive

providers if the model is well trained. Then, the review process might be efficient if

the reviewers only review claims from providers with high score.

At this point, we clearly define the degree of abuse. Once a provider submits a

claim to the insurance company, the reviewers examine all the treatments appearing

in the claim. Then, they determine whether each treatment is abused or not. If a

treatment is adjudged as abuse, the amount of abuse is determined in following way:

if the treatment is considered to be totally unnecessary to the patient, the abused

amount equals the amount claimed; if the treatment is considered to be necessary yet

excessive, then the abused amount is less than the claimed amount. The insurance

company reimburse the providers for the total claimed amount, excluding the abused

amount. In this paper, we define the degree of abuse of a provider as the total abused

amount from whole claims that is submitted by the provider.

The proposed method consists of two steps. First, we train a model that cal-

culates the likelihood of abuse for each medical treatment. The model is a kind of

neural network that classifies whether the treatment is normal or abuse. Upon the

completion of calculating the likelihood for each treatment in the test set, the result

form the neural network is multiplied by the claimed amount the resulting measure

of which we define as the abuse score of the subject treatment. Then, aggregate

the abuse score for each treatment to the provider-level by combining scores if the

treatments came from the same provider. We define the result as the abuse score of

the provider. Figure 2.1 summarizes the whole framework of the provider’s degree
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of abuse.

Figure 2.1: The process of scoring a provider’s degree of abuse

2.3.1 Calculating the Likelihood of Abuse for each Treatment with

Deep Neural Network

The proposed model employs a deep neural network to calculate the likelihood of

abuse for each treatment. The model uses the documented information regarding

to each treatment as input variables. The input variables include patient-related in-

formation, medical treatment-related information. The patient-related information

includes age, gender, diseases, as well as the medical treatment-related information

includes the type of operation, the unit price of medicine, or the number of medica-

tion days. The model structure is illustrated in Figure 2.2.

As illustrated in Figure 2.2, the proposed model uses both numerical variables

and categorical variables. One of the most common-approaches to deal with cat-
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Figure 2.2: Structure of treatment scoring model

egorical variables is one-hot encoding. However, this method is undesirable if the

categorical variables are of high cardinality. The data dimension will be exploded

if we convert the categorical variables to numerical vectors using one-hot encoding

method. Instead, we hire an embedding function to convert those variables. Our pro-

posed model trains the embedding function as part of the training phase of the entire

network. The classification error is back-propagated to embedding layers as well as

hidden layers. We illustrate the training phase mathematically as follows. Suppose

that we want to represent a category variable with cardinality V as a d-dimensional

vector, which is d� V . The embedding vector can be calculated as follows.

h = f(x) = xTW

Here, the embedding matrix W is also trained with the neural network as it mini-
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mizes the total error function during the training phase. In this case, the total loss

takes the form of a binary cross entropy function, defined as follows.

L = −
N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)

The classification error is back-propagated through the hidden layers and the em-

bedding layers, and the parameters for both of the layers are updated as error is

minimized.

In our model, we also account for a special case: the multi-valued categorical

variable. In this study, the patients’ disease information variable has such charac-

teristics. When a patient visits the medical provider, his/her medical record for the

visit is mostly likely to be associated with more than one disease. In this case, the

disease variable has multiple values.

If the claim data includes the association relationship between disease and treat-

ment, it would be easy to determine whether the treatment is appropriate to the

patient. Unfortunately, most of the claims do not include this relationship infor-

mation. Moreover, it is difficult to disentangle medical activities one by one and

determine its relationship to the corresponding disease explicitly, because it may be

the case that some activities are prescribed under the consideration of the potential

interaction of multiple diseases. Instead, the claim includes the all diseases of the

patient and all treatments details. In order to utilize treatment data in modeling,

all diseases in the claim should be matched with every treatment in the claim.

Due to the lack of relationship information between disease and treatment, we

average the embedding vector by disease category to represent the diseases as nu-
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meric vectors. The method for calculating the embedding vector for each disease

code and other high-cardinality category variables are illustrated in Figure 2.3.

Figure 2.3: Embedding method of categorical variables with high-cardinality

2.3.2 Calculating the Abuse Score of the Provider

In this subsection, we describe the process of computing abuse score for each provider

based on the calculated result from the neural network, which we described in sub-

section 2.3.1. In this subsection, we describe the process for computing the abuse

score for each provider based on the results from the neural network. Suppose there

are N providers and with m1,m2, . . . ,mN claims, and n1, n2, . . . , nN treatments.

The amount claimed for j-th medical treatment by provider i is represented by cij .

The abuse likelihood of the treatment calculated by the medical treatment scoring

model is represented by ŷij . Now, the abuse score of the provider i is computed

in two steps: (1) the abuse score is determined for each treatment (sij), and then

(2) the abuse scores are aggregated across treatments if they came from the same

provider (Si). Above two steps are summarized below.
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• Calculate the abuse score of each treatment (sij)

sij = cij ŷij , j = 1, 2, . . . , ni, i = 1, 2, . . . , N

• Calculate the abuse score of each provider (Si)

Si =

ni∑
j=1

sij , j = 1, 2, . . . , ni, i = 1, 2, . . . , N

Si represents the abuse score of provider i, which measures the degree of abuse

by the provider i. In order to maximize the efficiency in the reviewing process, we

include the amount claimed when calculating the abuse score. Suppose there are

two providers with the same number of treatments with the same abuse likelihood.

Now, suppose the claimed amount for each treatment of one provider is larger than

that of the other. Then, it is likely that the social cost incurred by the abuse of

the former provider is larger than the latter. If reviewers can detect such abuse,

the social benefit from the former is larger than the latter. This means that the

reviewers can examine efficiently in a sense that they can detect abuse cases with

greater social cost with smaller amount of input labor.

2.4 Experiments

We apply the proposed method to real-world claims data, which were submitted

to HIRA in 2016. We compare the performance of the proposed model against the

previous model employed by HIRA, which utilizes provider-level variables. In sub-

section 2.4.1, we provide the detailed descriptions of the data. Training details can
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be found in subsection 2.4.2. In subsection 2.4.3 and 2.4.4, we describe the evaluation

measures devised for proper performance comparison among different models.

2.4.1 Data Description

In this dissertation, we used healthcare insurance claims submitted to the NHIS for

experiments. Before we introduce our work, we provide detailed description of the

filing and review process of health insurance claims.

The majority of South Korea citizens are covered by a uniform health insurance

policy administered by NHIS. When a patient receives medical care from a medical

service provider, the provider submits the claim for reimbursement of the amount

determined by the fee-for-service policy. Then, the patient only pays for the remain-

ing amount. Although the government strictly regulates the reimbursement process,

abuse cannot be perfectly prevented, which eventually causes waste of the health-

care budget. The Health Insurance Review and Assessment (HIRA) is an institution

dedicated for the detection of such abuses by investigating medical claims and au-

diting medical institutions. Once a medical provider submits a claim to HIRA, the

reviewers examine the claim and determine whether the claim is suspicious of abuse

or fraud. Then, HIRA submits the examination results to the NHIS where the re-

imbursements are made in accordance with the results to the subject provider. The

reimbursement process is represented in Figure 2.4.

HIRA takes several steps when examining claims. When a claim is filed to HIRA,

an automatic system initially checks whether there is an error in the basic informa-

tion of the claim. This process is referred to as the automatic checkup process. Then,

the claim goes under the process called an electronic review. In this step, a model
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Figure 2.4: The reimbursement process of NHIS

detects whether the claim is abuse claim or not in seven steps. The model is based on

the reviewer’s experience. After this process, it goes through one of two processes. If

it is considered as a normal claim, the result of the examination is sent to the NHIS.

Then, NHIS reimburses the provider. If the claim is considered to be suspicious, it

goes through the manual review. In this process, the reviewers manually examine

the claim one by one. Manual review involves two kinds of examination:. the regu-

lar examination, and the irregular examination. In the regular examination process,

reviewers select several abusive providers and manually review all the claims from

them. Here, the abusive providers are selected by the datamining model of HIRA’s

own device, which uses provider-level information as input variables. In the irregu-

lar examination, reviewers select several important and complex claims and review

them precisely. If the claim is much more complex than the others, it goes through
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Figure 2.5: An example of medical claim of South Korea

the precise examination by the committee members. We illustrate the review process

of HIRA in Figure 2.6.

There are several databases that are separately stored within the HIRA data

warehouse. Each database stores important information about the insurance claim

such as claim information, treatment information, disease information, and review

details. The details of the databases that we integrated into a single data are listed

in Table 2.2. We did not use all data in the databases. Instead, we extracted records

that are relative to the claim filed in 2016. Also, we selected several important

variables in consultation with the field experts. Then, we integrated the tables into

a single data and preprocessed the resulting table. As a result, we extracted about
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Figure 2.6: The review process in HIRA

107 million treatment records.

Then, we selected 18 numerical variables and 18 categorical variables as input

variables for modeling. We cannot list all variables that we used, because of the data

confidentiality issue. However, we explain three important categorical variables that

have high-cardinality: disease codes, special patient code, and the treatment code.

In the raw data, the disease codes are in Korean standard classification of diseases

(KCD) format. However, we used aggregated codes because there are too many

codes to use all of them in modeling. The treatment code variable has also same

characteristics. Because of the same reason, we used aggregated codes of treatment
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codes. Finally, each of them has 1902, 196, 7882 category values in modeling. In spite

of this process, these variables still have high cardinality. So, we trained embedding

vectors of these variables in modeling, as we presented in subsection 2.3.1.

The class to be predicted is defined as follows. When reviewers label certain

treatment to be unnecessary for the patient, the abused amount of the treatment

equals the claimed amount for the treatment. When a treatment is considered to

be necessary but excessive, the abused amount is less than claimed amount. We

define these treatments as abused treatments. Otherwise, we define a treatment with

no abused amount as a normal treatment. The information about abused amount

is stored in the ‘Review details’ database in Table 2.2. We report the number of

providers, claims, treatments, and class ratio by department in Table 2.3. [112] Due

to the data confidentiality issue, we anonymized the name of the department. For

modeling and evaluation, we split the data set into train, validation, and test set by

6:2:2 with a similar class ratio. We use the train and the validation set for training

the treatment scoring model for each department, and the test set for evaluation.

Table 2.2: Used databases and their details

Database Details

Claim information
- Basic information of claim
ex) claim number, patient information

Treatment details
- Treatment or prescription information
ex) treatment code, prescription code, daily dosage

Review details
- Manual review results
ex) review code, abused amount

Disease information
- Disease codes related to the claim
ex) main disease code, sub disease codes
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Table 2.3: Data statistics

Department
Number of
providers

Number of
claims

Number of
treatments

Proportion of
abuse

A 393 820,511 58,296,667 2.28%
B 255 328,406 24,122,644 4.94%
C 33 154,254 9,596,701 0.89%
D 103 165,294 6,941,573 2.14%
E 156 78,740 5,016,126 1.72%
F 116 50,698 3,191,256 1.97%

2.4.2 Experimental Settings

As we described in subsection 2.3.1, the treatment scoring model is a deep neural

network with embedding layers for categorical variables with high cardinality. We

create a non-linear decision boundary by activating hidden layers with non-linear ac-

tivation functions, such as sigmoid, tanh, ReLU [64], ELU [17], LeakyReLU [57]. For

categorical variables with high cardinalities, we used different embedding dimension

in compliance with their cardinalities. Also, we experimented with various hidden

layer size. To prevent overfitting, we used dropout [85] and early stopping techniques

[74]. The maximum number of iterations is 200000 and the batch size is 1024. We

also experimented with different optimizer such as Adagrad [24], RMSProp [89], and

Adam [39]. In all cases, we set the initial learning rate at 0.0002.

Another important issue in this problem is the class imbalance problem. As we

can see in Table 2.3, the class ratio is extremely imbalanced. The abuse cases occur

rarely. If we do not address this issue properly, the neural network will learn the

parameters so that the error is minimized only for the majority class data. Because

the loss from the minority class is much less of importance than that of the majority

class. In order to prevent this problem, we oversample the minority class data in
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every mini-batch.

We should also determine how to express categorical variables with high car-

dinality. The most common approach is to create dummy variables. However, as

data grows, it may suffer from the curse of dimensionality [90]. In particular, these

variables involves memory issues.

In this paper, we cope with such issues by using two methods. Firstly, we imple-

ment the proposed method with Tensorflow package [1]. We also used Compressed

Sparse Row methods in Scipy package [91] to convert the dense matrix to sparse

one. Then train a logistic regression model. In both cases, we select a model with

the largest area under precision-recall curve (AUPRC) in the validation set [21]. We

illustrate the process of selecting the best model in Figure 2.7.

2.4.3 Evaluation Measure (1): Relative Efficiency

In subsection 2.4.3 and 2.4.4, we elaborate on the devise on the evaluation measure.

The baseline model for our experiments is the scoring model employed by HIRA.

This model is based on discriminant analysis method with a set of provider-level vari-

ables. This model calculates the abuse scores for all providers. Then, reviewers select

several suspicious providers based on the scores and examine all claims from them.

Otherwise, the proposed method is based on a deep neural network with treatment-

level variables. In this subsection, we explain a performance measure named relative

efficiency, which quantifies the extent of efficiency improved by using the proposed

method over the previous method.

The scatter plots on the left side of Figure 2.8 plot the abuse score against

the total abused amount of each provider when evaluated by model A (above) and
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Figure 2.7: Training and selecting the best treatment scoring model

model B (below). If the scoring model is well-trained, the model will assign a high

score to an abusive provider. That is, in other words, the model score and the

actual abused amount should increase in proportion. The scatter plots on the left

side of Figure 2.8 shows that the model B is better trained than model A. In the

meantime, the right panel of Figure 2.8 reports the actual cumulative abused amount

in descending order of each model’s scores. Suppose that only half of all providers

have been examined for abuse cases. According to the right-hand side plot, Model B

has detected approximately 80% of the entire pool of abused amount, while Model A

has only detected about 50% of abused amount. From this graphical investigation,

we can infer that model B examines claims more efficiently than model A does.
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Figure 2.8: The concept of relative efficiency

From now on, we establish the definition of the efficiency of the reviewing process

more concretely. First, we define the efficiency of review as the abused amount

detected in relation to the efforts required for the examination. Until now, we have

regarded the number of examined providers as the efforts. However, this is not

enough. Suppose there are two providers, where one submits more claims than the

other. In this case, greater efforts are required to review all the claims filed by the

former than those by the latter. In other words, the amount of effort to review all

the claims varies from provider to provider depending on the number of filed claims.

This is the reason why we have to define the efforts as the number of examined claims

rather than the number of examined providers. Therefore, in order to quantify the

efficiency, we consider both the cumulative number of examined claims and the
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cumulative abused amount as illustrated in the Figure 2.8.

Mathematically, we express the efficiency of review as follows. Suppose there

are N providers for a department, and the number of claims and the number of

medical treatments are defined as m1,m2, . . . ,mN and n1, n2, . . . , nN , respectively.

Further, suppose that all providers are sorted in the descending order by the abuse

score calculated from model A. The number of claims and treatments can then be

represented by mA
(1),m

A
(2), . . . ,m

A
(N) and nA(1), n

A
(2), . . . , n

A
(N), respectively. In addition,

we define dA(1), d
A
(2), . . . , d

A
(N) as the abused amount detected for each provider. Then,

for providers with the top-k highest scores, the number of claims, treatments and the

abused amount are represented by mk,nk and dk. More specifically, the total number

of claims is M = m1 + m2 + . . . + mN = mA
(1) + mA

(2) + . . . + mA
(N). Now suppose

the reviewers can screen p% of the total number of claims. That is, in other words,

the reviewers can only screen 0.01pM claims. Then there exists h that satisfies the

following inequalities.

h∑
i=1

mA
(i) ≤ 0.01pM,

h+1∑
i=1

mA
(i) ≥ 0.01pM

Here, the detected abused amount is
∑h

i=1 d
A
(i). The efficiency of review is now

defined as the total abused amount detected by the reviewer in comparison to the

number of reviewed claims. If the reviewers select providers with scores computed

by Model A, our proposed model, the efficiency can be represented as follows:

eAp =

∑h
i=1 d

A
(i)∑h

i=1m
A
(i)

We are not at liberty to compute this measure explicitly due to data confidential-
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ity issues. Hence, we replace it with the following term, called relative efficiency, to

compare the efficiency of the two scoring models. Mathematically, relative efficiency

can be expressed as below:

eA,Bp =
eAp
eBp

This measure quantifies improvements in efficiency improvement when selecting

providers to review with model A as the base for comparison.

The number of providers reviewed may change at every review session. Hence,

it is essential to be able to compute efficiency even though the size of providers are

varying. We incorporate this idea into the relative efficiency measure and redefine

the term as follows.

ep =
eproposedp

eHIRAp

Here, HIRA stands for the previous scoring model that HIRA has been using,

and proposed stands for the proposed scoring model.

2.4.4 Evaluation Measure (2): Precision at k

The concept of precision at k refers to the proportion of relevant items in the top-

k item set retrieved. It is widely used in information retrieval field to measure the

performance. In this study, we re-define the precision at k measure to fit our purpose

as follows. Suppose Ak as the set of the institutions with top-k% abuse score, and

Bk as the set of the providers with top-k% abused amount. Let the precision at

k represent the proportion of the providers with top-k% abused amount in the
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providers to top-k% abuse score institution set. Then, mathematically, precision at

k can be expressed as below:

Prk =
|Ak ∩Bk|
|Ak|

This metric measures the model’s ability to detect providers with greater abused

amount. In other words, it measures the extent of the model’s ability to detect

providers with a severely abusive billing pattern.

2.5 Results

2.5.1 Results in the test set

We illustrate the change of cumulative abused amount at different portions of the

reviewed claims at department A in Figure 2.9. Suppose the reviewers can only

examine 80% of the total claims. If they select the providers for review based on the

score of the previous model, they will select 340 providers to review. In contrast, they

will select 220 providers with the proposed model. If they reviewed all claims from

220 providers that the proposed model has recommended, they can detect 1.09 times

more abused amount than reviewing all claims from the 340 providers recommended

by the previous model. In short, they proposed model is 1.09 times more efficient

than the previous model at the 80% level. Similarly, the proposed model is 1.13

times more efficient than the previous model at the 60% level, and 1.26 times more

efficient than the previous model at the 40% level. We report relative efficiency

values at various levels of proportions of claims reviewed for each department in

Table 2.4. In Table 2.4, ‘max’ means the level when the maximum relative efficiency
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is achieved. We can see that the relative efficiency is larger or equal to 1 in most

cases. It means the proposed model is more efficient than the previous model in most

cases.

Figure 2.9: Relative efficiency at different levels

One more thing that we can see from Table 2.4 is the tendency that the relative

efficiency values tend to grow larger at small p than the larger one. This implies

that the proposed model assigns higher scores to the more highly abusive providers,

while previous model fails to do so. It is clearly observed in Table 2.5, that at small

k, the precision at k of the proposed model shows much better performance than

that of the previous model.
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Table 2.4: Relative efficiency on the test set by department

Department e20% e40% e60% e80% eMAX

A 1.03 1.28 1.13 1.09 1.33
B 3.33 1.91 1.26 1.14 3.50
C 1.95 2.10 2.10 1.19 2.10
D 1.24 1.13 1.10 1.19 1.50
E 1.61 1.23 1.21 1.17 1.61
F 0.87 1.18 1.09 1.23 1.76

Table 2.5: Precision at k on the test set by department

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Pre Pro Pre Pro Pre Pro Pre Pro Pre Pro

A 0.00 0.70 0.05 0.82 0.16 0.84 0.24 0.92 0.37 0.90
B 0.00 0.77 0.06 0.90 0.08 0.88 0.14 0.87 0.29 0.92
C 0.00 0.75 0.43 1.00 0.30 1.00 0.50 0.93 0.65 0.94
D 0.09 0.73 0.43 0.71 0.42 0.90 0.57 0.91 0.64 0.90
E 0.38 0.94 0.38 0.81 0.47 0.87 0.51 0.95 0.59 0.91
F 0.25 0.75 0.46 0.79 0.51 0.91 0.55 0.87 0.60 0.88

2.5.2 The Relationship among the Claimed Amount, the Abused

Amount and the Abuse Score

The proposed model calculates the abuse score of the provider by summing up the

resulting scores from multiplying the output of the treatment scoring model and

claimed amount for each treatment. By definition, the abuse score of a provider

is variant to the total claimed amount filed by the provider. Without the scores

resulting from the scoring model, the abuse score would merely reflect the total

claimed amount from the provider. It means that the model only selects the providers

with top-k highest claimed amount. However, by including results from the treatment

scoring model, the proposed model selects broader types of abuse cases.

This is illustrated in Figure 2.10. It shows the total abused amount and the abuse

scores 20 providers with the largest claimed amount. The providers are sorted in de-

scending order by the claimed amount. First, let us look at the relationship between
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the claimed amount and the abused amount. Providers are sorted in descending or-

der by claimed amount, but the abused amount does not tend to descend. It means

that large claimed amount does not mean large abused amount. Likewise, the abuse

score does not tend to descend, which means that the score is not simply propor-

tional to the claimed amount. The difference is from the result which is calculated

from the treatment scoring model. Due to this term, the bias caused by the claimed

amount is reduced. Also, we can see that abuse score moves in accordance with the

real abused amount. This means that the abuse score calculated by the proposed

model estimate the abuse degree of the provider well.

Figure 2.10: The relationship among claimed amount, abused amount and proposed
abuse score

2.5.3 The Relationship between the Performance of the Treatment

Scoring Model and Review Efficiency

In this subsection, we will discuss the performance of the treatment scoring model

on the performance of the provider scoring model. In the previous subsection, we
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built lots of treatment scoring models with various hyper-parameters and select a

model that has the best performance in the validation set.

In order to show the impact of the treatment scoring model on the performance of

the provider scoring model, we performed the following experiment. First, randomly

select a treatment scoring model whose performance is slightly lower than the best

one. Then, calculate the performance of the provider scoring model with both the

selected one and the best one. We show the impact indirectly by comparing them.

We report the performances of both cases in Table 2.6 and Table 2.7. In most cases,

the performance of the selected model is slightly less than or similar to the best one.

In particular, the relative efficiency is seemed to be very similar. However, remind

the relative efficiency is a ‘relative’ performance measure. There are cases that the

difference in relative efficiency by 0.1 means millions of dollars. Therefore, it is not

a small difference.

Table 2.6: Relative efficiency of the randomly chosen model and the best model

Department
e20% e40% e60% e80% eMAX

Rand Best Rand Best Rand Best Rand Best Rand Best

A 1.05 1.03 1.22 1.28 1.10 1.13 1.06 1.09 1.25 1.33
B 3.07 1.33 1.84 1.91 1.25 1.26 1.13 1.14 3.43 3.50
C 1.95 1.95 2.10 2.10 2.10 2.10 1.19 1.19 2.10 2.10
D 0.98 1.24 0.89 1.13 1.03 1.10 1.04 1.19 1.33 1.50
E 1.52 1.61 1.22 1.23 1.20 1.21 1.16 1.17 1.56 1.61
F 0.64 0.87 0.98 1.18 1.09 1.09 1.22 1.23 1.22 1.76

2.5.4 Treatment Scoring Model Results

In this subsection, we will discuss how the structure of the treatment model affects

the performance of the proposed model. In the previous subsections, we compared the

proposed method to previous method that is based on the provider-level variables.
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Table 2.7: Precision at k of the randomly chosen model and the best model

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Rand Best Rand Best Rand Best Rand Best Rand Best

A 0.68 0.70 0.79 0.82 0.81 0.84 0.87 0.92 0.87 0.90
B 0.81 0.77 0.84 0.90 0.86 0.88 0.84 0.87 0.90 0.92
C 0.75 0.75 0.86 1.00 0.90 1.00 0.93 0.93 0.94 0.94
D 0.64 0.73 0.62 0.71 0.81 0.90 0.81 0.91 0.87 0.90
E 0.88 0.94 0.75 0.81 0.89 0.87 0.92 0.95 0.91 0.91
F 0.75 0.75 0.83 0.79 0.89 0.91 0.83 0.87 0.86 0.88

However, since we exploit the treatment-level variables in the proposed method, it

is not appropriate to compare directly between two models. Instead, we compared

the proposed model to logistic model that uses treatment-level variables. By this

comparison, the proposed structure is appropriate for the treatment scoring model.

In order to handle the categorical variables with high cardinality, we applied

CSR method provided by the Scipy package. Also, we experimented with various

class weight in training logistic models. Then, we selected a model that shows the

best performance in the validation set.

In Table 2.8, we reported the AUPRCs from the logistic regression and the

proposed treatment scoring model for each subject in the test set. As we can see,

the proposed model performs much better than the logistic regression model in every

case. For the case of logistic regression, categorical variables with high cardinality

are one-hot encoded. So, the dimension of the data becomes much larger than before.

As a result, it requires much more complex computation while the performance does

not meet with the complexity of the model. However, the proposed model learns

not only the network parameters but also the embedding function to minimize the

error. This might be a reason that led to much better performance as compared to

the logistic regression model.

43



In subsection 2.5.3, we have shown that the performance of the treatment scoring

model affects the performance of the provider scoring model. From this result, both

model complexity and learning the embedding function of categorical variables with

high cardinality play an important role in determining the performance of the model.

Table 2.8: The AUPRC of the best treatment scoring model

Department Logistic regression Proposed model

A 0.24 0.60
B 0.41 0.72
C 0.44 0.73
D 0.31 0.63
E 0.30 0.69
F 0.25 0.63

2.5.5 Post-deployment Performance

Suppose a situation that reviewers select abusive providers from claim data in previ-

ous year and examine all claims from them in this year. If the scoring model performs

well and the data distribution is similar between two years, the reviewing process

may be efficient. If then, the proposed model can be used in reality. So, we experi-

mented with the claim data filed in 2016 and 2017. We trained models and selected

abusive providers with the claim data in 2016. Then, we evaluated the performance

Table 2.9: Data statistics used for evaluating post-deployment performance

Department
Number of
institutions

Number of
claims

Number of
treatments

Proportion of
abuse

A 259 280,083 24,274,388 0.61%
B 101 77,247 5,875,745 0.64%
C 24 14,706 1,029,135 0.63%
D 76 75,922 3,646,965 0.52%
E 128 31,214 2,121,534 0.49%
F 90 28,902 1,915,349 0.67%
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with the data in 2017. There may some providers that exists in 2017 but not in

2016 and vice versa. We excluded such providers in the experiment. Table 2.9 lists

the summary statistics that we used. We report the performance in Table 2.10 and

Table 2.11. As we can see from these tables, the proposed model is more efficient

than the previous model. Also, it detects abusive providers well.

Table 2.10: Relative efficiency in 2017 based on the results of 2016

Department e20% e40% e60% e80% eMAX

A 1.37 1.32 1.12 1.09 1.38
B 5.95 2.10 1.43 1.11 6.10
C 1.00 3.45 2.10 1.70 3.53
D 1.60 1.14 1.21 1.13 1.80
E 1.41 1.26 1.22 1.22 1.43
F 0.82 0.99 0.98 1.15 1.39

Table 2.11: Precision at k in 2017 based on the results of 2016

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Pre Pro Pre Pro Pre Pro Pre Pro Pre Pro

A 0.00 0.65 0.06 0.71 0.14 0.72 0.24 0.78 0.37 0.81
B 0.00 1.00 0.00 0.76 0.00 0.81 0.07 0.88 0.24 0.82
C 0.33 0.33 0.40 0.60 0.38 0.88 0.50 0.80 0.58 0.92
D 0.00 0.50 0.31 0.69 0.39 0.65 0.45 0.84 0.63 0.84
E 0.39 0.69 0.35 0.77 0.46 0.74 0.48 0.71 0.58 0.80
F 0.11 0.56 0.39 0.78 0.57 0.82 0.59 0.81 0.58 0.78

2.6 Summary

Healthcare insurance companies manually review all the medical claims to detect

abuse in order to avoid issuing unnecessary compensations. However, as the number

of claim filings grow exponentially, the cost of manual review increases astronomi-

cally, which calls for a more efficient review process. By efficiency, we set our objec-

tives to detect as much abused amount correctly as possible with minimum effort. It
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is particularly important to effectively screen out abusive medical providers, as they

are more likely to prescribe unnecessary treatments to the patients. Such a screening

process, in turn, will require a scoring scheme which that measures the degree of

abuse.

In this chapter, we propose the very first model that scores abusive billing pat-

terns of providers using the medical treatment data. The proposed model consists of

two steps: (1) training a neural network to compute the likelihood of abuse for each

treatment, and (2): calculating the abuse score for each treatment and aggregating

the results up to the provider level. The abuse score for each treatment is calcu-

lated by multiplying the neural network result with claimed amount. Experiment

results show that our proposed model scores abusiveness better than the model with

features summarized at the provider-level.

The main contribution of this chapter lies in that it is one of the first research de-

tecting the abusive provider using medical treatment data, which is the finest-grained

level data in terms of medical claims. Previous studies extract the provider-level vari-

ables such as the number of prescriptions per day or the average cost per claim and

use these variables for training. This way, the model cannot properly account for in-

formation apparent only at the claim or treatment-level. In contrast, we fully exploit

the fine granularity of the treatment data to train the model. The experiment results

show that the proposed model performs better than the model with provider-level

variables. In addition, we devise performance metrics, relative efficiency and preci-

sion at k, to quantify the efficiency improvement. Using these metrics, we show that

the reviewers can review more efficiently by looking at providers determined to be

suspicious of abuse by the proposed model as compared to examining those selected
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by the model with provider-level variables. Finally, we show that the performance

of the treatment scoring scheme is important to computing an effective abuse score.

This implies that training better neural network results in better performance.

If a provider is chosen to be abusive and all its claims are reviewed, it will not

be reimbursed for the amount determined to be abused, which will result in the loss

of the provider. Consequently, the provider does not want to be selected, which in

turn reduces the waste of health insurance, so that insurance companies can reduce

unnecessary costs. However, as the medical environment continues to change, it also

creates forms of abuse that did not exist before. Previous scoring methods using the

existing provider-level variables cannot adapt to this changing pattern of abuse. On

the contrary, the proposed model scores abusivesness while adapting to changes in

abuse patterns through regular retraining.

There are two potential limitations to our model. Firstly, we assume that the filed

claims are uniformly distributed across time. Our experiment splits the entire data

set into the training, validation, and test sets, of which the underlying assumption is

that learning is not contingent upon time. However, from the practical point of view,

such an assumption may not hold true for some cases. In the next chapter, we address

this issue in greater detail and propose a model which accounts for seasonality.

Another limitation of the current model is that it does not explicitly consider the

association relationship between diseases and treatments, one of the most significant

factors in reviewing claims. In chapter 4, we discuss this issue in detail and propose

a model explicitly dealing with this relationship.
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Chapter 3

Detection of overtreatment by Diagnosis-related
Group with Neural Network

3.1 Background

In chapter 2, we introduce the very first method, to our best knowledge, to detect

abusive providers by using medical treatment data, which is the lowest level of

healthcare information available. We show the review process would be more efficient

if the field reviewers give priority to the candidates of abusive providers selected by

the proposed model instead of those screened by the previous method. The proposed

model computes the degree of the provider’s abusiveness numerically, which helps

interpret the detection result. The key assumption underlying our model is that the

distribution of claim data is similar between the training set and the test set.

Before we discuss this issue, let us define the distribution of the claim data. We

believe that the most important information from the claim filings is diseases of diag-

nose and the prescribed treatments. In the perspective of our data, then we consider

a claim as a single value from a distribution of claims. Under this setting, we assert

that the representative value of a claim should include both disease and treatment

information. Here, every disease and treatment information does not have to be

included. We can represent the claim by main disease and several important treat-
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ments only. Given these three requirements, we believe that the diagnosis-related

group (DRG) is an appropriate measure to serve as the aforementioned representa-

tive value. It includes information about the main disease the patient is diagnosed

of, as well as the treatments the practitioner has prescribed.

The previous model used by HIRA assumes that claims data follows a homo-

geneous distribution, which is too strict of an assumption to assert to hold true in

reality. One well-known counterexample is seasonality. A handful of diseases, flu, for

example, show period surge of infected patients for a specific period of time, a char-

acteristic to which we refer as seasonality. Seasonality implies that the distributions

of claims may shift by time, according to its seasonal surge and dissolution. In fact,

as we can see by observing Figure 3.1 that this assumption is realistic.

Figure 3.1: The distribution of the patient group in a department

Suppose we train the model ignoring these seasonal patterns. The model’s pri-

mary objective to minimize the training error; consequently, the model will focus

solely on claim data whose DRG-code is the majority. Hence, the model won’t per-

form well if it is trained to learn to compute the degree of abuse under the homo-

geneity assumption. A candidate solution is to train the model using observations
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from the same point of time every year. For example, one may choose to use claims

filed in during the 1st financial quarter of last year for training and then use claims

the 1st quarter of this year to estimate the score for the degree of abuse. Such an

approach is still not safe from events that randomly or unexpectedly taking place,

such as medical inventions and innovations. Suppose an ingenious clinical innovation

has intervened between the training period and the scoring period. Then, informa-

tion used for training is outdated and there are new forces governing the features of

claims filed in this year, leading the model to poor performance.

In order to account for seasonality during learning, we train our treatment clas-

sification model with claims data grouped by DRG code. The DRG system is a type

of patient classification scheme (PCS) which provides a means of relating the type

of patients a hospital treats to the costs incurred by the hospital [11]. DRG system

categorizes patient episodes by controlling the fundamental variations, which are

assumed to be always present, among patients. Claims with the same DRG code

include similar disease or treatment.

If we train models by DRG code, then the distribution of claims will be more

homogeneous as compared to the existing model. Even if distinct seasonal char-

acteristics, peculiar to each disease, exist, because the model is trained by similar

diseases. Consequently, our model will produce results robust to seasonality. Sup-

pose we have to detect abuse in medical treatments in department A. Also, suppose

every claim in the department has one of two DRG codes: Da, Db. In the training

set, the number of claim data with the DRG code Da is much larger than that of

Db. In this case, the model will be trained to minimize the training error from the

data with the DRG code Da. It means the training error from the data with the
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DRG code Db is ignored relative to that with the DRG code Da. However, suppose

the number of claim data with DRG code Db is much larger than that of Da in the

test data. In this case, the trained model cannot classify the data with DRG code

Db and the performance of the model will decrease. However, if models are trained

separately for DRG code Da and Db, the performance will not degrade since data

distribution in each data set is similar between the training set and the test set.

In this chapter, we propose to run the treatment classification model by DRG

code unit. If then, the model can classify the treatment robust to seasonality. The

DRG system has been used in patient classification. It has also been serving as the

unit of the DRG-based payment system and as the standard of comparing medical

institutions. Our work show the possibility that the DRG system can be used in the

review process in healthcare insurance.

The rest of the chapter is organized as follows. In section 3.2, we introduce

seasonality in disease and the concept of the DRG system. Section 3.3 provides

detailed descriptions of the proposed model. In addition, we introduce strategies

to compare performance between our model and the method that is suggested by

Lee et al. [47]. In section 3.4, we elaborate on experiment settings. We also provide

detailed description of the data and the preprocessing steps in this section. Section

3.5 reports experiment results. Finally, section 3.6 concludes the paper.

3.2 Literature review

3.2.1 Seasonality in disease

In public health, seasonality is a feature characterized by the surge of a certain

disease recurring at a particular time period ([28], [58]). A variety of infectious dis-
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eases, such as influenza, as well as some respiratory diseases which are non-infectious,

exhibit seasonality.

Even though the awareness for seasonality has existed for a while in the research

field, the underlying mechanism of seasonality has not been fully explained. Clear

understanding of seasonality will certainly prove beneficial for public health in many

different aspects. Fisman [28] claimed that there are four major benefits that may

rise from understanding the full mechanism of seasonality: (1) improved understand-

ing of host and pathogen biology and ecology, (2) enhanced accuracy of surveillance

systems, (3) improved ability to predict epidemics and pandemics, (4)better under-

standing of the long-term implications of global climate change for infectious disease

control. To shed more realistic light on the potential benefits, we take the exam-

ple of the two viral respiratory illnesses: severe acute respiratory syndrome (SARS)

and coronavirus disease 19 (COVID-19). These two diseases are quite similar in a

sense that their main agent of contagion is the coronavirus, which is a type of an

enveloped RNA virus. If seasonal features associated with the spread of SARS were

fully characterized, the results of which may serve as the basis to infer/predict the

seasonality of COVID-19. Then, resources may have been allocated accordingly to

detect and prevent the disease in a timely manner.

3.2.2 Diagnosis related group

Diagnosis-related group (DRG) is one brank of the patient classification system

(PCS), which classifies patients in perspective of clinical records and medical re-

source consumption patterns such as diagnosis, procedures, or functional status [11].

It was first devised in Yale University in the late 1960s. Originally, the objective of
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DRG was to create an efficient method for monitoring the quality of patient care and

the utilization of service for each hospital. Additional adjustments were continuously

made to the system since its first invention, raising its quality to the current level.

Now, DRG is exploited in various ways, including hospital-to-hospital comparisons,

patient classification, and evaluation of medical institutions. At the same time, it is

also used as a unit of the bundled-payment system for healthcare insurance. Bundled-

payment system is known to compensate for the shortcomings of the fee-for-service

payment system which has been popular of choice. Under the fee-for-service payment

system, the insurance company must reimburse for all the treatments provided to

the patient. It is more likely to lead to over-treatment, since the provider can enjoy

greater reimbursement by performing additional procedures. In contrast, under the

bundled-payment system, each patient is classified by the DRG code, and the in-

surance company only has to compensate for the amount predefined for the subject

patient category. In other words, regardless of the number of treatments performed

by the provider, the insurance company compensates only for the pre-determined,

fixed amount. This, by design, deters providers from over-treatment.

The Korean diagnosis-related group (KDRG) is a modified version of DRG,

adjusted to reflect the peculiarity in the medical practice in Korea [38]. The first

version of KDRG, KDRG v1.0, was first devised in 1986. Now it is updated to KDRG

v4.3 with 2,753 codes for classifying the patients. These codes are constructed by

combining Korean classification of diseases (KCD) and treatment codes.

The formation of the DRG code begins by splitting up all the principal diagnoses

available into 23 main diagnostic categories (MDC). Then, the MDCs are subdivided

either into medical or to surgical categories. For example, a patient is classified as

53



surgical if the prescription on his/her claim includes surgery/operations. Otherwise,

the patient is classified as a medical case. Surgical cases are further divided into

the groups of finer granularity based on the precise surgical approaches performed;

medical cases, based on the exact principal diagnosis. The DRG code assigned by

this process is called as the Adjacent DRG (ADRG). In order to classify patients as

accurately and appropriately as possible, the age group, as well as the complication

and comorbidity factors, are also considered as the classification criteria. The final

DRG code resulting after the whole process is called the Refined DRG (RDRG)

code. The summary of the KDRG structure is shown in Figure 3.2.

Figure 3.2: The structure of KDRG

3.3 Proposed method

This section details the structure of the proposed model which leans to classify

the entered treatment to be normal or not. In this study, we use the treatment

data, grouped by DRG code, for training as well as for inference. This approach

distinguishes our proposed model from the treatment scoring model, as found in Lee
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et al. [47], which grouped treatment data by the practice department.

3.3.1 Training a deep neural network model for treatment classifi-

cation

The proposed model employs a neural network structure through which a given

treatment classified to be normal or to be abused. The input data for the model

is heterogeneous, containing both numerical and categorical information. Numerical

variables include the unit price of the treatment or the amount of dosage per day,

while gender, age group, or the associated treatment codes are the examples of the

categorical variables. In order to make the best use of such data as a valid input

to a neural network, categorical information must be represented in a form of a

numerical vector. One of the most common approaches is to one-hot encode by the

given categories. It is not, however, an appropriate approach in this case, because

there exist some categorical variables that are of a high-cardinality. If these variables

are one-hot encoded, the dimension of the data would explode, hence the suffer

from the curse of dimensionality. In our model, we rely on an embedding function,

instead, to represent these heterogeneous variables as a vector. Our proposed model

trains the embedding function during the training phase. Classification error is back-

propagated to the embedding layers as well as the hidden layers.

We describe our model mathematically as follows. Define a medical treatment

t
′

= [n1, n2, . . . , nk, c1, c2, . . . , cl], where ni represents the value of the numerical

variable vi and cj represents the value of categorical variable vj . We define dj as

the one-hot encoding vector of cj . We represent a categorical variable vj with value

cj as xj = dTj . Otherwise, we compute an embedding vector for the corresponding
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categorical variable of high-cardinality, represented by xj = dTjWj . Here, Wj stands

for the embedding function of the categorical variable vj .

Another important candidate of the heterogeneous input variables, which calls

for extra-care, is the multi-valued categorical variable. A multi-valued categorical

variable is defined as a variable that has more than one values for each entity. In

our study, the major case of the multi-valued categorical variable may be found

where a patient is diagnosed to carry more than one diseases. Such cases may be

discovered by looking up cases where a practitioner prescribes treatments that may

be associated with all the diseases the patient may be suffering from. Since there does

not exist the grounds for the identification of the casual relationship between the rich

variety of symptoms and the diseases causing these symptoms, as well as the effect

of the prescription of the treatments to the corresponding symptoms, it is highly

likely to prescribe and practice treatments in response to as many as the candidates

of the diseases the subject patient may carry. Such a practice give rise to the multi-

valued categorical variables in the input data. In order to effectively represent these

variables as numerical vectors, we first embed them through our embedding model

and then average the resulting embedding vectors by disease category

We express aforementioned process mathematically as follows. Suppose a given

categorical variable vj is a multi-valued categorical variable. That is, a medical treat-

ment variable t
′
is represented by [n1, n2, . . . , nk, c1, c2, . . . , [cj1, cj2, . . . , cjmt ], . . . , cl],

where [cj1, cj2, . . . , cjmt ] is the value of the multi-valued categorical variable vj for

the corresponding treatment t. Here, mt represents the number of values in the

variable. It is different by each treatment. Then, we compute the embedding vector

for k-th value in multi-valued categorical variable and denote it as xjk = dTjkWj .
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Finally, the embedding vector is averaged by the disease category, which is denoted

as follows.

xj =
1

mt

∑
k

xjk =
1

mt

∑
k

dTjkWj

In summary, the embedding vector of a given heterogeneous categorical variable

is defined as follows:

xt =



dTjWj single-valued, high-cardinality

1
mt

∑
k d

T
jkWj multi-valued, high-cardinality

dTj single-valued, low-cardinality

(3.1)

Given above representation, we now define the input data for the neural network

as following:

t = [n1, n2, . . . , nk,x1,x2, . . . ,xl]

The output of the neural network ŷ = fmodel(t) is calculated by back-propagating

the training loss to both the hidden layer and the embedding layer. Then, the em-

bedding function as well as the parameters for the entire network are updated ac-

cordingly.

3.3.2 Comparing the Performance of DRG-based Model against the

department-based Model

The difference between the treatment scoring model as proposed by Lee et al.[47] and

our method roots from data used for training and inference. Lee et al.[47] suggests

grouping data by department for training and inference. In contrast, we group the
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Figure 3.3: The structure of treatment classification model

input data by DRG codes in attempts to reflect the homogeneity of data, while

retaining the robustness to seasonality. In this section, we suggest ways to compare

out DRG-based model against the department-based model.

Denote the medical treatment set for a given department A for training as

Xtrn
A = {tA1, tA2, . . . , tAnA

}, and the trained model from Xtrn
A is represented as fA.

Moreover, let the medical treatment set with DRG code k, for training, be denoted

Xtrn
k = {tk1, tk2, . . . , tknk

}, and the trained model from Xtrn
k , as fk. The treatment

set for department A for inference is represented as Xinf
A = {t′A1, t

′
A2, . . . , t

′
AmA
},

while treatments in the inference set with a DRG code k denoted as Xinf
k =

{t′k1, t
′
k2, . . . , t

′
kmk
}. Now, suppose there appears DRG codes a, b, . . . , k in the given

department A. Then, we can train fa, fb, . . . , fk by exploiting Xtrn
a , Xtrn

b , . . . , Xtrn
k .

Now, for treatments that are prescribed in the department A with DRG code i, we

represent them, with Xinf
Ai . It can easily be seen that the treatment set prescribed

by department A is the union of Xinf
Ai . Mathematically,

Xinf
A =

⋃
i

Xinf
Ai =

⋃
i

{t|t ∈ Xinf
A , t ∈ Xinf

i }
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We denote the classification result of Xinf
A through the model fA is denoted

as ŶDEP = fA(Xinf
A ) = {fA(t)|t ∈ Xinf

A }. At the same time, the classification

result of Xinf
Ai via the model fi is ŶAi = fi(X

inf
Ai ) = {fi(t)|t ∈ Xinf

Ai }. We concate-

nate ŶAa, ŶAb, . . . , ŶAk and denote the resulting representation as ŶDRG. Finally, we

compare ŶDEP , ŶDRG, against the true label in order to evaluate the two models’

performance. From now on, we define department-based model as the model for cal-

culating ŶDEP and refer to it as the DEP model. Similarly, we define the DRG-based

model as the model for calculating ŶDRG and refer to it as the DRG model. Figure

3.4 illustrates the entire process.

Figure 3.4: Comparison between DEP model and DRG model
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3.4 Experiments

We evaluate our model on real data which were submitted to HIRA in 2017. We

report the performance of our model, with Lee et al.’s [47] as the baseline. The

previous method is a scoring model trained with data grouped by department. In

subsection 3.4.1, we provide a detailed description of the data as well as the pre-

processing steps. We elaborate on performance evaluation metrics in 3.4.2. Finally,

training details are presented in 3.4.3.

3.4.1 Data Description and Preprocessing

As described in subsection 2.4.1, we worked with several databases that were sep-

arately stored within the HIRA data warehouse. Each database stores important

features about insurance claims such as claim information, diseases diagnosed and

treatments assigned, and the review entailments by the agency. We list the detailed

description of each database is presented in Table 2.2. We extracted claim records

filed in 2017 that were manually reviewed. [111] During the process, we consulted

the on-site field experts and included variables advised as significant by them.

Table 3.1: Data statistics

Department
Number of

Representative
DRG codes

Number of
claims

Number of
treatments

Overtreatment
ratio

A 15 316,761 22,410,573 2.13%
B 6 45,000 2,898,893 2.00%
C 2 296,238 23,331,836 5.58%
D 3 113,587 6,922,504 0.67%
E 4 169,374 7,550,371 1.61%

Following upon the compilation of data, we grouped the resulting claim records
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by department, as well as the DRG 3-digit code. The reason why we use DRG 3-digit

code, instead of the RDRG which is of 6-digit, is because RDRG codes are of too

fine granularity. If data is grouped by RDRG codes, then a handful of classes will

be empty since grouping is too specific, hence insufficient for learning. As a result,

we resorted to DRG 3-digit codes for grouping.

The final complication towards which we should carefully approach during anal-

ysis is that more than one DRG 3-digit code may appear even after we group claims

by department. For example, given our dataset, approximately two hundred 3-digit

DRG codes are observed from the claims filed for the department of internal medicine

in 2017. However, the kick here is that the number of treatments for each DRG code

follows a long-tail distribution. In other words, a large number of claims cases are

associated with only a handful of “important DRG codes”, while few claim reports

occur for most of the rest of the DRG codes that are “relatively less important”.

Ideally, one would like to models for all the 3-digit DRG codes uniformly across the

training phase and compare the performance as illustrated in section 3.3. However,

it is impossible, since there are not enough treatment cases with 3-digit DRG codes

observed to train the models. Given the restriction on the observed 3-digit DRG

codes, we select DRG codes that make up the majority in each department and

train the model. Then, we make DRG models using the data that corresponds to

the DRG codes. Also, make DEP models using the data corresponds to the data

filed from the department and having such DRG codes. Then, we compare the DEP

models and DRG models as we already presented in subsection 3.3.2.

The resulting data is processed further following the two important preprocess-

ing schemes: grouping treatments, and integrating treatment codes. First, we cate-
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Figure 3.5: The abuse ratio and the distribution of the treatment of two DRG codes

gorize the treatments into four separate groups. The logic for such a process is as

follows: suppose that there exists a patient who has received a spine surgery. We

assume that the treatments prescribed and practiced for the patient may be com-

partmented into four distinct categories: the basic treatment, medical procedure, the

prescription, and the recovery materials. The basic treatment category includes sim-

ple, potentially recurrent medical practices such as admission, consultation, nursing,

or providing meals. The medical procedure group entails what practitioners actually

conducted on a patient, such as X-rays, MRI examinations, or an operation. The

prescription category groups the details of drugs prescribed by the practitioners,

such as, for example, the nonsteroidals anti-inflammatory drug. Finally, the recov-

ery materials categorizes all materials needed to recover. A major example of the

62



recovery materials include those for orthosis.

The distribution of DRG codes in data, as well as the class groups, after catego-

rization as described above is quite unbalanced. We take an example and illustrate

such a case of class imbalance in Figure 3.5. Figure 3.5 illustrates the class ratio

and the distribution of each treatment group of the data with the DRG code. The

upper figures are the ratio and the distribution of the data with DRG code of A,

while the lower figures are those of the data with DRG code of B. Here, DRG code

A corresponds to the appropriate medical DRG codes, while code B corresponds to

the surgical DRG codes. It can be easily seen that these two measures behave quite

differently from each other. For DRG code A, there are few treatments related to the

recovery material group. On the other hand, about 25% of treatments in the basic

treatment group are considered to be overtreatment. However, the picture changes

completely with DRG code B. Approximately 6.0% of all treatments appear in the

recovery material group. At the same time, only 2.5% of the treatments in the basic

treatment group are considered to be overtreatment. On the contrary, about 12% of

treatments in the recovery material group are considered to be overtreatment. As

seen from the above observations, categorizing treatments into more homogeneous

groups may lead to more insightful analysis.

Nevertheless, we agglomerated some of the divisions of treatments showing sim-

ilar characteristics into a single category. For example, Figure 3.6 shows that the

category values are too finely grained. HIRA’s claim filing process requires for the

associated category value to be exactly identified and entered. However, our pro-

posed model does not require such fine granularity in terms of the categories, and it

suffices to agglomerate some of the finer categories if their medical implications are

63



similar.

Figure 3.6: An example of unifying categories with similar meaning

3.4.2 Performance Measures

We compare the performance of our DRG model against the DEP model when the

patient distribution changes from the training set to the test set. First, in the case of

comparing models with the classification performance of treatments, we follow the

process described in subsection 3.3.2.

Before we elaborate on ways to measure the proposed model’s performance on

classifying different claims filed, we need to draw a clean line between the normal

claim and the abnormal claim. In this study, we define an abnormal claim to include

more than a single overtreatment assigned or practiced as part of the claim. When

we classify claims, not treatments, the problem of class imbalance aggrevates. The

ratio of overtreatments to all treatments amounts only to from 0.6% to 5%, while the

ratio of abnormal claims among all claims is about from 15% to 40%. In this case,

we train several classification models in order to fully utilize claim-level information

by employing the decision tree (DT), random forest (RF), neural network (NN), and
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logistic regression (LR) models.

3.4.3 Experimental Settings

The treatment-classification model comprise of a neural network with embedding

layers accounting for the categorical variables with high cardinality. ReLU [64] is

used as the activation function for the hidden layers to reflect non-linearity when

drawing the decision boundary. We employ Adam [39] optimizer with the initial

learning rate set at 0.0002. In order to prevent overfitting, we use dropout [85] and

early stopping [74] techniques. For categorical variables with high cardinality, we

tried different embedding dimensions corresponding to their cardinality. Since the

problem of class imbalance eminent, we over-sample data points from the minority

class for every batch.

We tested our model with a variety of hyper-parameter settings for each depart-

ment and DRG code. In each case, we selected a model with the largest area under

the precision-recall curve (AUPRC) reported during the validation phase [21]. Then,

we selected the best threshold value with the best f1-score. Our selection process is

illustrated in Figure 3.7. Pytorch package [70] was used for training the treatment-

level information, while scikit-learn package [71] was employed to train to classify

the claim-level information.

3.5 Results

3.5.1 Overtreatment Detection

We report the performance of the treatment classification in Table 3.2. In every case,

the claim distribution is simlar between the training set and the test set 1. For the

65



Figure 3.7: Training and selecting the best abused treatment detection model

departments C and E, the distribution is similar between the test set 1 and the test

set 2. In other cases, there is a difference in the distribution between test sets.

As for test set 1, the DEP model performs slightly better than the DRG model in

most cases. It can be seen that the proposed model potentially learns different types

of patients better. However, for the test set 2, different results are observed. In most

cases, the DRG model performs better as compared to the DEP model. Moreover,

the decrease in the performance of the DEP model is quite dramatic, while the DRG

model shows relatively more stable performance. So, when the distribution for most
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prominent patient type is shifted, the DEP model fails to perform well. However,

as for the DRG models, every model trains the treatment pattern according to the

each patient type. Hence, even if the patient distribution changes, the degradation

in performance is not so severe. Altogether, we conclude that the DRG model is

more robust to the change in the distribution of the patient type as compared to

the DEP model when classifying the treatments.

Table 3.2: Performance of the overtreatment detection

Department Model
Accuracy Precision Recall F1

Test1 Test2 Test1 Test2 Test1 Test 2 Test1 Test2

A
DEP 0.9473 0.9565 0.2132 0.2027 0.4305 0.2809 0.2852 0.2355
DRG 0.9485 0.9560 0.2090 0.2197 0.3979 0.3318 0.2741 0.2644

B
DEP 0.9678 0.9769 0.2907 0.3545 0.4227 0.2501 0.3445 0.2933
DRG 0.9642 0.9703 0.2575 0.2739 0.4178 0.3303 0.3186 0.2994

C
DEP 0.9423 0.9373 0.5247 0.5017 0.6382 0.6259 0.5759 0.5569
DRG 0.9419 0.9403 0.5221 0.5210 0.6378 0.6472 0.5742 0.5773

D
DEP 0.9790 0.9745 0.1333 0.0347 0.4025 0.1285 0.2003 0.0546
DRG 0.9901 0.9922 0.2768 0.2301 0.3227 0.1479 0.2980 0.1801

E
DEP 0.9807 0.9809 0.3340 0.3927 0.4416 0.3884 0.3803 0.3905
DRG 0.9780 0.9780 0.2952 0.3381 0.4631 0.4122 0.3606 0.3715

3.5.2 Abnormal Claim Detection

Table 3.3 reports the performances of DEP models, DRG models, and the models

that utilize claim-level variables. Above all, we can see that the DEP models and the

DRG models exploiting the treatment-level variables perform better than the other

models. It implies that the models with the treatment-level variables may perform

better than the models with the claim-level variables when classifying claims.

Also, the degradation in the performance of the DEP model from the test set1

to the test set 2 is clearly apparent; yet, the decrease in performance for the DRG

model is not as large as the DEP model. It may suggest that the DRG model is
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more robust to the changes in the distribution of the patient type than the DEP

model when classifying the claims.

Table 3.3: Performance of the abnormal claim detection

Department Model
Accuracy Precision Recall F1

Test1 Test2 Test1 Test2 Test1 Test 2 Test1 Test2

A

DEP 0.5989 0.6156 0.5013 0.5193 0.8593 0.7486 0.6332 0.6132
DRG 0.5969 0.6186 0.4998 0.5205 0.8627 0.7988 0.6329 0.6306
LR 0.4976 0.5128 0.4282 0.4402 0.9465 0.9473 0.5896 0.6011
NN 0.4973 0.5131 0.4286 0.4408 0.9555 0.9558 0.5918 0.6034
DT 0.5763 0.5747 0.4396 0.4451 0.4050 0.3960 0.4213 0.4191
RF 0.4771 0.4893 0.4165 0.4267 0.9266 0.9261 0.5747 0.5843

B

DEP 0.6568 0.6709 0.5213 0.5942 0.7095 0.4940 0.6010 0.5395
DRG 0.6179 0.6295 0.4847 0.5200 0.7750 0.6643 0.5964 0.5832
LR 0.4558 0.4688 0.3967 0.4171 0.9277 0.9146 0.5558 0.5729
NN 0.4462 0.4592 0.3939 0.4134 0.9451 0.9266 0.5561 0.5717
DT 0.5761 0.5744 0.4178 0.4463 0.3941 0.3837 0.4056 0.4126
RF 0.4469 0.4555 0.3932 0.4110 0.9339 0.9177 0.5534 0.5677

C

DEP 0.7085 0.7129 0.6951 0.7198 0.9207 0.9043 0.7922 0.8016
DRG 0.7085 0.7200 0.6984 0.7266 0.9097 0.9035 0.7902 0.8054
LR 0.5776 0.6069 0.5762 0.6069 0.9941 0.9934 0.7296 0.7535
NN 0.5827 0.6126 0.5792 0.6103 0.9942 0.9937 0.7319 0.7562
DT 0.6037 0.5968 0.6624 0.6845 0.6293 0.6181 0.6454 0.6496
RF 0.6007 0.6293 0.5920 0.6237 0.9754 0.9755 0.7368 0.7609

D

DEP 0.5621 0.4753 0.2337 0.1918 0.7017 0.6709 0.3506 0.2983
DRG 0.8038 0.8033 0.4347 0.3749 0.5480 0.2741 0.4848 0.3167
LR 0.6381 0.6119 0.2416 0.2643 0.6180 0.6116 0.3474 0.3691
NN 0.8443 0.8143 0.6667 0.3846 0.0020 0.0012 0.0041 0.0024
DT 0.7619 0.7346 0.2431 0.2622 0.2497 0.2372 0.2464 0.2491
RF 0.5295 0.4977 0.2115 0.2264 0.7398 0.7062 0.3289 0.3429

E

DEP 0.7119 0.6893 0.5293 0.5311 0.6970 0.6076 0.6017 0.5668
DRG 0.6999 0.6868 0.5138 0.5266 0.7188 0.6308 0.5992 0.5740
LR 0.6068 0.6089 0.3689 0.3914 0.8622 0.8471 0.5167 0.5354
NN 0.6008 0.6015 0.3682 0.3894 0.8907 0.8768 0.5210 0.5393
DT 0.6923 0.6824 0.3676 0.3946 0.3643 0.3628 0.3659 0.3780
RF 0.5641 0.5627 0.3468 0.3675 0.8916 0.8935 0.4993 0.5208

3.6 Summary

The distribution of health insurance claims shifts from time to time due to season-

ality of several diseases. Nevertheless, there are few abuse detection models which
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effectively account for seasonality. Most studies employ coarsely grained derived vari-

ables, defined at the provider or claim-level, for example, which makes it even more

difficult to address the seasonality issues when modelling abuse detection algorithms.

In the previous chapter, we proposed an abusive provider detection model using

treatment-level information. The proposed model detects abusive providers for each

given department. The underlying assumption of the proposed abusive provider de-

tection model is that claims are similarly distributed in the training and the test

sets. This assumption may not hold true for some departments. If we ignore this

difference in modeling, the performance will be decreased.

In order to tackle seasonality issues, we implement an abuse detection model

which incorporates treatment classification to detect abuse cases for each DRG code.

DRG is a type of the patient classification system (PCS), which classifies patients

into groups based on clinical features and the consumption pattern of medical re-

sources. We observe that claims with the same DRG code show similarity regardless

of the timing of the filing. Instead of running a single model separately for each

department, we propose to a model embodying multiple structures specific to DRG

codes selected as important for each given department. We also run the single model

for each department and compare the results with our proposed model. Experiment

results show our proposed model performs well across different time windows, while

the department-wise single models show degradation in performance.

This paper contributes to the existing literature by building the abuse detec-

tion model which effectively accounts for seasonality in health insurance claims.

Moreover, we provide ground evidence for DRG, an ontology originally designed to

categorize patients, to be used in the claim review process.
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Chapter 4

Detection of overtreatment with graph embedding
of disease-treatment pair

4.1 Background

Practitioners can prescribe a wild range of different treatments for the same patient.

Moreover, there exist myriads of drugs that share the same efficacy. Yet, practitioners

have a tendency to stick to their preferred choice of the drug and prescribe it to their

patients, even though other options are available. The product may be selected based

on the practitioners’ clinical experience or personal preference. This same affinity

towards specific choices can be observed not only from drug prescription but also

from practicing medical procedures.

Suppose there are two practitioners who prescribe different drugs, which actually

have similar medical efficacy, to the same patient. Two separate claims will be filed

for each practice. Now, when the reviewers examine these claims, based on their

expertise, it can easily be determined that both cases are normal since both pre-

scriptions are appropriate responses to patient’s disease. The machine, however, will

have to establish such relational knowledge from scratch, and it will have to learn

it from data. However, previously suggested models are not designed to efficiently

deal with the complex relationships between the disease and the treatments.
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In the previous chapters, embedding vectors for both diseases and treatments are

learned simultaneously. Hence, these embedding vectors are in separate spaces. In

order to add the relationship between disease and treatment, we simply concatenate

the embedding vectors additionally feed to the model. However, it is not sufficient

of an approach to include complex disease-treatment relationship.

Figure 4.1: An example of different prescription from different practitioners to the
same patient

Let us illustrate the reasoning behind this assertion by taking a toy example.

Suppose there is a claim in the test set with the same diseases as found in some of

the claims in the training set. Suppose, however, treatments prescribed in the test

claim are different from those prescribed in the training claims, even though the

patients in these claims suffered from similar diseases. A näıve model will classify

the treatment prescribed in the test set at random, because it is a practice pattern

unseen during the training. The naive model does not know that the diseases in both

train and test claims are similar to each other. It won’t be able to learn that, even

though the prescribed treatments differ in the train claim and the test claim, the

medical efficacy of the treatments are actually very similar. One the contrary, if the

correct disease-treatment relationship can be modeled before the training, then the
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following abuse detection model would certainly perform better.

In this chapter, we propose an overtreatment detection model which consid-

ers the intricate disease-treatment relationships in prior to training. The proposed

method consists of two stages. During the first stage, the disease-treatment network

is constructed from the claims data. During the second stage, the model is trained

to learn vector representations of entities from the disease-treatment network using

node embedding methods. With the trained embedding vectors, we predict link for-

mation between treatment and diseases in the claim in order to determine whether

the treatment listed in the given claim is unnecessary to the subject patient. We test

employing different network embedding models and suggest strategies to choose the

most appropriate method. Our selection metric is the average performance on link

prediction between the disease and the treatment.

The rest of the chapter is organized as follows. In section 4.2, we review the lit-

erature on graph embedding methods and the applications of the graph embedding

method in biomedical data. Also, we introduce several studies about medical con-

cepts embedding. Section 4.3 provides detailed descriptions of the proposed model.

In section 4.4, we elaborate on experiment settings. We also describe the data in this

section. Section 4.5 reports the experiment results. Finally, section 4.6 concludes the

paper.

4.2 Literature review

In this section, we explained some state-of-the-art graph embedding network meth-

ods and their application to biomedical data. In subsection 4.2.1, we briefly in-

troduced some graph embedding methods. In subsection 4.2.2, we reviewed about
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applying graph embedding methods in biomedical data. Finally, We described some

methods related to medical concept embedding in section 4.2.3.

4.2.1 Graph embedding methods

The graph embedding methods can be divided into four categories: matrix factorization(MF)-

based methods, random walk-based methods, deep learning-based methods, and

other methods. In this subsection, we briefly reviewed each category and corre-

sponding methods.

MF-based methods

Originally, the matrix factorization method has been widely adopted for di-

mension reduction of the data matrix. The data matrix is factorized into lower-

dimensional matrices while preserving the manifold structure. The MF-based graph

embedding method is factorizing matrices, which represent graph properties, to ob-

tain node embedding vectors in lower dimension space. There are several graph

embedding methods that utilize matrix factorization methods such as locally linear

embedding(LLE) [76], Laplacian eigenmaps(LE) [7], Graph Factorization(GF) [2],

GraRep [9], and HOPE [69].

In LLE, find k-nearest neighbors(k-NN) of each data and make an adjacency

matrix based on the k-NN result. Then, factorize the matrix using the matrix fac-

torization method such as Singular Value Decomposition(SVD). While LLE [76] uses

the constructed matrix itself, LE [7] factorizes graph Laplacian Eigenmaps to pre-

serve pairwise node similarities. It converts finding embedding vector problem to

generalized eigenvector problem. GF [2] directly factorize the proximity matrix of a

graph under each edge is already existed. These methods aim to preserve 1st-order
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proximity. However, many networks have important features in high-order proximi-

ties.

GraRep and HOPE are two important methods that preserve high-order proxim-

ities. In GraRep [9] method, authors capture network the local and global structure

by generating multiple k-step embedding vectors by factorizing multiple k-step tran-

sition probability matrices, and concatenate those vectors. HOPE [69] is used to get

embedding vectors of the directed graph which has asymmetric transitivity. The ba-

sic idea of HOPE is that a node should have two different embedding vectors because

each node can be used as a target node. It defines some important high-order prox-

imity measures such as Katz index [37], and get embedding vectors that preserve

such measures. SVD is used to factorize the matrices in both methods.

Random walk-based methods

Random walk is a stochastic process with random variables W 1
vi ,W

2
vi ,...,W

k
vi such

that every value is randomly chosen from the neighbors of previous value. In other

words, if W j
vi = vj , then W j

vi must be randomly chosen from N(vj), which means

the neighbors of node vj . In short, a random walk in a network is a node sequence in

which every node is connected to the previous node. It is commonly used to capture

structural relationship between nodes of the network. Perozzi et al. [72] found that

the distribution of vertices appearing in short random walks is similar to the distri-

bution of words appearing in sentences under certain circumstances. Inspired by this

observation, they suggested a method named DeepWalk, which utilizes SkipGram

[61] model in random walks to learn the embedding vector of each node. Also, the

hierarchical softmax method was used to train SkipGram model ([62], [63]). After

this study, there have been several papers that utilize the word embedding model in
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NLP to random walks. Grover and Leskovec [29] suggested node2vec model that uses

the biased random walk rather than unbiased random walk in DeepWalk. They used

the biased random walk to preserve the local structure and the global structure by

using breadth-first searching and depth-first searching in generating random walks.

With these random walks, they trained SkipGram model with negative sampling.

Perozzi et al. [73] proposed Walklets, which is another extension of DeepWalk. They

modified a strategy of generating random walk to skipping some nodes each random

walk. By this strategy, they made it possible to generate random walks that contain

multiple k-steps proximities.

Diffusion component analysis (DCA) [13] is another random walk-based embed-

ding method, but quite different from previous methods. While previous methods

are node embedding methods utilizing SkipGram model, DCA calculates the dif-

fusion state that is defined as the probability distribution in stationary state with

random walk with restart (RWR) strategy. This strategy captures both local and

global structural property. Also, it makes possible to overcome the noise and sparsity

of the network, so that this method can be used in the biological network.

While these methods were concerned only about proximities, struc2vec [75] is a

graph embedding method that preserves structural identity. The authors of struc2vec

explain the structural identity as a concept a symmetry in which network nodes are

identified according to the network structure and their relationship to other nodes

[75]. In other words, a node pair having structural identity means both nodes perform

similar roles in the network. Firstly, define the structural similarity and construct a

multilayer weighted network where all nodes exist in every layer. Then, generate the

context for each node by using biased random walks with the multilayer network.
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Then, train a SkipGram model with the hierarchical softmax method to learn node

embedding vector for each node with random walks.

These methods are for the homogeneous networks, which refer to networks with

a single type of nodes and edges. However, there are much more networks which

are not homogeneous such as author-paper-venue, customer-products-seller network.

These networks are called heterogeneous networks which include different types of

nodes and edges. There are several studies about embedding methods for these

networks, such as metapath2vec [23] and Heterogeneous Information Network Em-

bedding (HINE) [35]. Here, both methods are random walk-based method. Except

for generating random walks method, metapath2vec is quite similar to DeepWalk.

They suggest meta-path based random walks for the heterogeneous network, which

generates random walks by pre-defined node type sequence. Otherwise, HINE [35]

does not utilize SkipGram method in training. The authors first defined two meta-

path based proximity measures for a heterogeneous network. Then, train embedding

vectors of nodes while preserving those proximities.

Deep learning-based methods

Deep learning has been achieved success in various domains. Deep learning-based

embedding methods are the embedding methods that utilize some deep learning ar-

chitectures. SDNE [92] is a kind of node embedding model which utilizes the deep

auto-encoder to proximity matrix of the network to map it to nonlinear latent space

while preserving the network structure. By using the auto-encoder, the embedding

vector preserves the second-order proximity. It makes 1st order proximity also be

preserved by applying Laplacian eigenvector proximity measure to embedding vec-

tors. DNGR [10] is another model that utilizes auto-encoder structure The authors
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chose the stacked denoising auto-encoder structure to find non-linear embedding

vectors in low dimensional space and robust to the noise of the network. Graph

convolutional network (GCN) [41] and variational graph auto-encoder (GAE) [40]

are also important deep learning-based model. Both of them use the convolutional

neural network (CNN) in network data which achieves great success in the com-

puter vision domain. GCN applies the convolutional operation to network data by

using the proximity matrix and feature matrix of the network. GAE is a kind of

auto-encoder that uses GCN encoder and the simple inner product decoder.

Other methods

There are several important methods that are not included in any category. Mul-

tidimensional scaling(MDS) [33] learns embedding vectors by preserving the distance

of all node pairs in the embedding space. However, it does not consider different re-

lationships might have different importance. Isomap [88] overcome this shortage by

constructing k-NN network and learn embedding vectors while preserving the dis-

tance between a node and its k-NNs. LINE [86] is a node embedding method that

preserves the first-order and second-order proximity. The authors suggested preserv-

ing 1st order proximity by minimizing the distance between the empirical distribu-

tion of nodes in the original graph and the distribution from embedding space. Also,

they suggest minimizing the distance between the empirical conditional distribution

of ‘context’ node vj given a single node vi and the conditional distribution of them

in the embedding space.

77



Table 4.1: graph embedding methods

Category Algorithm Method

Matrix
factorization

LLE [76]
matrix factorization
(e.g. SVD)

LE [7]
matrix factorization
(e.g. eigen-decomposition)

GF [2]
matrix factorization
(e.g. SVD)

GraRep [9]
matrix factorization
(e.g. SVD)

HOPE [69]
matrix factorization
(e.g. SVD)

Random
walk

DeepWalk [72] skip-gram with random walk

node2vec [29] skip-gram with random walk

Walklets [73] skip-gram with random walk

DCA [13]
stationary distribution with
random walk with restart strategy

struc2vec [75] skip-gram with random walk

metapath2vec [23] skip-gram with meta-path based random walk

HINE [35]
proximity preserving model with
meta-path based random walks

Deep
learning

SDNE [92] Autoencoder with proximity matrix

DNGR [10] Denoising autoencoder with PPMI matrix

GCN [41]
CNN model with
adjacency matrix and feature matrix

GAE [40]
Autoencoder with
GCN encoder and simple inner product decoder

Others MDS [33] Preserving Euclidean distances of all node pairs

Isomap [88]
Preserving Euclidean distances of
each node and its k-nearest neighbors

LINE [86] Preserving 1st-order and 2nd-order proximity
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4.2.2 Application of graph embedding methods to biomedical data

analysis

The network embedding method is applied mainly in three topics: pharmaceutical

data analysis, multi-omics data analysis, and clinical data analysis. In this subsec-

tion, we explained each category and review several studies.

Pharmaceutical data analysis

The usage of graph embedding or graph analysis in pharmaceutical data can

be categorized as three important issues: drug-target interaction (DTI) prediction,

drug-drug interaction (DDI) prediction, and drug-disease association (DDA) pre-

diction. DTI prediction means predicting the interactions between drugs (chemical

compound) and target (protein). DDI prediction is to predict the result of drug co-

prescription. DDA prediction means predicting the clinical result when a patient,

who has a specific disease, takes a specific drug.

Previously, DTI prediction was mainly performed by constructing proximity ma-

trices and factorize them by matrix factorization methods. Yamanashi et al. [102]

proposed a method of predicting unknown DTI by using known DTI data, chemical

data, and genomic data. They construct a known drug-target bipartite network by

DTI data and factorize the similarity matrix by eigenvalue decomposition. Next,

train models that represent the correlation between embedding space and chemi-

cal/genomic space. Then, the unknown DTI can be inferred by the model. Cobanoglu

et al. [18] proposed a method that predicting DTI by using the collaborative filtering

method only with known DTI data, not any external data. They applied the prob-

abilistic matrix factorization method to the known DTI network to get embedding

vector of each node in drug-protein and predict unknown DTI by active learning
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with learned embedding vectors. Ezzat et al. [25] suggested a method that predicts

DTI by the graph embedding method and ensemble learning. They conducted a

feature sub-spacing to inject diversity for classifier ensemble and tried three differ-

ent dimension reduction methods: SVD, Partial Least Squares(PLS), and LE. Then,

train homogeneous base learners with the resulting vectors and predict with each

model’s score. Also, there is another method that uses the k-NN method and graph

regularization matrix factorization method to predict unknown DTI [26].

While MF-based methods were used in previous studies, random-walk based

methods are also commonly used in DTI prediction. Luo et al. [54] developed a

model named DTINet to predict DTIs from a heterogeneous network that is con-

structed by integrating drug-related information. They used extended DCA to learn

embedding vectors for each node in the heterogeneous network. Then find the best

projection from drug space to target space by finding mapped feature vectors of

drugs are similar to the known interacting target. Then, infer new interactions of

a drug by ranking the target candidates and projected feature vector of the drug.

Zong et al. [110] proposed a similarity-based DTI prediction method by constructing

a drug-target-disease tripartite network. After construction, train embedding vec-

tors for each node to predict the drug-target association. They utilized DeepWalk

method to learn embedding vectors. Alshahrani et al. [3] proposed another method

that integrates external information to construct a heterogeneous network. They in-

tegrated gene ontology(GO), protein-protein interactions(PPIs), DTIs, gene-disease

interactions, drug side effects, and disease-phenotype information to construct the

network. They utilized a modified DeepWalk method to learn embedding vectors

that captures the structure of the network. Then, they trained the logistic regres-
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sion model to predict the unknown DTIs.

There were also several studies predicting DDIs. Zhang et al. [107] proposed a

method that formulates DDI prediction as a matrix completion problem. Firstly,

they integrated multiple external drug-related information and learned embedding

vectors. Also, they suggested a method named ‘Manifold Regularized Matrix Fac-

torization’ (MRMF), which is a kind of MF-based embedding method, to learn

embedding vectors. Then, they found similarity factors between node pairs with

embedding vectors and known DDI information. Ma et al. [56] proposed a model

that calculates similarities between drugs in multi-view. They used GAE to integrate

multiple types of drug features and attentive model to make the model adaptive to

data. They also used the model to predict unknown DDI. Zitnik et al. [109] proposed

a model named ‘Decagon’, which is aimed to predict DDI, especially polypharmacy

side effects. Firstly, they constructed a multimodal graph from PPIs, DTIs, and

polypharmacy side effect information. Different types of interactions are labeled by

different edge types. The unknown DDIs are predicted by link prediction between

drug nodes using modified GAE. The node information is encoded by the GCN

based encoder. Then, the decoder takes pairs of embedding vector and scores the

edge between them.

Predicting DDAs is also an important issue in pharmaceutical data analysis.

Dai et al. [20] first embedded gene-gene interaction network by eigenvalue decom-

position and get embedding vectors of drugs and disease with the gene embedding

vectors, drug-gene interactions, and disease-gene interactions. Then, factorize the

known drug-disease association matrix. Finally, the unknown DDAs can be inferred

by the embedding vectors of drugs and diseases, and the matrix factorization result
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of known drug-disease association matrix. Wang et al. [94] constructed a drug-disease

network from free text, especially extracted from papers in PubMed and learn em-

bedding vector with modified LINE. Then, the correlation of the drug-disease pair

is calculated by the embedding vectors and find DDA patterns.

Multi-omics data analysis

The term ‘omics’ means a field of study in biology that ends with ‘-omics’, such as

genomics. These studies are about researching characteristics of biological molecules

such as their structures, functions, or dynamics. The network-based approach is a

valuable method in these studies in finding a relationship between entities. Here, we

reviewed three important topics that utilize graph embedding methods: proteomics,

genomics, and transcriptomics data analysis.

Many studies that apply graph embedding methods in proteomics is focused on

assessing and predicting PPIs, or predicting protein functions. Kuchaiev et al. [45]

proposed a de-noising PPIs model with MDS-based graph embedding approach to

address high false positive and false negative in PPIs. You et al. [104] used isomap

to embed the PPI network in low dimensional space. Then, assess and predict the

PPIs by comparing embedding vectors of the node pair. Lei et al. [49] proposed a

two-step model that assesses and predicts PPIs. First, combine multiple genomic

and proteomics information by logistic regression approach to construct a weighted

PPI network. Then, get embedding vectors by extended isomap and predict the

unknown PPIs. Wang et al. [97] proposed ProsNet, which predicts the PPI by con-

structing a heterogeneous molecular network and embedding the network in low

dimensional space. The heterogeneous molecular network is constructed by includ-

ing the molecular networks of several species and gene ontology graph. Then, the
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embedding vectors are calculated by meta-path based extended DCA.

Graph embedding methods are utilized for various purposes in analyzing genomic

data. As We already reviewed in the previous subsection, Cho et al. [13] proposed

DCA, which is an important graph embedding method, to learn node embedding

vectors with RWR strategy. Wang et al. [95] proposed a method named clusDCA,

which predicts the gene function. They learned embedding vectors from gene-gene

interaction network and GO by DCA. Then, they trained a projection model from

gene space to GO space. With projected vectors and embedding vectors in GO

space, they predicted the gene function of the gene. There is also another DCA-

based model named PACER that aims to pathway identification [96]. The main

idea of this method is to construct a heterogeneous network and embedded gene

and pathway in a unified space. They used gene expression, drug response-gene

expression, PPIs, and pathway information to construct the network. Li et al. [51]

proposed a model named SCRL, which aims to learn the representation of a single

cell RNA sequence. The basic idea of this model is constructing cell-ContexGene

and Gene-ContextGene networks and learning embedding vectors by extended LINE.

Zeng et al. [106] constructed a heterogeneous gene-disease network from human genes

and other species’ genes information. Then, they calculated embedding vectors by

factorizing the matrix and predicted the pathogenic human genes.

Transcriptomics is a study of an organism’s transcriptome, which is all about

RNA transcript. In this field of study, The graph embedding methods are mainly

used to identify the miRNA-disease association. Shen et al. [81] developed Collab-

orative Matrix Factorization for miRNA-Disease Association(CMFRDA) that iden-

tifies the miRNA-disease association. They constructed a miRNA-disease bipartite
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graph and factorized the matrix by the SVD for initialization. Then, they update

the factorized matrix until the predefined loss is converged. Li et al. [50] proposed

a similarity-based miRNA-disease prediction model. They constructed the miRNA-

disease bipartite network and learned similarity by embedding the network with

DeepWalk. Then, they infer the miRNA-disease interaction by the distance between

embedding vectors of a node pair.

Clinical data analysis

There are several papers about analyzing the clinical data, such as medical

knowledge graph, electronic health records (EHRs) and electronic medical records

(EMRs). Choi et al. [16] suggested learning embedding vectors from three differ-

ent data sources: medical journals, medical claims, and clinical narratives. Different

types of concepts are embedded in a common low-dimensional space. They tried

two embedding methods: SkipGram and matrix factorization. Wang et al. [93] sug-

gested a method to recommend appropriate medicine for patients. They constructed

heterogeneous network by combining medical knowledge network, patient-medicine

network, and patient-disease network. They trained embedding vectors of the net-

work by using translation-based embedding method and LINE. Choi et al. [15] de-

veloped a model named GRAM, which aims to learn low-dimensional representation

with medical concept ontology. They utilized the attention method to leverage the

parent-child relationship of the ontology.
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Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

Pharmaceutical

data analysis
Yamanashi et al. [102] DTI prediction Matrix factorization

Cobanoglu et al. [18] DTI prediction
Probabilistic matrix

factorization

Zheng et al. [108] DTI prediction Matrix factorization

Ezzat et al. [25] DTI prediction Matrix factorization

Ezzat et al. [26] DTI prediction
Matrix factorization

(SVD, PLS, LE)

Luo et al. [54] DTI prediction DCA

Zong et al. [110] DTI prediction DeepWalk

Alshahrani et al. [3] DTI prediction Modified DeepWalk

Zhang et al. [107] DDI prediction matrix factorization

Ma et al. [56] DDI prediction GAE

Zitnik et al. [109] DDI prediction modified GAE

Dai et al. [20] DDA prediction

Eigenvalue

decomposition,

Matrix factorization

Wang et al. [94] DDA prediction modified LINE

Multi-omics

data analysis
Kuchaiev et al. [45] Denoising PPI Extended MDS

85



Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

You et al. [104]
Assessing PPI,

PPI prediction
Isomap

Lei et al. [49]
Assessing PPI,

PPI prediction
Extended Isomap

Wang et al. [97] PPI prediction
Meta-path based

extended DCA

Cho et al. [13]
Node embedding in

biological network
DCA

Wang et al. [95]
Gene function

prediction
Extended DCA

Li et al. [51]

Learn the

representation of

single cell RNA-seq

Extended LINE

Zeng et al. [106]
Predict pathogenic

human genes
Matrix factorization

Wang et al. [96]
Pathway

identification
DCA

Shen et al. [81]

Identify potential

miRNA-disease

association

Matrix factorization
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Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

Li et al. [50]
miRNA-disease

prediction
DeepWalk

Clinical

data analysis
Choi et al. [16]

Medical concept

embedding

SVD,

SkipGram

Choi et al. [15]
Medical concept

embedding
GRAM

Wang et al. [93]
Medicine

Recommendation

Translation based,

LINE

4.2.3 Medical concept embedding methods

In order to apply various machine learning methods in clinical data, the medical

concept in the clinical data should be vectorized. There have been researches to

embedding medical concept to get embedding vector for various purpose, such as

predicting patients’ visits.

Choi et al. [14] proposed a medical concept representation method named med2vec

from EHR datasets. Here, they define a visit vector Vt, and represent it as a binary

vector xt ∈ 0, 1|C| , where the i-th entry is 1 only if ci ∈ Vt. Then, represent the

binary vector in intermediate low dimensional space, and concatenate the vector

with demographic information. Embed the concatenated vectors into the final low

dimensional space and predict the other binary vectors in a context window. Not

only they used inter-visit information, but also they used inter-visit information to
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preserve code-level information. Another work done by the Choi’s team is GRAM

[15], which is we already reviewed in the subsection 4.2.2. It utilized the attention

model to each node in the medical concept ontology to learn low-dimensional em-

bedding vectors that leverage the parent-child relationship. Song et al. [83] proposed

another ontology-based medical concept model named MMORE. The model learns

multiple embedding vectors for the ancestors of the leaf nodes and the final embed-

ding vectors are calculated by combining those embedding vectors with an attention

mechanism.

Cai et al. [8] proposed an embedding method that considers the temporal in-

formation because the scopes medical concept varies greatly in terms of temporal

scope. The embedding vectors are calculated from other EMR data codes that are

in a certain time window with the attention model. Xiang et al. [101] claimed that

the embedding vectors of medical concepts should consider temporal dependency.

They tried word2vec, PPMI, and FastText [36] with large EHR datasets to learn

embedding vectors of medical concepts to overcome this issue.

4.3 Proposed method

This section presents our overtreatment detection model using graph embedding

method. Subsection 4.3.1 details the process of the medical information network

from the medical treatments found in healthcare insurance claims. More specifically,

we present how to compute the edges of the network from the treatment data. Sub-

section 4.3.2 describe our strategies for choosing the best method for embedding the

constructed network in order to carry out the overtreatment detection task. We solve

the link prediction problem and compare performances among the select methods.
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Finally, we construct the overtreatment detection model by using graph embedding

in subsection 4.3.3. We sample negative edges from the constructed network, in par-

ticular, and use the embedding vectors of the nodes, trained and chosen as described

in subsection 4.3.2, to predict links.

4.3.1 Network construction

Our healthcare insurance claim data consists of three parts: (1) basic claim informa-

tion; (2) disease information, and; (3) treatment information. Basic claim includes

claim-wise elements as claim identifiers, general practitioner (GP) information, sub-

ject patient profiles, as well as the relevant DRG code. Disease information reports

the list of diseases the subject patient has. The treatment information encompass

all the details of treatments that the general practitioner has prescribed the patient.

Figure 2.5 illustrates an example of a claim typically found in our data set

The toughest challenge in constructing a network from in insurance claim data set

is that the casual relationship between the disease and the treatment is not apparent.

A claim contains information on the main and sub-diseases diagnosed as well as the

type and amount of treatments, yet it still remains in dark exactly for which disease

each treatment was prescribed. The absence of exact disease-treatment matching

poses as a problem in the following sense: suppose an edge between a disease and

a treatment is formed if they appear in the same claim. For example, if diseases

A and B are listed together with treatments C and D for an arbitrary claim case

c, then an edge will be formed between disease A and treatments B and C. Now,

suppose that, in reality, treatment D was prescribed for disease B only and, likewise,

treatment C only for disease A. Then, the edge between disease A and treatment D
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carries wrong relational information. That is, in other words, edge formation based

on co-occurrence may lead to misleading representations.

In order to address above issue, we resort to the concept of the relative risk

(RR) as a vehicle to infer the relationship and form edges accordingly ([60], [100]).

Relative risk is a statistical measure of statistical method utilized in cohort studies

to infer the association between an outcome and a factor.

For example, suppose ‘B’ is an outcome and ‘A’ is a factor. Then, RR(A,B) is

defined as follows:

RR(A,B) =
p(B|A)

p(B| ∼ A)

If the resulting value is larger than 1, then factor ‘A’ is considered to be associated

with outcome ‘B’.

Now, we construct disease-treatment network as following. We begin by forming

edges between the main diseases and the RDRG codes. If a claim has a specific

RDRG code and main disease(s) listed, then edges are formed between the code and

the corresponding main diseases. The main diseases, then, are connected with sub-

diseases listed for the same claim, if any. Finally, we form edges between the diseases

and treatments by exploiting the RR measure. More specifically, RRs are computed

for all the disease-treatment pairs in the training set. Then, an edge formed for

the disease-treatment pair whose RR value is greater than 1. The resulting network

comprises undirected, unweighted edges.

4.3.2 Link Prediction between the Disease and the Treatment

In order to detect overtreatment by using node embedding vectors, we first need

to select the most appropriate node embedding method which learns to represent
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Figure 4.2: Network construction by co-occurrence and association relationship

nodes effectively from the constructed network as vectors on the embedding space.

In this subsection, we detail the process of choosing the best embedding method

among other candidates, which constitutes two main steps: edge sampling and link

prediction.

Edge sampling

We begin by spliting the edge set from the original network G = (V,E) into

two sub-graphs: the training set, Gtrn = (V,Etrn) and the test set, Gtst = (V,Etst).

Since Etrn represents all the observable, hence positive, samples, we re-denote Etrn

as Etrnpos . In contrast, negative samples are not directly observed from the claims

data. Thereupon, we define negative edges as the set of all the combination pairs

between the diseases and treatments in the training set that are not in Etrnpos . Then,

sample several negative edges from this set. The number of negative edges sampled
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should be equal to
∣∣Etrnpos ∣∣. This set of sampled negative edges are denoted by Etrnneg.

Similarly, we define the set of edges observed in the test set, Etst, as the positive

edge samples and denote them by Etstpos. Negative edges are sampled in a similar

fashion as explained above for the training set negative samples, which is denoted

by Etstneg. This validates that the set of negative edges sampled for the test set will

not intersect with those in Etrnpos , E
trn
neg, nor in Etstpos.

Link prediction

At this stage, we employ a selection of node embedding methods to learn to

represent nodes from Gtrn as vectors on an embedding space. Suppose an arbitrary

embedding model learns to present nodes u, v in the Gtrn, which are connected by

the edge e = (u, v). We denote the corresponding embedding vectors for the nodes

u, v by xu,xv, respectively. The embedding vector for the corresponding edge e is

defined as xe = [xu,xv], which results from concatenating the embedding vectors

of the connected nodes. We denote the sets of the embedding vectors of the edges

in Etrnpos , E
trn
neg by Xtrn

pos , X
trn
neg, respectively. Similarly, the sets of embedding vectors of

edges in Etstpos, E
tst
neg are denoted by Xtst

pos, X
tst
neg, respectively. Then, using Xtrn

pos , X
trn
neg,

we train a logistic regression model, hθ(e), using to learn to classify whether a given

edge is positive or negative. Finally, we evaluate the classification result of hθ(e)

with Xtst
pos, X

tst
neg.

The entire process for disease-treatment link prediction is illustrated in Figure

4.3. We repeat this process several times and compute the average performance of

select embedding methods in solving the link prediction task. Details on the models

employed in the experiment can be found in section 4.4.

92



Figure 4.3: The process of link prediction between the disease and the treatment

4.3.3 Overtreatment Detection

In the previous subsection, we detailed out the process for choosing the best net-

work embedding model by comparing the average performance in disease-treatment

link prediction. In this subsection, we elaborate on the framework of our overtreat-

ment detection model which utilizes the embedding vectors of nodes. Overtreatment

detection model involves two stages: edge sampling and overtreatment detection.

Edge sampling

Different from the previous subsection, We define the network corresponding

to the training set as Gtrn = (V,Etrn); the network corresponding to the test set,

Gtst = (V,Etst). Note that the nodes that do not appear during the training were

also removed from the test set, hence the node set for the training is exactly what
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is used for the test set. The negative edge sampling process must be differentiated

from what was defined in the previous subsection so as to reflect that, at this time,

we need disease-treatment pair samples based on association. Take, for an exam-

ple, a claim i which includes diseases dtrni1 , d
trn
i2 and treatment ttrni1 . It may be the

case that the prescription of ttrni1 is due to dtrni1 , while dtrni2 is irrelevant. Such a re-

lation should be translated to an edge e1 = (dtrni1 , t
trn
i1 ). On the other hand, an edge

e2 = (dtrni2 , t
trn
i1 ) would provide misleading information, hence should not be formed.

In case of subsection 4.3.2, the challenge is not as severe since e2 can be sampled as

a negative edge while learning to classify the disease-treatment relationship. How-

ever, in terms of evaluating the claims for overtreatment, edge sampling based on

co-occurrence leads to a serious problem, since co-occurrence does not necessarily

imply association. Mistakenly connecting ttrni1 to dtrni2 may lead to mis-labeling the

claim i as an overtreatment case, while it actually is not, for ttrni1 was an appro-

priate choice of prescription in response to dtrni1 . Given that our ultimate goal is to

detect overtreatment, such mis-labeling problem will cause grave degradation of our

detection model.

In order to tackle this issue, we sample negative edges claim-by-claim, unlike the

edge sampling described in the previous subsection where edges were sampled from

the entire network all at once. Our negative edge sampling process preceeding the

overtreatment detection proceeds as follows. Given a single claim, we identify all

the diseases included in the claim. Then, we look up treatments, from the rest of

the claim data set, that are not matched with either of the identified diseases. All

possible combinations of the identified diseases (from the subject claim case) and the

looked up treatments (from the rest of the claims data) are considered as negative

94



edges candidates of the given claim. sample as many negative edges as the number

of positive edges found in the claim.

We describe the process with an example. Suppose a claim includes diseases of

dtrni1 , d
trn
i2 . All the treatments that are related to dtrni1 and those to dtrni2 are represented

as N(dtrni1 ), N(dtrni2 ), respectively. Then, the negative edges are sampled from the set

Enegi = {(u, v)|u ∈ {dtrni1 , dtrni2 }, v /∈ {N(dtrni1 ) ∪ N(dtrni2 )} where u represents the

disease node and v, the treatment node. Here, treatment nodes matched with the

disease nodes from corresponding to claim i is not in fact related to any of the given

diseases. We denote the edge set from the training set as Etrnpos ; those from the test

set, Etstpos. Similarly, the negative disease-treatment edge set that sampled for the

disease nodes found in the training set is denoted by Etrnneg; for those found in the

test set, Etstneg.

Figure 4.4: Claim-wise negative edge sampling

Overtreatment detection

We propose to detect overtreatment in two different ways. First approach is to

detect overtreatment naively, using the network resulting from the training set, per
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se. Another approach involves training node embedding models. Both approaches

assume that a given case is associated with overtreatment if the link between the

diseases and the treatments listed in the claim. The näıve network approach proceeds

as follows: if there is a disease-treatment edge in Etstpos which does not exists in Etrnpos ,

the corresponding treatment is classified as overtreatment. For example, suppose

that a claim includes diseases d1, d2, . . . , dm and a treatment tk in the test set. If the

treatment satisfies the condition of (d1, tk), (d2, tk), . . . , (dm, tk) /∈ Etrnpos , we classify

the subject treatment as overtreatment.

In case of node embedding approach, we first train our model to learn to vector

representations of nodes that are connected by the edges in Etrnpos . Then, a logis-

tic regression model hθ(e) is employed to learn to classify edges using Etrnpos and

Etrnneg. We test the training results using Etstpos and Etstneg. If the test result reports

that all of the diseases are not connected to a treatment found in the given claim,

and the corresponding treatment is considered as overtreatment. Mathematically,

we denote the embedding vectors of diseases d1, d2, . . . , dm,by xd1 ,xd2 , . . . ,xdm ,

and the embedding vector of the treatment tk by xtk . Given the treatment tk,

if the prediction results for each respective diseases included in a given claim,

hθ([xd1 ,xtk ]), hθ([xd2 ,xtk ]), . . . , hθ([xdm ,xtk ]) are all negative, then treatment tk

is classified as overtreatment. We graphically illustrate the overall framework of our

overtreatment detection model in Figure 4.6.

4.4 Experiments

In order to evaluate our proposed model, we experiment on real-world data. Our

dataset consists of health insurance claims submitted to HIRA in 2017. Subsection
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Figure 4.5: Unnecessary treatment detection by link prediction result

4.4.1 provides detailed descriptions of our dataset. Subsection 4.4.2 presents the

training details.

4.4.1 Data Description

As described in subsection 2.4.1, there are several databases separately stored within

the HIRA data warehouse. Each database stores important information about in-

surance claims such as basic claim information, treatment information, disease in-

formation, and the filing review details. We provide details on each database in

Table 2.1. From claims filed to HIRA in 2017, we extracted records that are man-

ually reviewed. Also, we selected cases assigned to one of the following five 3-digit

DRG codes for modeling and evaluation: B60(quadriplegia, paraplegia, and spondy-

lopathy), B63(Parkinson disease, neurological neoplasm, hemiplegia, degenerative

nervous system disorder), D64(disequilibrium, otitis media, upper respiratory in-

fections), I07(simple spinal surgery, intervertebral disc removal), I68(non-surgical

cervical and spinal conditions). Table 4.3 reports summary statistics of each DRG

code group.
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Figure 4.6: The process of unnecessary treatment detection by link prediction be-
tween the disease and the treatment

Table 4.3: Treatment data statistics

Treatment type B60 B63 D64 I07 I68

Procedure 804,306 1,562,496 1,951,333 4,504,776 10,586,623
Prescription 275,559 524,895 1,073,685 2,393,032 3,950,746

Material 17,384 16,947 32,712 509,183 40,753

1902 3-digit disease codes and 9765 treatment codes were included in the data

set. Treatments are conventionally categorized into four different groups: basic treat-

ments, procedure, prescription, and materials. Basic treatment refers to the group of

treatments that may be prescribed anytime, regardless of types of diseases a patient

is diagnosed with. For example, consultation, admission, nursing, and meals fall into

this group. Since these types of treatments does not provide any meaningful informa-

tion in relation to diseases, we discard them as we construct the disease-treatment

network. Procedures are include treatments practitioners conduct on patients, such

as X-ray examinations, MRI examinations, and surgical operations. Prescription
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refers to the detailed information about drugs practitioners prescribe such as, for

example, the nonsteroidals anti-inflammatory drug. Finally, material is a group of

treatments that require materials for recovery Orthosis is a good example of the

material treatment. There are 5854, 2319, 1225 treatment codes in the procedure,

prescription, material groups, respectively.

4.4.2 Experimental Settings

Our proposed method extracts disease-treatment relationship carefully by incorpo-

rating all the information available in the claim filing, instead of relying on simple

co-occurrence. Multiple stages exploiting different information build up to the final

disease-treatment network stage-by-stage. We begin by constructing networks sepa-

rately for each DRG 3-digit code. Given a DRG 3-digit code, we extracted relevant

RDRG codes, disease codes, procedure codes, prescription codes, and material codes

that appear in our data. Then, we set each of these codes as individual nodes. RDRG

code is of the finest granularity for DRG code in the KDRG code system. Then, for

each RDRG code, we extracted the main disease codes and sub disease codes from all

the claims with the matching the RDRG codes. Then, we connect the RDRG codes

with the matching main disease codes. At the same time, we formed links between

the main disease code nodes and the relevant sub-disease code nodes. Finally, we add

treatment codes to the network and connect them with the associated disease codes

as detailed in subsection 4.3.1. The diseases codes are grouped as detailed in sub-

section 4.4.1. Then the resulting network, by design, ensures that every treatment

node is assigned to one of the three labels: procedure, prescription, or material. We

present the possible types of disease-treatment pair edges in the resulting network
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in Table 4.4. We also provide the graphical snapshot of the network in Figure 4.7.

Table 4.4: Edges in the network and their type

Edge Type

RDRG - main disease co-occurrences
main disease - sub diseases co-occurrence

diseases - procedures association
diseases - prescriptions association

diseases - material association

Figure 4.7: RDRG-disease-treatment network

In order to choose the best node embedding model to carry out the disease-

treatment link prediction task, we trim the network by looking up the claims filed

from January 2017 to September 2017 only. We split the edge sets into the training

and the test set by the ratio of 7:3. The node embedding models we experimented

with are as following: GF [2], HOPE [69], GraRep [9], DeepWalk [72], node2vec [29],

metapath2vec [23], SDNE [92], LINE [86].

We report performances of various link prediction models employed, of which

the respective unit link is defined to connect the disease and the corresponding

procedure, the disease and the prescription, or the disease and the materials. We
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repeated the experiment for link prediction 10 times and report the average of the

accuracy measures as the principal reporting metric for the overall performance.

We choose the model with the highest average performance as the best embedding

method for our network.

As for the overtreatment detection model as described in subsection 4.3.3, the

training and the validation sets were built from the claims filed from January 2017

to September 2017. The test set comprises claims filed to HIRA from October 2017

to December 2017. We repeated the experiment 10 times and report the average

accuracy as the performance metric.

We set hyper-parameters as follows. First, we fix the dimension of embedding

vectors at 32 in every case. We tested various configurations and landed on the values

reported. We set both the number of random walk per node and the length of each

random walk at 32 for DeepWalk and node2vec methods. In case of node2vec, we

set the two key hyper-parameters p, q, which, altogether, generate a biased random

walk, at p = 0.5, q = 2.0. On the other hand, metapath2vec requires to define the

meta-paths in order to generate random walks. We set the meta-paths to be either

‘Treatment-Disease-Treatment’, or ‘Treatment-Disease-RDRG-Disease-Treatment’.

The former meta-path implies that ‘treatments caused by the same disease’, while

the latter, ‘treatments for the same kind of patients’. We also fix the number of

the random walk per node at 32. For SkipGram we set the window size for training

at 6. For LINE, which considers information of neighboring nodes up to the 2nd

order proximity, we set the negative ratio at 5. For GF, we fix parameter for the

regularization term of the L2-norm loss at 0.00001. We used the 2-step transition

probability matrix for GraRep method. The auto-encoder spart of the SDNE model
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takes the structure of [n−256−32−256−n], where n is the input dimension. Training

batch size was set at 128 with the learning rate equal to 0.01. The parameters α, β in

the loss function and ν in the regularization term is set to α = 0.1, β = 1.1, ν = 0.3,

respectively We used pytorch [70], scikit-learn [71], scipy [91], numpy [67] packages

to implement the aforementioned models.

4.5 Results

4.5.1 Network Construction

In this subsection, we compare the results between two distinct approaches to con-

struct the disease-treatment network: (1) the simple co-occurrence-based approach,

and; (2) the association-based approach. In previous subsections, we have claimed

that simple co-occurrence per claim filings does not necessarily imply association.

In this subsection, we will provide empirical justification for our arguments.

Figure 4.8: Networks constructed by co-occurrence and association relationship.
(left): Co-occurrence (right): Association

Figure 4.8 represents the relationship between the main disease with code S12
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(fracture of neck) and relevant sub-diseases from claim reports labeled with the DRG

3-digit code I07, whose linkage was determined by the two different approaches afore-

mentioned. The left-hand side panel of Figure 4.8 shows the graphical representation

of the relationships between the main disease S12 and the sub-diseases based on the

simple co-occurrence, while the right-hand side panel shows that based on associa-

tion. From now on, we refer to the left-hand side and the right-hand side network

as the co-occurrence network and the association network, respectively.

In case of the co-occurrence network, every treatment which co-occurred with

the main disease S12 under the DRG 3-digit code of I07 is linked not only to the

main disease S12 but as well as to all the sub diseases which appeared with S12, as

apparent on the left-side panel of Figure 4.8. On the contrary, treatment nodes from

the association network clearly appear to be distributed more sparsely across the

sub-diseases linked to the main disease S12, as shown on the right-side panel of Figure

4.8. We do not have the privilege of disclosing all the treatment nodes presented in

Figure 4.8 due to personal information protection issues; yet, with permission from

the appropriate authorities, we take an example from each network to provide an

empirical justification for our argument. From the co-occurrence network, we have

found that a link was formed between the main disease node noting a neck fracture

with the treatment node for lumbar spine imaging. It is easy to see that there is no

clear connection between the disease and the treatment mentioned. It is most likely

due to the case in which a patient whose main disease of diagnose was the neck

fracture, while lumbar spine imaging was prescribed for one of the sub-diseases not

directly related or caused by the main disease.

On the contrary, for the association network, the number of direct linkages be-
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tween the treatment nodes and the main disease node is far less than that of the

co-occurrence network, while the different treatment types are dispersed throughout

the range of the sub-diseases. Not surprisingly, the linkage between the fracture of

neck and the lumbar spine imaging was missing from the association network.

4.5.2 Link Prediction between the Disease and the Treatment

In this subsection, we report the result of link prediction via node embedding. We

trained a selection of node embedding models to learn vector representations for the

nodes from the disease-treatment network and compared performance on solving

the link prediction problem using the learned embedding vectors, the methodology

of which is described in detail in subsection 4.3.2. Table 4.5, Table 4.6, and Table

4.7 reports each model’s performance on the link prediction task using the disease-

procedure, the disease-prescription, and the disease-material relations, respectively.

In all cases, metapath2vec outperforms other models. This may be due to the char-

acteristics peculiar to the network. Our network is constructed from a variety of

information covering a rich range of different aspects of health insurance claims,

hence strongly heterogeneous in nature. It is made of different types of nodes and

edges. While other methods are devised for networks of homogeneous nature, the

metapath2vec is designed to work well as heterogeneous network.

Based on the results from the link prediction test, we have selected the metap-

ath2vec, of which the resulting embedding vectors are to be fed to the overtreatment

detection model. The details on the overall mechanism of overtreatment model uti-

lizing node embedding is elaborated in described in subsection 4.3.3.
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Table 4.5: Link prediction results of disease-procedure

Method B60 B63 D64 I07 I68

HOPE 0.7337 0.7570 0.7768 0.7531 0.7662
SDNE 0.5769 0.5568 0.6162 0.3877 0.6357

node2vec 0.7426 0.7539 0.7795 0.7596 0.7720
GraRep 0.7338 0.7548 0.7798 0.7651 0.7747
LINE 0.7222 0.7386 0.7688 0.7609 0.7680
GF 0.1906 0.1970 0.1871 0.2037 0.1915

DeepWalk 0.7402 0.7534 0.7779 0.7621 0.6357
metapath2vec 0.8270 0.8357 0.8610 0.8534 0.8478

Table 4.6: Link prediction results of disease-prescription

Method B60 B63 D64 I07 I68

HOPE 0.7864 0.7927 0.7973 0.7808 0.8078
SDNE 0.6790 0.6532 0.6770 0.5320 0.7341

node2vec 0.7762 0.7890 0.7898 0.7731 0.8064
GraRep 0.7851 0.7907 0.8001 0.7847 0.8148
LINE 0.7794 0.7881 0.7896 0.7783 0.8063
GF 0.1701 0.1638 0.1732 0.1734 0.1672

DeepWalk 0.7721 0.7865 0.7879 0.7709 0.8067
metapath2vec 0.8155 0.8214 0.8297 0.8241 0.8487

4.5.3 Overtreatment Detection

Table 4.8 reports the performance test for the overtreatment detection. The term

‘without embedding’ refers to overtreatment detection models which utilizes the

network resulting from the training set per se. The ‘proposed method’ refers to the

overtreatment detection models which exploit node embedding methods to solve the

link prediction problem, the mechanism of which is elaborated in detail in subsection

4.3.3. For most of the cases, the proposed model outperforms the ‘without embed-

ding’ model. This may potentially imply that our proposed model performs better

when some relational patterns are found only in the training set or in the test set,

hence classifying freshly encountered treatments better.
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Table 4.7: Link prediction results of disease-material

Method B60 B63 D64 I07 I68

HOPE 0.8328 0.8682 0.8961 0.7892 0.8679
SDNE 0.7122 0.7436 0.8563 0.5560 0.7340

node2vec 0.8511 0.8783 0.9110 0.7914 0.8881
GraRep 0.8363 0.8674 0.8991 0.7978 0.8756
LINE 0.8288 0.8607 0.8939 0.7878 0.8779
GF 0.7122 0.7436 0.8563 0.5560 0.7340

DeepWalk 0.8424 0.8753 0.9103 0.7992 0.8874
metapath2vec 0.9359 0.9467 0.9655 0.9038 0.9538

Table 4.8: Unecessary treatment detection by the network only and embedding vec-
tors from the network

Type of
treatment

Method B60 B63 D64 I07 I68

Procedure
Without

embedding
0.9365 0.9346 0.9231 0.9387 0.8784

Proposed
method

0.9632 0.9667 0.9591 0.9768 0.9719

Prescription
Without

embedding
0.8950 0.8844 0.9041 0.8983 0.8383

Proposed
method

0.9331 0.9010 0.9386 0.9238 0.9367

Material
Without

embedding
0.8677 0.9230 0.8761 0.9168 0.8949

Proposed
method

0.9469 0.9177 0.8820 0.9547 0.8985

4.6 Summary

In the previous chapters, we proposed models for detecting abuse in medical treat-

ments. These models, however, have yet to consider the relationship between diseases

and treatments explicitly. Accounting for the disease-treatment relationship is im-

portant in a sense that, without doing so, detection models cannot properly process

different drugs that have similar efficacy. There may be cases when different practi-

tioners prescribe different drugs to a patient, where these drugs targets to alleviate

106



the symptoms of the same disease. In order to process such cases appropriately, de-

tection models need to be able to learn the intricate relationship between diseases

and treatments.

This chapter presents a network-based approach through which the relationship

between the diseases and treatments is considered during the abuse detection pro-

cess. Our proposed model consists of three stages. During the first stage, a disease-

treatment network is constructed based on information from claim filings. Since the

association between diseases and treatments is not explicitly expressed, we infer the

relationship by computing the relative risk (RR). Second stage involves selecting

the best graph embedding method from several candidates available. We select the

best method by comparing performances on link prediction. During the final stage,

we solve a link prediction problem as the vehicle of overtreatment detection. If our

link prediction model predicts links to be nonexistent for all of the diseases and

treatments listed in a given claim, then the claim is classified as an overtreatment

case.

We test the proposed model using the real-world claims data. Results show that

the proposed method classify the treatment well which does not explicitly exist in

the training network. The main contribution of this paper is that our model accounts

for the disease-treatment relationship, which are not explicitly observed, during the

process of overtreatment detection. Our model works well with practice patterns

encountered the test phase only.
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Chapter 5

Conclusion

5.1 Contribution

Abuse is a critical problem in the healthcare insurance industry. It refers to the med-

ical service or the practice that is not consistent with the generally accepted sound

fiscal practices. Reimbursing such cases cause waste of resources, eventually leading

to the loss of the insurance company. Especially, abusive behaviors in national health

insurance lead to social costs, which increase the premiums that the taxpayers have

to pay. Therefore, detecting abuse behaviors and preventing compensation for them

is a very important issue.

Currently, field professionals review the claims manually in order to screen out

abuse cases. However, the astronomical increase in the number of claim filings is

severely burdening the review process. Moreover, reviewing the claims require pro-

found background knowledge and expertise, which makes the review process very

costly. Adversities of such manual efforts calls for a more efficient review process. In

response, past literature has employed various datamining techniques to automati-

cally detect problematic claims or abusive providers. However, these studies do not

utilize the treatment prescriptions, information of the finest granularity found in

health insurance claims data. Existing studies relies on the claim-level or provider-
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level variables that are derived from the raw data, leading to relatively poor perfor-

mance in detecting abusive claims.

The contributions of this dissertation is four-fold. Firstly, models we propose are

based on medical treatment prescriptions, which is the lowest level of information

available in the healthcare insurance claim. To our best knowledge, medical treat-

ments have never been used in abuse detection. Using treatment prescriptions allows

modelling abuse detection at various levels: treatment, claim, and provider-level.

Secondly, we show that our finer-grained model outperforms models with higher

level information. Thirdly, we propose a model which directly deals with season-

ality, adding a realistic touch. Finally, we propose the abuse treatment detection

model which account for the relationship between diseases and treatments, one of

the most important information included in the medical treatment.

In chapter 2, we propose a scoring model based on which abusive providers

are detected. Previous studies related to this topic rely primarily on provider-level

variables. The coarse granularity of the mode leads to relatively poor performance.

We propose the neural network-based scoring model that measures the degree of

abuse for each provider. The model use treatments as input data. At the same time,

we devise the evaluation metrics to quantify the efficiency of the review process.

Experiment results show that the review process with the proposed model is more

efficient than that with the previous model which uses the provider-level variables

as input variables.

In chapter 3, we propose the method of detecting overtreatment and problematic

claims under seasonality, which reflects more reality to the model. Several diseases

are associated with seasonality. That is, in other words, the distribution claim is
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different from time to time. If the detection model does not consider this difference,

its performance is not robust to the period in some departments. Instead of a single

model for a department, we propose to a structure with multiple models built for

several important DRG codes in the department. We test our proposed model using

the real-world claim filings data, and results show that the proposed method is

time-robust.

In chapter 4, we propose an overtreatment detection model accounting for the re-

lationship between the disease and treatment. We discuss situations in which abuse

detection may not work properly without the knowledge on the association rela-

tionship between disease and treatments. We propose an overtreatment detection

approach method for detecting unnecessary treatment, which incorporating node

embedding and link prediction methods. By solving the link prediction problem us-

ing the embedding vectors of nodes in the disease-treatment network, the model can

infer pairs of disease and treatment unnecessarily reported in the insurance claims.

We test our model using the real-world insurance claims data, and results show

that our approach indeed works well with detecting claims with overtreatments. We

additionally show that our model can be used in classifying the disease-treatment

relationship.

5.2 Future Work

In this dissertation, we propose various abuse detection models based on the medical

treatment prescription data. While our proposed models show satisfying results,

there still is room for improvement. First of all, our current approach does not

detect overtreatment on the claim-level. The underlying assumption here is that
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treatments listed in a claim are independent of one another. This may lack reality,

since treatments can be prescribed to complement one another. If inference can be

made on the level of individual treatments in a claim, more precise detection may

be conducted.

Also, the proposed model in chapter 4 is for detecting totally unnecessary treat-

ment, not for detecting necessary but overused treatment. In order to detect such

treatment, we have to incorporate the proposed methods in this thesis. For example,

train embedding vectors by graph embedding methods and train treatment classifi-

cation model in chapter 2 or 3.

Finally, we can improve the performance by incorporating the data from external

source. In chapter 4, we construct the disease-treatment network statistically using

the claims data. However, it is unclear whether the constructed network has captured

the true relationship. For example, suppose a practitioner prescribes several drugs

to the patient. Some of the prescriptions may have been meant to complement

each other. On the other hand, there may be the case in which the prescription

includes a combination of drugs that causes side-effects when ingested together. The

disease-treatment network we construct does not reflect such information. Due to

the confidentiality contract, we could not utilize data from external sources as we

conducted the study. However, it would help improve model performance if we could

include external source data or knowledge graphs such as Drugbank[99], Twosides

database [87], or SIDER [46] database.
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국문초록

사람들의 기대수명이 증가함에 따라 삶의 질을 향상시키기 위해 보건의료에 소비하는

금액은 증가하고 있다. 그러나, 비싼 의료 서비스 비용은 필연적으로 개인과 가정에

게 큰 재정적 부담을 주게된다. 이를 방지하기 위해, 많은 국가에서는 공공 의료 보험

시스템을 도입하여 사람들이 적절한 가격에 의료서비스를 받을 수 있도록 하고 있다.

일반적으로, 환자가 먼저 서비스를 받고 나서 일부만 지불하고 나면, 보험 회사가 사후

에 해당 의료 기관에 잔여 금액을 상환을 하는 제도로 운영된다. 그러나 이러한 제도를

악용하여 환자의 질병을 조작하거나 과잉진료를 하는 등의 부당청구가 발생하기도 한

다. 이러한 행위들은 의료 시스템에서 발생하는 주요 재정 손실의 이유 중 하나로, 이를

방지하기 위해, 보험회사에서는 의료 전문가를 고용하여 의학적 정당성여부를 일일히

검사한다. 그러나, 이러한 검토과정은 매우 비싸고 많은 시간이 소요된다. 이러한 검

토과정을 효율적으로 하기 위해, 데이터마이닝 기법을 활용하여 문제가 있는 청구서나

청구 패턴이 비정상적인 의료 서비스 공급자를 탐지하는 연구가 있어왔다. 그러나, 이

러한 연구들은 데이터로부터 청구서 단위나 공급자 단위의 변수를 유도하여 모델을

학습한 사례들로, 가장 낮은 단위의 데이터인 진료 내역 데이터를 활용하지 못했다.

이논문에서는청구서에서가장낮은단위의데이터인진료내역데이터를활용하여

부당청구를탐지하는방법론을제안한다.첬재,비정상적인청구패턴을갖는의료서비

스제공자를탐지하는방법론을제안하였다.이를실제데이터에적용하였을때,기존의

공급자 단위의 변수를 사용한 방법보다 더 효율적인 심사가 이루어 짐을 확인하였다.

이 때, 효율성을 정량화하기 위한 평가 척도도 제안하였다. 둘째로, 청구서의 계절성이

존재하는 상황에서 과잉진료를 탐지하는 방법을 제안하였다. 이 때, 진료 과목단위로

모델을 운영하는 대신 질병군(DRG) 단위로 모델을 학습하고 평가하는 방법을 제안하
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였다. 그리고 실제 데이터에 적용하였을 때, 제안한 방법이 기존 방법보다 계절성에 더

강건함을 확인하였다. 셋째로, 동일 환자에 대해서 의사간의 상이한 진료 패턴을 갖는

환경에서의 과잉진료 탐지 방법을 제안하였다. 이는 환자의 질병과 진료내역간의 관계

를 네트워크 기반으로 모델링하는것을 기반으로 한다. 실험 결과 제안한 방법이 학습

데이터에서 나타나지 않는 진료 패턴에 대해서도 잘 분류함을 알 수 있었다. 그리고 이

러한 연구들로부터 진료 내역을 활용하였을 때, 진료내역, 청구서, 의료 서비스 제공자

등 다양한 레벨에서의 부당 청구를 탐지할 수 있음을 확인하였다.

주요어: 부당청구 탐지, 건강보험, 진료내역, 딥러닝, 데이터마이닝

학번: 2014-30327
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Abstract

Deep learning-based Abuse Detection in
Healthcare Insurance with Medical

Treatment Data

Jehyuk Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

As global life expectancy increases, spending on healthcare grows in accordance

in order to improve quality of life. However, due to expensive price of medical care,

the bare cost of healthcare services would inevitably places great financial burden

to individuals and households. In this light, many countries have devised and estab-

lished their own public healthcare insurance systems to help people receive medical

services at a lower price. Since reimbursements are made ex-post, unethical practices

arise, exploiting the post-payment structure of the insurance system. The archetypes

of such behavior are overdiagnosis, the act of manipulating patient’s diseases, and

overtreatments, prescribing unnecessary drugs for the patient. These abusive be-

haviors are considered as one of the main sources of financial loss incurred in the

healthcare system. In order to detect and prevent abuse, the national healthcare

insurance hires medical professionals to manually examine whether the claim fil-

ing is medically legitimate or not. However, the review process is, unquestionably,

i



very costly and time-consuming. In order to address these limitations, data mining

techniques have been employed to detect problematic claims or abusive providers

showing an abnormal billing pattern. However, these cases only used coarsely grained

information such as claim-level or provider-level data. This extracted information

may lead to degradation of the model’s performance.

In this thesis, we proposed abuse detection methods using the medical treat-

ment data, which is the lowest level information of the healthcare insurance claim.

Firstly, we propose a scoring model based on which abusive providers are detected

and show that the review process with the proposed model is more efficient than

that with the previous model which uses the provider-level variables as input vari-

ables. At the same time, we devise the evaluation metrics to quantify the efficiency

of the review process. Secondly, we propose the method of detecting overtreatment

under seasonality, which reflects more reality to the model. We propose a model

embodying multiple structures specific to DRG codes selected as important for each

given department. We show that the proposed method is more robust to the sea-

sonality than the previous method. Thirdly, we propose an overtreatment detection

model accounting for heterogeneous treatment between practitioners. We proposed

a network-based approach through which the relationship between the diseases and

treatments is considered during the overtreatment detection process. Experimental

results show that the proposed method classify the treatment well which does not

explicitly exist in the training set. From these works, we show that using treat-

ment data allows modeling abuse detection at various levels: treatment, claim, and

provider-level.
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Chapter 1

Introduction

As global life expectancy increases, spending on healthcare grows in accordance in

order to improve quality of life. Figure 1.1 illustrates the annual expenditure on

health per capita of several countries in OECD [66]. It can clearly be observed

that the expenditure on healthcare is gradually increasing. In case of South Korea,

healthcare expenditure per capita jumps to double between 2008 and 2018.

Figure 1.1: Annual expenditure on health per capita

However, medical care is quite expensive. Without a certain form of a compen-
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sation system, the bare cost of healthcare services would inevitably places great

financial burden to individuals and households. In this light, many countries have

devised and established their own public healthcare insurance systems to help people

receive medical services at a lower price.

There exists a wild range of national healthcare insurance systems, and they differ

by design from country to country. The first source of variability lies in the structure

of the funding system. Canada and South Korea adopted the single-payer healthcare

system, under which the government directly pays insurance fee by the means of

general taxation. That is, in other words, citizens in these countries are legally

obligated to pay taxes for the national health insurance. In France, compulsory

contributions are made to make up the health insurance fund which are managed

by non-profit organizations which are established solely for this purpose. In other

countries, such as Germany or Belgium, a sickness fund is set up between employers

and employees, and they make contributions to the fund. Under this system, funds

are not from the government nor are they direct private payments.

On the other hand, the payment systems differ country by country. There is a

variety of payment system structures including fee-for-service, bundled-payments,

and global budgets. Fee-for-service refers to the payment system under which re-

imbursements are made for every treatment at a pre-determined unit price. This

system is widely used because patients can receive quality care while providers can

get reimbursed for their service. Bundled-payment, on the contrary, is a system

which compensates medical expenses for the amount predetermined by the disease

group to which the patient belongs to, instead of using the patient’s medical history

as a standard for compensation. The biggest strength of this system is that it is
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possible to suppress excessive treatment and increase transparency in medical ex-

penses. Finally, global budget system estimates the total amount of medical expenses

provided to the public and pays for the predetermined amount accordingly. Global

budgets also has a tendency to reduce the likelihood of overdiagnosis or overtreat-

ment. However, as compared to fee-for-service, the quality of medical care provided

under bundled-payment or the global budget systems may be lower.

Given the trade-off between the quality of medical care and ethical practices,

many countries run different systems simultaneously rather, than relying on a single

system, in order to alleviate systematic shortcomings. France adopted all of the three

systems, fee-for-service, global budget, and bundled payment system. Germany has

established a modified version of global budgets and combined it with fee-for-service

system. The health insurance system of South Korea, which will be the main focus

of this study, takes the form of the fee-for-service system, which compensates the

practitioners for their service. However, for seven disease groups, the reimbursement

process takes the form of bundled-payment system, which compensates the practi-

tioners by pre-determined payment, no matter how many treatments are provided

to the patient. In other words, DRG-codes are incorporated in order to complement

the limitations of the fee-for-service system with bundled payments-like apparatus.

In order to broaden the scope of the system and the range of its application, the

National Health Insurance Corporation of South Korea (NHIS) is implementing ex-

tensions to the bundled- payment system for patients who are not in pre-defined

seven patient groups.

Since reimbursements are made ex post, unethical practices arise, exploiting the

post-payment structure of the insurance system. The archetypes of such behavior
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are overdiagnosis, the act of manipulating patient’s diseases, and overtreatments,

prescribing unnecessary drugs for the patient. The loopholes in the system allow

room for medical providers to prescribe excessive medical treatment or request non-

existent medical treatment should they want to. Federal Bureau of Investigation

(FBI) provides an extensive list of medical fraud cases by type, relevant health in-

surance information along with pertinent characteristic information, in the Financial

Crime Report [27]. According to the report, the total fraudulent billing for health

care programs amounts to be at least 3% of the total health expenditure which is

estimated to be around $2.4 trillion [27]. In addition, according to a report issued

by the Korean Financial Supervisory Service, the amount of financial loss incurred

by fraudulent activities was estimated to be about $1.8 million in 2018, with further

damages expected [43]. Such practices do not only increase the burden of medical

expenses on the patients but also incur unnecessary social costs and expenditures.

Some studies have reported that approximately 10% of medical spending is wasted

due to these types of unethical practices ([22], [84]).

At this stage, let us clearly define fraud and abuse within the scope of healthcare

insurance. These words appear ubiquitously in various situations, and it is difficult

to disentangle the underlying meanings. Following the convention, We define fraud

as a type of dishonest or intentional act which leads to unauthorized benefits for

the person who commits the act or to someone else who is not entitled to the

benefit [77]. On the other hand, we define abuse as a medical service or practice not

consistent with the generally accepted sound fiscal practices [77]. Into the category

of medical frauds fall the cases where medical service is documented and charged

yet not really performed, or when a diagnosis on a patient is falsified in order to
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justify the unnecessary medical procedure. Abuse may lead to prescriptions that do

not meet the medically stable criteria, or may result in incurring unnecessary costs

by deliberately executing medically gratuitous treatments. Examples of abuse are

overtreatment or improper billing practices.

Overtreatment, in particular, is considered as one of the main sources of finan-

cial loss incurred in the healthcare system. According to the report by Institute of

Medicine, prescribing unnecessary services is the primary contributor to the loss

incurred in the U.S. healthcare system to waste in US healthcare [59]. The report

estimated that these behaviors account for approximately $210 billion out of the

$750 billion loss in a year. Furthermore, a survey study, which collected survey the

results from he Survey of overutilization of surveying 2106 physicians in the United

States, about 20.6% of treatment is perceived as unnecessary [55]. Past literature

has shown that such inappropriate or unnecessary treatments were especially con-

spicuous specialty care hospitals ([12], [32], [48]).

In order to detect and prevent abuse, the national healthcare insurance hires

medical professionals to manually examine whether the claim filing is medically

legitimate or not. However, the review process is, unquestionably, very costly and

time-consuming. Moreover, there are not enough professionals to examine millions of

claims. For example, in case of South Korea, there were only about 1,700 reviewers

for 1.5 billion claims filed in 2016 [31]. Clearly, it is not possible to manually examine

all the claims.

In response, insurance companies have resorted to an automated rule-based re-

view system [79]. Although it can save much time and effort from reviewing all the

claims manually, rule-based review system at the current level can only detect very
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simple abusive practices. Moreover, because this system is based on a set of pre-

defined rules, it cannot cope with the new types of frauds and abuses rising over

time.

In order to address these limitations, data mining techniques have been employed

to detect abusive claims or providers showing an abnormal billing pattern ([4], [6],

[30], [44], [52], [53], [65], [68], [79], [80], [82], [98], [103]). Based on these studies, in-

surance companies develop models detects abusive providers or problematic claims

and examine relevant claims. However, these cases only used coarsely grained in-

formation such as claim-level or provider-level data. The lowest-level of information

available from a claim, nonetheless, is the set of medical treatments, where patient’s

diseases and the set of corresponding medical activities are listed. A claim is a col-

lection of several medical treatments, while abuse may be incurred as the result of

a single or multiple medical treatments. Similarly, a provider can be represented by

filed claims, while abuse may be incurred as the result of a single claim or multiple

claims. So far, past literature has relied on the claim-level analysis or provider-level

analysis, hence losing detailed information of each abuse in their detection models.

In this dissertation, we proposed an abuse detection methods in healthcare in-

surance using the medical treatment data, which is the lowest level information of

the healthcare insurance claim. By using the lowest-level information, we show that

it is possible to detect abuse from the healthcare insurance claims more precisely

than the model with derived high-level variables. We also show that it is possible to

detect abuse at various levels such as providers, claims, and treatments. First, we

propose a scoring model based on which abusive providers are detected. We showed

that the review process with proposed method is more efficient than with previous
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method, which is a scoring model with provider-level information. Second, we pro-

pose a detection model under the change of claim distribution, which reflects more

reality condition. The proposed method is more robust to the change of distribution

than the previous method. Third, we propose a detection model accounting for dif-

ferent prescription to the same patient, which reflects more reality condition. The

proposed method understands the context of each entity by utilizing graph embed-

ding method. The proposed model shows better performance than the model that

does not include the context of each object. As can be seen here, we have proposed

detection methods in situations similar to the real world.

This dissertation is organized as follows. In chapter 2, we proposed a neural

network-based method of measuring the degree of abuse of medical service providers

and selecting the abusive provider. Our model is, to our best knowledge, among

the first to detect abuse in healthcare insurance using medical treatment data. In

chapter 3, we propose overtreatment detection model which accounts for seasonality

in claims by exploiting the concept of diagnosis-related groups, which was originally

devised to classify patients. We showed that incorporating diagnosis-related groups

during the claim review process helps detecting abuse better. In chapter 4, we pro-

pose an overtreatment detection model which extracts the relationship between the

disease and the treatment by using graph embedding methods. Finally, we discuss

the contributions and future work of this dissertation in chapter 5.
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Chapter 2

Detection of Abusive Providers by department
with Neural Network

2.1 Background

Abuse in healthcare refers to behaviors of providing unnecessary care to the patient.

When an insurance company compensates for these unnecessary behaviors, it leads to

the loss of the company. If this company is a national healthcare insurance company,

it leads to an increase in premiums. In the case of countries with the single-payer

healthcare system, such as South Korea, all taxpayers in the country will suffer from

this loss. In other words, it can lead to a social loss in as sense that people cannot

receive healthcare services at affordable prices. Due to this reason, abuse detection

is an important task to solve for the healthcare insurance company, no matter if it

is private or public.

In order to prevent the loss, they hire medical experts to detect these unneces-

sary behaviors. The problem is there are not enough experts to examine a bunch of

claims. Moreover, to examine the healthcare claims, reviewers are required to know

much more background knowledge than the other insurance. It means that it is more

difficult to hire experts than other insurance. In order to tackle these difficulties, ef-

forts were made to increase the efficiency of the review process. Instead of examining
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all claims carefully, reviewers select some problematic claims and manually review

them. The objective here is set to reduce as much cost as possible by detecting as

much abuse as possible with limited labor.

Now, the important issue now boils down to how these problematic claims should

be selected. If a large proportion of the selected claims involves overtreatments, the

reviewers can detect lots of abuse and reduce as much waste. If not, the effect of

the examination would be insignificant. There have been studies that aim to detect

these problematic claims using datamining techniques. These studies can be divided

into two groups: detecting problematic claims and detecting abusive providers. The

key assumption underlying the literature on ‘detecting abusive providers’ is that

practitioners practice in a homogeneous pattern. This assumption would, in turn,

lead to the conclusion that claims from abusive providers are more likely to include

greater number of overtreatments. That is, in other words, if the reviewers can

determine candidates for highly likely abusive providers and examine their claims

as a priority, then there’s a greater change to detect many more abuse claims in

a shorter amount of time, hence being able to recover the loss induced by abuse.

South Korea’s HIRA screens through all the claim filings using their own scoring

model to detect abusive provider candidates. The scoring model relies on datamining

techniques, and the data the model learns is at the provider level.

However, previous studies do not use all of the detailed information residing in

raw data. Past literature utilizes derived variables computed at the claim-level in-

formation or the provider-level. This can lead to poor performance of the model.

Field experts from HIRA have expressed their aspiration to advance their existing

model and suggest points of improvement. Their belief is that the primary reason of
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poor performance resides in the limitations in the input variables. Input variables

currently in use are at the provider-level, hence incapable of accounting for different

characteristics across providers. For example, there may be providers with a rela-

tively small number of visits yet with large amounts of medical expenses, while some

other providers have a relatively large number of visits with small amounts of med-

ical expenses. Patient visits and medical expenses may vary according to the size of

the provider. Failure to account for provider-wise variations may lead to degrada-

tion of the model’s performance. Moreover, different diseases may be associated with

different forms of abuse, yet provider-level variables cannot account for disease-wise

variations either.

In this chapter, we address these issues and propose a model that scores the

degree of medical abuse by provider using medical treatment data. The proposed

method consists of two steps: training a neural network which scores the degree of

abuse from each medical treatment, and then calculating the abuse score of each

treatment by multiplying the neural network result by the claimed amount. Finally,

abuse scores of the treatments are aggregated to the provider level. We define the

resulting score to be the abuse score of the subject provider. We test the proposed

model using in-patient claim data from six different departments in the year of

2016. Experiment results show that the proposed model is more efficient than the

existing model which uses only provider-level variables. In addition, we show that

the proposed model scores providers well as compared to the previous model.

The rest of the chapter is organized as follows. In section 2.2, we review the past

literature on data mining methods for abnormality detection in healthcare insur-

ance. Section 2.3 provides detailed descriptions of the proposed model. In section
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2.4, we elaborate on experiment settings. We also describe the devised evaluation

measures in this section. Section 2.5 reports the experiment results. Finally, section

2.6 concludes the paper.

2.2 Literature Review

2.2.1 Abnormality Detection in Healthcare Insurance with Datamin-

ing Technique

There are many studies on detecting fraud or abuse in the health insurance industry.

In this subsection, we briefly survey through two major branches of health insurance

abnormality detection: detecting abnormal providers, detecting abnormal claims.

Detecting abnormal providers

First, we briefly review several studies related to detecting abnormal providers.

Here, the term ‘provider’ means medical service provider which provides medical

service to patients such as medical institutions, general practitioners. We define

abnormal providers as the providers that have different billing patterns to others.

Most studies that aim to detect these providers suggest models with provider-level

variables. In most cases, these variables are extracted from the raw data.

He et al. [30] applied the multi-layer perceptron (MLP) to detect abnormal Gen-

eral Practitioners (GPs) with sampled profile data of practicing GPs. They used 28

GP-level features that are selected by consultants. Also, the profiles were labeled

on a 1-4 scale. They trained a multilayer perceptron that with this data. Also, they

utilized the self-organized map (SOM) [42] with the MLP to classify the GP practice

profiles.

Shan et al. [79] used the association rule mining method to make rules for detect-
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ing abnormal providers. These rules include both positive rules and negative rules.

They applied the method in real claim data from Medicare Australia’s Enterprise

Warehouse. As a result, they extracted 215 rules and evaluated qualitatively and

quantitatively. Users are willing to use this method because they can interpret the

abuse though they can detect only simple abuses with these rules.

Shan et al. [80] detected abnormal providers by utilizing the local outlier factor

(LOF) method which is a kind of unsupervised learning approach. They applied

the method in the Australian optometrist dataset using 12 provider-level variables.

They found the proposed approach outperforms domain-knowledge based methods.

It means even if data is not fully labeled, the unsupervised method may be a good

method to detect providers with abnormal billing patterns.

Liou et al. [53] conducted a study of detecting abnormal providers with extracted

cost-related variables such as average drug cost, average diagnosis fee, or average

medical expenditure per day. They trained three supervised learning models with

the claim data from Taiwan’s National Health Insurance using these variables. The

three models were logistic regression, neural network, and classification tree. They

found that the proposed model classifies abnormal providers from all providers well.

Lin et al. [52] suggested a knowledge discovery in database (KDD) approach

based method that aims to detect abnormal GPs. The proposed method includes

these processes. First, extract GPs’ profiles from the claim databases. Here, the

profile means the provider-level information such as the amount of fee, amount of

prescription days, or average drug fee per case. From these variables, segment the

providers using clustering methods such as SOM or PCA. Then, they described the

billing patterns of each segment and provided the detailed managerial guidance that
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is from domain experts. They selected abnormal segments based on this guidance.

Finally, the providers in such segments are considered as abnormal providers. They

applied this method to the claim data from the National Health Insurance of Taiwan.

The result was promising in that the model detects the abnormal providers efficiently.

Shin et al. [82] devised a scoring model that scores the provider’s degree of abuse.

Also, they claimed that the score from their model can be used to detect the abusive

providers. The scoring model is includes following steps. First, calculate the degree

of anomaly (DA) for each variable which means the deviation from the average value.

Then, define the composite degree of anomaly (CDA) as a weighted average of DA

and calculate CDA for each provider. The provider’s CDA value is considered as

the provider’s degree of abuse. After the CDA value for each provider is calculated,

derive the grade for degree of anomaly (GDA) by segment the CDA into several

groups. In order to use these scores in detecting abusive providers, train a decision

tree model using provider’s profiles as input variables, and GDA value as a target

variable. They applied this method to the outpatient claim data from HIRA in South

Korea. They found that the proposed model is able to detect abusive providers well

and easy to update.

These studies are about detecting abnormal providers using each provider’s pro-

file information. In other words, these models only use each provider’s information,

not the provider-provider relationship. A study conducted by Wang et al. [98] is

about detecting abusive providers using the relationship. They constructed a so-

cial network of patients and providers from patients’ visit sequences. For example,

suppose a patient visits provider A. If the patient shows no improvement, he may

visit different provider B. If then, make a directed edge from provider A to provider
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B. It means if a node has high out-degree, the provider corresponding to the node

can be considered suspicious. After the network is constructed, calculate the trust-

worthiness score for each node. Then, select suspicious providers and consider them

as abnormal providers. They applied this method to both simulated and real-world

claim data from National Health Insurance of Taiwan. They found that their method

is effective in identifying abnormal providers. Also, they claimed that reviewers can

detect abnormal providers effectively if the proposed method is used with traditional

methods.

Detecting abnormal claims

We can define abnormal claims as the claims that have different billing patterns

to others or including overtreatment. Most papers that aims to detect these claims

suggest models with claim-level variables. The variables are also extracted from

the raw data. Yang and Hwang [103] used the process mining framework to detect

abnormal claims. They define a term clinical pathway, which means frequent clinical

patterns from clinical instances. If an instance deviated from the pathway, it is

considered as an abnormal claim. They applied the proposed method in claim data

from NHI program of Taiwan. Their experiment shows that the proposed method is

more efficient than manually constructed detection models.

Ortega et al. [68] suggest a framework that detects abnormalities using the neural

network. This model is not aimed to detect abnormal claims only. It aims to detect

‘abnormalities’. First, they define four import entities that play important roles in

healthcare insurance: medical claims, affiliates, medical professionals, and employers.

Then, train neural networks for each entity that detects abnormalities. Also, the

classification model and result from one entity give feedback to other models to
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improve the model performance. They applied the proposed framework in real claim

data from private pre-paid health insurance plans(ISAPRE) in Chile. They found

that the proposed model shows better performance. Also, the model shows good

performance even if a new input data has quite different patterns to previous data.

Aral et al. [4] supposed a model that calculates the fraudulent risk of a claim

with cross-feature analysis. The fraudulent risk is calculated from incidence matrices

that are derived from a correlated variable pair. Risk metrics from both categori-

cal features and ordinal features are calculated from the incidence matrices. They

applied the proposed method to real claim data from Turkey. It shows that their

approach is capable of detecting abnormalities. Moreover, another important feature

of the model is the fact that it can be used in online because the inference time of

this model is very short.

A framework that Bayerstadler et al. [6] devised is quite different. They try to

model the claim with Bayesian multinomial latent variable. They assumed every

claim is in one of following categories: ‘Unperformed services’(UP), ‘Unjustified ser-

vices’(UJ), ‘Other billing issues’(BI), and ‘No irregularities’(NI). Then, a claim i fol-

lows the multinomial distribution with several parameters. In order to estimate these

parameters, they used the multinomial logit model and Markov Chain Monte Carlo

(MCMC) sampling. They confirmed that the performance of their model showed

better performance than other benchmark models.

One of the weaknesses of previous models is that they are not proper models to

detect evolving frauds or abuses. In order to detect these changing abnormalities,

the model needs to be re-training. However, it is difficult to know the right time

to retrain, because medical claim data is different from stream data. Ngufor and
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Wojtusiak [65] suggested a change point detection model with the concept drift

method to solve this problem. Also, they suggested an abnormal claim detection

method after detecting these change points. They applied the proposed method to

simulated data and real claim data from INOVA Health System of Northern Virginia.

The approach of Kose et al. [44] suggested is quite different from previous models.

They asserted that fraudulent behavior should be considered as provider-claim pair,

not the claim or provider itself. They claimed that frauds are from the behaviors

of multiple actor types (providers) and multiple commodities(claims). Also, they

utilized the interactive machine learning approach in order to make the model adapt

to changing fraud types. They found the proposed method is capable of detecting

abnormalities well.

2.2.2 Feed-Forward Neural Network

The feed-forward neural network is a type of an artificial neural network, in which

the nodes in the model do not form a cycle [105]. In other words, the information

only moves from input nodes to output nodes through hidden nodes without any

backward moves. It is the simplest form of the artificial neural network. If there is

only a single layer of output nodes, it is called a single-layer perceptron network.

If the network consists of several layers, then it is called a multilayer perceptron

(MLP) network.

The main goal of the feed-forward network is to approximate a function. Accord-

ing to the universal approximation theorem, a feed-forward neural network compris-

ing a single hidden layer with an activation function and a linear output layer can

approximate continuous functions on the compact subset of Rn ([19], [34]). That is,
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Table 2.1: Previous studies about the abnormal detection in healthcare insurance

Type of
abnormality

Authors
Data mining

approach
Method

Provider He et al. [30] Supervised Neural network

Lin et al. [52] Unsupervised PCA, SOM

Liou et al. [53] Supervised
Classification tree,
logistic regression,
neural network

Shan et al. [79] Unsupervised Association rules

Shan et al. [80] Unsupervised
Local density based
outlier detection

Shin et al. [82] Supervised
Distance based method
for univariate variable,
decision tree

Wang et al. [98] Unsupervised Network analysis

Claim Yang and Hwang [103] Supervised
Process mining,
association rules

Ortega et al. [68] Supervised Neural network

Aral et al. [4] Hybrid
Distance based correlation
and risk matrices

Ngufor and
Wojtusiak [65]

Hybrid
Change point detection,
unsupervised data labeling,
classification model

Bayerstadler et al. [6] Supervised
Latent variable modeling,
MCMC

Behavior
(Providers-claims)

Kose et al. [44] Interactive
Analytic hierarchical processing(AHP),
EM algorithm, data visualization
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in other words, a large MLP may represent any function given proper parameters.

However, it does not guarantee that the training algorithm will be able to learn that

function for sure.

In many cases, the back-propagation algorithm is used to train a neural network

[78]. When the input value x generates an output value ŷ, the scalar error E(θ)

is calculated, with θ representing the set of parameters in the model. The back-

propagation algorithm allows moving this information from the output layer to the

input layer while computing the gradient. The network parameters are updated

according to these gradients by ∆θ = −α · (δE(θ)/δθ), in order to minimize the

error function.
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Consider a m-layer feed-forward neural network which is fully connected. The input

dimension is n, and the output dimension is 1. Let us define some notations as

follows.

• wkij : weight for perceptron j in the k-th hidden layer for the incoming node i

in the (k − 1)-th hidden layer

• bki : bias of perceptron i in the k-th hidden layer

• hki : the product sum plus the bias of perceptron i in the k-th hidden layer

• gh: activation function of the hidden layers

• go: activation function of the output layers

• oki : the output of the node i in the k-th hidden layer

• rk: number of the nodes in the k-th hidden layer

• wki : weight vector of perceptron i in the k-th layer. wki = {wk1i, ..., wkrki}

• ok: output vector of k-th layer. ok = {ok1, ..., orki}

Then, the output of the neural network can be expressed as follows

ŷ = go(w
m
i · om−1 + bm1 )

Where hki = wki · ok−1 + bki , o
k
i = gh(hki ), for i = 1, 2, ..., rk
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2.3 Proposed Method

This section presents a scoring model that measures provider’s degree of abuse

by using medical treatments. The model should give higher score to more abusive

providers if the model is well trained. Then, the review process might be efficient if

the reviewers only review claims from providers with high score.

At this point, we clearly define the degree of abuse. Once a provider submits a

claim to the insurance company, the reviewers examine all the treatments appearing

in the claim. Then, they determine whether each treatment is abused or not. If a

treatment is adjudged as abuse, the amount of abuse is determined in following way:

if the treatment is considered to be totally unnecessary to the patient, the abused

amount equals the amount claimed; if the treatment is considered to be necessary yet

excessive, then the abused amount is less than the claimed amount. The insurance

company reimburse the providers for the total claimed amount, excluding the abused

amount. In this paper, we define the degree of abuse of a provider as the total abused

amount from whole claims that is submitted by the provider.

The proposed method consists of two steps. First, we train a model that cal-

culates the likelihood of abuse for each medical treatment. The model is a kind of

neural network that classifies whether the treatment is normal or abuse. Upon the

completion of calculating the likelihood for each treatment in the test set, the result

form the neural network is multiplied by the claimed amount the resulting measure

of which we define as the abuse score of the subject treatment. Then, aggregate

the abuse score for each treatment to the provider-level by combining scores if the

treatments came from the same provider. We define the result as the abuse score of

the provider. Figure 2.1 summarizes the whole framework of the provider’s degree
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of abuse.

Figure 2.1: The process of scoring a provider’s degree of abuse

2.3.1 Calculating the Likelihood of Abuse for each Treatment with

Deep Neural Network

The proposed model employs a deep neural network to calculate the likelihood of

abuse for each treatment. The model uses the documented information regarding

to each treatment as input variables. The input variables include patient-related in-

formation, medical treatment-related information. The patient-related information

includes age, gender, diseases, as well as the medical treatment-related information

includes the type of operation, the unit price of medicine, or the number of medica-

tion days. The model structure is illustrated in Figure 2.2.

As illustrated in Figure 2.2, the proposed model uses both numerical variables

and categorical variables. One of the most common-approaches to deal with cat-
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Figure 2.2: Structure of treatment scoring model

egorical variables is one-hot encoding. However, this method is undesirable if the

categorical variables are of high cardinality. The data dimension will be exploded

if we convert the categorical variables to numerical vectors using one-hot encoding

method. Instead, we hire an embedding function to convert those variables. Our pro-

posed model trains the embedding function as part of the training phase of the entire

network. The classification error is back-propagated to embedding layers as well as

hidden layers. We illustrate the training phase mathematically as follows. Suppose

that we want to represent a category variable with cardinality V as a d-dimensional

vector, which is d� V . The embedding vector can be calculated as follows.

h = f(x) = xTW

Here, the embedding matrix W is also trained with the neural network as it mini-
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mizes the total error function during the training phase. In this case, the total loss

takes the form of a binary cross entropy function, defined as follows.

L = −
N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)

The classification error is back-propagated through the hidden layers and the em-

bedding layers, and the parameters for both of the layers are updated as error is

minimized.

In our model, we also account for a special case: the multi-valued categorical

variable. In this study, the patients’ disease information variable has such charac-

teristics. When a patient visits the medical provider, his/her medical record for the

visit is mostly likely to be associated with more than one disease. In this case, the

disease variable has multiple values.

If the claim data includes the association relationship between disease and treat-

ment, it would be easy to determine whether the treatment is appropriate to the

patient. Unfortunately, most of the claims do not include this relationship infor-

mation. Moreover, it is difficult to disentangle medical activities one by one and

determine its relationship to the corresponding disease explicitly, because it may be

the case that some activities are prescribed under the consideration of the potential

interaction of multiple diseases. Instead, the claim includes the all diseases of the

patient and all treatments details. In order to utilize treatment data in modeling,

all diseases in the claim should be matched with every treatment in the claim.

Due to the lack of relationship information between disease and treatment, we

average the embedding vector by disease category to represent the diseases as nu-
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meric vectors. The method for calculating the embedding vector for each disease

code and other high-cardinality category variables are illustrated in Figure 2.3.

Figure 2.3: Embedding method of categorical variables with high-cardinality

2.3.2 Calculating the Abuse Score of the Provider

In this subsection, we describe the process of computing abuse score for each provider

based on the calculated result from the neural network, which we described in sub-

section 2.3.1. In this subsection, we describe the process for computing the abuse

score for each provider based on the results from the neural network. Suppose there

are N providers and with m1,m2, . . . ,mN claims, and n1, n2, . . . , nN treatments.

The amount claimed for j-th medical treatment by provider i is represented by cij .

The abuse likelihood of the treatment calculated by the medical treatment scoring

model is represented by ŷij . Now, the abuse score of the provider i is computed

in two steps: (1) the abuse score is determined for each treatment (sij), and then

(2) the abuse scores are aggregated across treatments if they came from the same

provider (Si). Above two steps are summarized below.
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• Calculate the abuse score of each treatment (sij)

sij = cij ŷij , j = 1, 2, . . . , ni, i = 1, 2, . . . , N

• Calculate the abuse score of each provider (Si)

Si =

ni∑
j=1

sij , j = 1, 2, . . . , ni, i = 1, 2, . . . , N

Si represents the abuse score of provider i, which measures the degree of abuse

by the provider i. In order to maximize the efficiency in the reviewing process, we

include the amount claimed when calculating the abuse score. Suppose there are

two providers with the same number of treatments with the same abuse likelihood.

Now, suppose the claimed amount for each treatment of one provider is larger than

that of the other. Then, it is likely that the social cost incurred by the abuse of

the former provider is larger than the latter. If reviewers can detect such abuse,

the social benefit from the former is larger than the latter. This means that the

reviewers can examine efficiently in a sense that they can detect abuse cases with

greater social cost with smaller amount of input labor.

2.4 Experiments

We apply the proposed method to real-world claims data, which were submitted

to HIRA in 2016. We compare the performance of the proposed model against the

previous model employed by HIRA, which utilizes provider-level variables. In sub-

section 2.4.1, we provide the detailed descriptions of the data. Training details can
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be found in subsection 2.4.2. In subsection 2.4.3 and 2.4.4, we describe the evaluation

measures devised for proper performance comparison among different models.

2.4.1 Data Description

In this dissertation, we used healthcare insurance claims submitted to the NHIS for

experiments. Before we introduce our work, we provide detailed description of the

filing and review process of health insurance claims.

The majority of South Korea citizens are covered by a uniform health insurance

policy administered by NHIS. When a patient receives medical care from a medical

service provider, the provider submits the claim for reimbursement of the amount

determined by the fee-for-service policy. Then, the patient only pays for the remain-

ing amount. Although the government strictly regulates the reimbursement process,

abuse cannot be perfectly prevented, which eventually causes waste of the health-

care budget. The Health Insurance Review and Assessment (HIRA) is an institution

dedicated for the detection of such abuses by investigating medical claims and au-

diting medical institutions. Once a medical provider submits a claim to HIRA, the

reviewers examine the claim and determine whether the claim is suspicious of abuse

or fraud. Then, HIRA submits the examination results to the NHIS where the re-

imbursements are made in accordance with the results to the subject provider. The

reimbursement process is represented in Figure 2.4.

HIRA takes several steps when examining claims. When a claim is filed to HIRA,

an automatic system initially checks whether there is an error in the basic informa-

tion of the claim. This process is referred to as the automatic checkup process. Then,

the claim goes under the process called an electronic review. In this step, a model
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Figure 2.4: The reimbursement process of NHIS

detects whether the claim is abuse claim or not in seven steps. The model is based on

the reviewer’s experience. After this process, it goes through one of two processes. If

it is considered as a normal claim, the result of the examination is sent to the NHIS.

Then, NHIS reimburses the provider. If the claim is considered to be suspicious, it

goes through the manual review. In this process, the reviewers manually examine

the claim one by one. Manual review involves two kinds of examination:. the regu-

lar examination, and the irregular examination. In the regular examination process,

reviewers select several abusive providers and manually review all the claims from

them. Here, the abusive providers are selected by the datamining model of HIRA’s

own device, which uses provider-level information as input variables. In the irregu-

lar examination, reviewers select several important and complex claims and review

them precisely. If the claim is much more complex than the others, it goes through
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Figure 2.5: An example of medical claim of South Korea

the precise examination by the committee members. We illustrate the review process

of HIRA in Figure 2.6.

There are several databases that are separately stored within the HIRA data

warehouse. Each database stores important information about the insurance claim

such as claim information, treatment information, disease information, and review

details. The details of the databases that we integrated into a single data are listed

in Table 2.2. We did not use all data in the databases. Instead, we extracted records

that are relative to the claim filed in 2016. Also, we selected several important

variables in consultation with the field experts. Then, we integrated the tables into

a single data and preprocessed the resulting table. As a result, we extracted about
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Figure 2.6: The review process in HIRA

107 million treatment records.

Then, we selected 18 numerical variables and 18 categorical variables as input

variables for modeling. We cannot list all variables that we used, because of the data

confidentiality issue. However, we explain three important categorical variables that

have high-cardinality: disease codes, special patient code, and the treatment code.

In the raw data, the disease codes are in Korean standard classification of diseases

(KCD) format. However, we used aggregated codes because there are too many

codes to use all of them in modeling. The treatment code variable has also same

characteristics. Because of the same reason, we used aggregated codes of treatment
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codes. Finally, each of them has 1902, 196, 7882 category values in modeling. In spite

of this process, these variables still have high cardinality. So, we trained embedding

vectors of these variables in modeling, as we presented in subsection 2.3.1.

The class to be predicted is defined as follows. When reviewers label certain

treatment to be unnecessary for the patient, the abused amount of the treatment

equals the claimed amount for the treatment. When a treatment is considered to

be necessary but excessive, the abused amount is less than claimed amount. We

define these treatments as abused treatments. Otherwise, we define a treatment with

no abused amount as a normal treatment. The information about abused amount

is stored in the ‘Review details’ database in Table 2.2. We report the number of

providers, claims, treatments, and class ratio by department in Table 2.3. [112] Due

to the data confidentiality issue, we anonymized the name of the department. For

modeling and evaluation, we split the data set into train, validation, and test set by

6:2:2 with a similar class ratio. We use the train and the validation set for training

the treatment scoring model for each department, and the test set for evaluation.

Table 2.2: Used databases and their details

Database Details

Claim information
- Basic information of claim
ex) claim number, patient information

Treatment details
- Treatment or prescription information
ex) treatment code, prescription code, daily dosage

Review details
- Manual review results
ex) review code, abused amount

Disease information
- Disease codes related to the claim
ex) main disease code, sub disease codes
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Table 2.3: Data statistics

Department
Number of
providers

Number of
claims

Number of
treatments

Proportion of
abuse

A 393 820,511 58,296,667 2.28%
B 255 328,406 24,122,644 4.94%
C 33 154,254 9,596,701 0.89%
D 103 165,294 6,941,573 2.14%
E 156 78,740 5,016,126 1.72%
F 116 50,698 3,191,256 1.97%

2.4.2 Experimental Settings

As we described in subsection 2.3.1, the treatment scoring model is a deep neural

network with embedding layers for categorical variables with high cardinality. We

create a non-linear decision boundary by activating hidden layers with non-linear ac-

tivation functions, such as sigmoid, tanh, ReLU [64], ELU [17], LeakyReLU [57]. For

categorical variables with high cardinalities, we used different embedding dimension

in compliance with their cardinalities. Also, we experimented with various hidden

layer size. To prevent overfitting, we used dropout [85] and early stopping techniques

[74]. The maximum number of iterations is 200000 and the batch size is 1024. We

also experimented with different optimizer such as Adagrad [24], RMSProp [89], and

Adam [39]. In all cases, we set the initial learning rate at 0.0002.

Another important issue in this problem is the class imbalance problem. As we

can see in Table 2.3, the class ratio is extremely imbalanced. The abuse cases occur

rarely. If we do not address this issue properly, the neural network will learn the

parameters so that the error is minimized only for the majority class data. Because

the loss from the minority class is much less of importance than that of the majority

class. In order to prevent this problem, we oversample the minority class data in
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every mini-batch.

We should also determine how to express categorical variables with high car-

dinality. The most common approach is to create dummy variables. However, as

data grows, it may suffer from the curse of dimensionality [90]. In particular, these

variables involves memory issues.

In this paper, we cope with such issues by using two methods. Firstly, we imple-

ment the proposed method with Tensorflow package [1]. We also used Compressed

Sparse Row methods in Scipy package [91] to convert the dense matrix to sparse

one. Then train a logistic regression model. In both cases, we select a model with

the largest area under precision-recall curve (AUPRC) in the validation set [21]. We

illustrate the process of selecting the best model in Figure 2.7.

2.4.3 Evaluation Measure (1): Relative Efficiency

In subsection 2.4.3 and 2.4.4, we elaborate on the devise on the evaluation measure.

The baseline model for our experiments is the scoring model employed by HIRA.

This model is based on discriminant analysis method with a set of provider-level vari-

ables. This model calculates the abuse scores for all providers. Then, reviewers select

several suspicious providers based on the scores and examine all claims from them.

Otherwise, the proposed method is based on a deep neural network with treatment-

level variables. In this subsection, we explain a performance measure named relative

efficiency, which quantifies the extent of efficiency improved by using the proposed

method over the previous method.

The scatter plots on the left side of Figure 2.8 plot the abuse score against

the total abused amount of each provider when evaluated by model A (above) and
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Figure 2.7: Training and selecting the best treatment scoring model

model B (below). If the scoring model is well-trained, the model will assign a high

score to an abusive provider. That is, in other words, the model score and the

actual abused amount should increase in proportion. The scatter plots on the left

side of Figure 2.8 shows that the model B is better trained than model A. In the

meantime, the right panel of Figure 2.8 reports the actual cumulative abused amount

in descending order of each model’s scores. Suppose that only half of all providers

have been examined for abuse cases. According to the right-hand side plot, Model B

has detected approximately 80% of the entire pool of abused amount, while Model A

has only detected about 50% of abused amount. From this graphical investigation,

we can infer that model B examines claims more efficiently than model A does.
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Figure 2.8: The concept of relative efficiency

From now on, we establish the definition of the efficiency of the reviewing process

more concretely. First, we define the efficiency of review as the abused amount

detected in relation to the efforts required for the examination. Until now, we have

regarded the number of examined providers as the efforts. However, this is not

enough. Suppose there are two providers, where one submits more claims than the

other. In this case, greater efforts are required to review all the claims filed by the

former than those by the latter. In other words, the amount of effort to review all

the claims varies from provider to provider depending on the number of filed claims.

This is the reason why we have to define the efforts as the number of examined claims

rather than the number of examined providers. Therefore, in order to quantify the

efficiency, we consider both the cumulative number of examined claims and the
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cumulative abused amount as illustrated in the Figure 2.8.

Mathematically, we express the efficiency of review as follows. Suppose there

are N providers for a department, and the number of claims and the number of

medical treatments are defined as m1,m2, . . . ,mN and n1, n2, . . . , nN , respectively.

Further, suppose that all providers are sorted in the descending order by the abuse

score calculated from model A. The number of claims and treatments can then be

represented by mA
(1),m

A
(2), . . . ,m

A
(N) and nA(1), n

A
(2), . . . , n

A
(N), respectively. In addition,

we define dA(1), d
A
(2), . . . , d

A
(N) as the abused amount detected for each provider. Then,

for providers with the top-k highest scores, the number of claims, treatments and the

abused amount are represented by mk,nk and dk. More specifically, the total number

of claims is M = m1 + m2 + . . . + mN = mA
(1) + mA

(2) + . . . + mA
(N). Now suppose

the reviewers can screen p% of the total number of claims. That is, in other words,

the reviewers can only screen 0.01pM claims. Then there exists h that satisfies the

following inequalities.

h∑
i=1

mA
(i) ≤ 0.01pM,

h+1∑
i=1

mA
(i) ≥ 0.01pM

Here, the detected abused amount is
∑h

i=1 d
A
(i). The efficiency of review is now

defined as the total abused amount detected by the reviewer in comparison to the

number of reviewed claims. If the reviewers select providers with scores computed

by Model A, our proposed model, the efficiency can be represented as follows:

eAp =

∑h
i=1 d

A
(i)∑h

i=1m
A
(i)

We are not at liberty to compute this measure explicitly due to data confidential-
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ity issues. Hence, we replace it with the following term, called relative efficiency, to

compare the efficiency of the two scoring models. Mathematically, relative efficiency

can be expressed as below:

eA,Bp =
eAp
eBp

This measure quantifies improvements in efficiency improvement when selecting

providers to review with model A as the base for comparison.

The number of providers reviewed may change at every review session. Hence,

it is essential to be able to compute efficiency even though the size of providers are

varying. We incorporate this idea into the relative efficiency measure and redefine

the term as follows.

ep =
eproposedp

eHIRAp

Here, HIRA stands for the previous scoring model that HIRA has been using,

and proposed stands for the proposed scoring model.

2.4.4 Evaluation Measure (2): Precision at k

The concept of precision at k refers to the proportion of relevant items in the top-

k item set retrieved. It is widely used in information retrieval field to measure the

performance. In this study, we re-define the precision at k measure to fit our purpose

as follows. Suppose Ak as the set of the institutions with top-k% abuse score, and

Bk as the set of the providers with top-k% abused amount. Let the precision at

k represent the proportion of the providers with top-k% abused amount in the

37



providers to top-k% abuse score institution set. Then, mathematically, precision at

k can be expressed as below:

Prk =
|Ak ∩Bk|
|Ak|

This metric measures the model’s ability to detect providers with greater abused

amount. In other words, it measures the extent of the model’s ability to detect

providers with a severely abusive billing pattern.

2.5 Results

2.5.1 Results in the test set

We illustrate the change of cumulative abused amount at different portions of the

reviewed claims at department A in Figure 2.9. Suppose the reviewers can only

examine 80% of the total claims. If they select the providers for review based on the

score of the previous model, they will select 340 providers to review. In contrast, they

will select 220 providers with the proposed model. If they reviewed all claims from

220 providers that the proposed model has recommended, they can detect 1.09 times

more abused amount than reviewing all claims from the 340 providers recommended

by the previous model. In short, they proposed model is 1.09 times more efficient

than the previous model at the 80% level. Similarly, the proposed model is 1.13

times more efficient than the previous model at the 60% level, and 1.26 times more

efficient than the previous model at the 40% level. We report relative efficiency

values at various levels of proportions of claims reviewed for each department in

Table 2.4. In Table 2.4, ‘max’ means the level when the maximum relative efficiency
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is achieved. We can see that the relative efficiency is larger or equal to 1 in most

cases. It means the proposed model is more efficient than the previous model in most

cases.

Figure 2.9: Relative efficiency at different levels

One more thing that we can see from Table 2.4 is the tendency that the relative

efficiency values tend to grow larger at small p than the larger one. This implies

that the proposed model assigns higher scores to the more highly abusive providers,

while previous model fails to do so. It is clearly observed in Table 2.5, that at small

k, the precision at k of the proposed model shows much better performance than

that of the previous model.

39



Table 2.4: Relative efficiency on the test set by department

Department e20% e40% e60% e80% eMAX

A 1.03 1.28 1.13 1.09 1.33
B 3.33 1.91 1.26 1.14 3.50
C 1.95 2.10 2.10 1.19 2.10
D 1.24 1.13 1.10 1.19 1.50
E 1.61 1.23 1.21 1.17 1.61
F 0.87 1.18 1.09 1.23 1.76

Table 2.5: Precision at k on the test set by department

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Pre Pro Pre Pro Pre Pro Pre Pro Pre Pro

A 0.00 0.70 0.05 0.82 0.16 0.84 0.24 0.92 0.37 0.90
B 0.00 0.77 0.06 0.90 0.08 0.88 0.14 0.87 0.29 0.92
C 0.00 0.75 0.43 1.00 0.30 1.00 0.50 0.93 0.65 0.94
D 0.09 0.73 0.43 0.71 0.42 0.90 0.57 0.91 0.64 0.90
E 0.38 0.94 0.38 0.81 0.47 0.87 0.51 0.95 0.59 0.91
F 0.25 0.75 0.46 0.79 0.51 0.91 0.55 0.87 0.60 0.88

2.5.2 The Relationship among the Claimed Amount, the Abused

Amount and the Abuse Score

The proposed model calculates the abuse score of the provider by summing up the

resulting scores from multiplying the output of the treatment scoring model and

claimed amount for each treatment. By definition, the abuse score of a provider

is variant to the total claimed amount filed by the provider. Without the scores

resulting from the scoring model, the abuse score would merely reflect the total

claimed amount from the provider. It means that the model only selects the providers

with top-k highest claimed amount. However, by including results from the treatment

scoring model, the proposed model selects broader types of abuse cases.

This is illustrated in Figure 2.10. It shows the total abused amount and the abuse

scores 20 providers with the largest claimed amount. The providers are sorted in de-

scending order by the claimed amount. First, let us look at the relationship between
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the claimed amount and the abused amount. Providers are sorted in descending or-

der by claimed amount, but the abused amount does not tend to descend. It means

that large claimed amount does not mean large abused amount. Likewise, the abuse

score does not tend to descend, which means that the score is not simply propor-

tional to the claimed amount. The difference is from the result which is calculated

from the treatment scoring model. Due to this term, the bias caused by the claimed

amount is reduced. Also, we can see that abuse score moves in accordance with the

real abused amount. This means that the abuse score calculated by the proposed

model estimate the abuse degree of the provider well.

Figure 2.10: The relationship among claimed amount, abused amount and proposed
abuse score

2.5.3 The Relationship between the Performance of the Treatment

Scoring Model and Review Efficiency

In this subsection, we will discuss the performance of the treatment scoring model

on the performance of the provider scoring model. In the previous subsection, we
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built lots of treatment scoring models with various hyper-parameters and select a

model that has the best performance in the validation set.

In order to show the impact of the treatment scoring model on the performance of

the provider scoring model, we performed the following experiment. First, randomly

select a treatment scoring model whose performance is slightly lower than the best

one. Then, calculate the performance of the provider scoring model with both the

selected one and the best one. We show the impact indirectly by comparing them.

We report the performances of both cases in Table 2.6 and Table 2.7. In most cases,

the performance of the selected model is slightly less than or similar to the best one.

In particular, the relative efficiency is seemed to be very similar. However, remind

the relative efficiency is a ‘relative’ performance measure. There are cases that the

difference in relative efficiency by 0.1 means millions of dollars. Therefore, it is not

a small difference.

Table 2.6: Relative efficiency of the randomly chosen model and the best model

Department
e20% e40% e60% e80% eMAX

Rand Best Rand Best Rand Best Rand Best Rand Best

A 1.05 1.03 1.22 1.28 1.10 1.13 1.06 1.09 1.25 1.33
B 3.07 1.33 1.84 1.91 1.25 1.26 1.13 1.14 3.43 3.50
C 1.95 1.95 2.10 2.10 2.10 2.10 1.19 1.19 2.10 2.10
D 0.98 1.24 0.89 1.13 1.03 1.10 1.04 1.19 1.33 1.50
E 1.52 1.61 1.22 1.23 1.20 1.21 1.16 1.17 1.56 1.61
F 0.64 0.87 0.98 1.18 1.09 1.09 1.22 1.23 1.22 1.76

2.5.4 Treatment Scoring Model Results

In this subsection, we will discuss how the structure of the treatment model affects

the performance of the proposed model. In the previous subsections, we compared the

proposed method to previous method that is based on the provider-level variables.
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Table 2.7: Precision at k of the randomly chosen model and the best model

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Rand Best Rand Best Rand Best Rand Best Rand Best

A 0.68 0.70 0.79 0.82 0.81 0.84 0.87 0.92 0.87 0.90
B 0.81 0.77 0.84 0.90 0.86 0.88 0.84 0.87 0.90 0.92
C 0.75 0.75 0.86 1.00 0.90 1.00 0.93 0.93 0.94 0.94
D 0.64 0.73 0.62 0.71 0.81 0.90 0.81 0.91 0.87 0.90
E 0.88 0.94 0.75 0.81 0.89 0.87 0.92 0.95 0.91 0.91
F 0.75 0.75 0.83 0.79 0.89 0.91 0.83 0.87 0.86 0.88

However, since we exploit the treatment-level variables in the proposed method, it

is not appropriate to compare directly between two models. Instead, we compared

the proposed model to logistic model that uses treatment-level variables. By this

comparison, the proposed structure is appropriate for the treatment scoring model.

In order to handle the categorical variables with high cardinality, we applied

CSR method provided by the Scipy package. Also, we experimented with various

class weight in training logistic models. Then, we selected a model that shows the

best performance in the validation set.

In Table 2.8, we reported the AUPRCs from the logistic regression and the

proposed treatment scoring model for each subject in the test set. As we can see,

the proposed model performs much better than the logistic regression model in every

case. For the case of logistic regression, categorical variables with high cardinality

are one-hot encoded. So, the dimension of the data becomes much larger than before.

As a result, it requires much more complex computation while the performance does

not meet with the complexity of the model. However, the proposed model learns

not only the network parameters but also the embedding function to minimize the

error. This might be a reason that led to much better performance as compared to

the logistic regression model.
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In subsection 2.5.3, we have shown that the performance of the treatment scoring

model affects the performance of the provider scoring model. From this result, both

model complexity and learning the embedding function of categorical variables with

high cardinality play an important role in determining the performance of the model.

Table 2.8: The AUPRC of the best treatment scoring model

Department Logistic regression Proposed model

A 0.24 0.60
B 0.41 0.72
C 0.44 0.73
D 0.31 0.63
E 0.30 0.69
F 0.25 0.63

2.5.5 Post-deployment Performance

Suppose a situation that reviewers select abusive providers from claim data in previ-

ous year and examine all claims from them in this year. If the scoring model performs

well and the data distribution is similar between two years, the reviewing process

may be efficient. If then, the proposed model can be used in reality. So, we experi-

mented with the claim data filed in 2016 and 2017. We trained models and selected

abusive providers with the claim data in 2016. Then, we evaluated the performance

Table 2.9: Data statistics used for evaluating post-deployment performance

Department
Number of
institutions

Number of
claims

Number of
treatments

Proportion of
abuse

A 259 280,083 24,274,388 0.61%
B 101 77,247 5,875,745 0.64%
C 24 14,706 1,029,135 0.63%
D 76 75,922 3,646,965 0.52%
E 128 31,214 2,121,534 0.49%
F 90 28,902 1,915,349 0.67%
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with the data in 2017. There may some providers that exists in 2017 but not in

2016 and vice versa. We excluded such providers in the experiment. Table 2.9 lists

the summary statistics that we used. We report the performance in Table 2.10 and

Table 2.11. As we can see from these tables, the proposed model is more efficient

than the previous model. Also, it detects abusive providers well.

Table 2.10: Relative efficiency in 2017 based on the results of 2016

Department e20% e40% e60% e80% eMAX

A 1.37 1.32 1.12 1.09 1.38
B 5.95 2.10 1.43 1.11 6.10
C 1.00 3.45 2.10 1.70 3.53
D 1.60 1.14 1.21 1.13 1.80
E 1.41 1.26 1.22 1.22 1.43
F 0.82 0.99 0.98 1.15 1.39

Table 2.11: Precision at k in 2017 based on the results of 2016

Department
Pr10 Pr20 Pr30 Pr40 Pr50

Pre Pro Pre Pro Pre Pro Pre Pro Pre Pro

A 0.00 0.65 0.06 0.71 0.14 0.72 0.24 0.78 0.37 0.81
B 0.00 1.00 0.00 0.76 0.00 0.81 0.07 0.88 0.24 0.82
C 0.33 0.33 0.40 0.60 0.38 0.88 0.50 0.80 0.58 0.92
D 0.00 0.50 0.31 0.69 0.39 0.65 0.45 0.84 0.63 0.84
E 0.39 0.69 0.35 0.77 0.46 0.74 0.48 0.71 0.58 0.80
F 0.11 0.56 0.39 0.78 0.57 0.82 0.59 0.81 0.58 0.78

2.6 Summary

Healthcare insurance companies manually review all the medical claims to detect

abuse in order to avoid issuing unnecessary compensations. However, as the number

of claim filings grow exponentially, the cost of manual review increases astronomi-

cally, which calls for a more efficient review process. By efficiency, we set our objec-

tives to detect as much abused amount correctly as possible with minimum effort. It
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is particularly important to effectively screen out abusive medical providers, as they

are more likely to prescribe unnecessary treatments to the patients. Such a screening

process, in turn, will require a scoring scheme which that measures the degree of

abuse.

In this chapter, we propose the very first model that scores abusive billing pat-

terns of providers using the medical treatment data. The proposed model consists of

two steps: (1) training a neural network to compute the likelihood of abuse for each

treatment, and (2): calculating the abuse score for each treatment and aggregating

the results up to the provider level. The abuse score for each treatment is calcu-

lated by multiplying the neural network result with claimed amount. Experiment

results show that our proposed model scores abusiveness better than the model with

features summarized at the provider-level.

The main contribution of this chapter lies in that it is one of the first research de-

tecting the abusive provider using medical treatment data, which is the finest-grained

level data in terms of medical claims. Previous studies extract the provider-level vari-

ables such as the number of prescriptions per day or the average cost per claim and

use these variables for training. This way, the model cannot properly account for in-

formation apparent only at the claim or treatment-level. In contrast, we fully exploit

the fine granularity of the treatment data to train the model. The experiment results

show that the proposed model performs better than the model with provider-level

variables. In addition, we devise performance metrics, relative efficiency and preci-

sion at k, to quantify the efficiency improvement. Using these metrics, we show that

the reviewers can review more efficiently by looking at providers determined to be

suspicious of abuse by the proposed model as compared to examining those selected
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by the model with provider-level variables. Finally, we show that the performance

of the treatment scoring scheme is important to computing an effective abuse score.

This implies that training better neural network results in better performance.

If a provider is chosen to be abusive and all its claims are reviewed, it will not

be reimbursed for the amount determined to be abused, which will result in the loss

of the provider. Consequently, the provider does not want to be selected, which in

turn reduces the waste of health insurance, so that insurance companies can reduce

unnecessary costs. However, as the medical environment continues to change, it also

creates forms of abuse that did not exist before. Previous scoring methods using the

existing provider-level variables cannot adapt to this changing pattern of abuse. On

the contrary, the proposed model scores abusivesness while adapting to changes in

abuse patterns through regular retraining.

There are two potential limitations to our model. Firstly, we assume that the filed

claims are uniformly distributed across time. Our experiment splits the entire data

set into the training, validation, and test sets, of which the underlying assumption is

that learning is not contingent upon time. However, from the practical point of view,

such an assumption may not hold true for some cases. In the next chapter, we address

this issue in greater detail and propose a model which accounts for seasonality.

Another limitation of the current model is that it does not explicitly consider the

association relationship between diseases and treatments, one of the most significant

factors in reviewing claims. In chapter 4, we discuss this issue in detail and propose

a model explicitly dealing with this relationship.
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Chapter 3

Detection of overtreatment by Diagnosis-related
Group with Neural Network

3.1 Background

In chapter 2, we introduce the very first method, to our best knowledge, to detect

abusive providers by using medical treatment data, which is the lowest level of

healthcare information available. We show the review process would be more efficient

if the field reviewers give priority to the candidates of abusive providers selected by

the proposed model instead of those screened by the previous method. The proposed

model computes the degree of the provider’s abusiveness numerically, which helps

interpret the detection result. The key assumption underlying our model is that the

distribution of claim data is similar between the training set and the test set.

Before we discuss this issue, let us define the distribution of the claim data. We

believe that the most important information from the claim filings is diseases of diag-

nose and the prescribed treatments. In the perspective of our data, then we consider

a claim as a single value from a distribution of claims. Under this setting, we assert

that the representative value of a claim should include both disease and treatment

information. Here, every disease and treatment information does not have to be

included. We can represent the claim by main disease and several important treat-

48



ments only. Given these three requirements, we believe that the diagnosis-related

group (DRG) is an appropriate measure to serve as the aforementioned representa-

tive value. It includes information about the main disease the patient is diagnosed

of, as well as the treatments the practitioner has prescribed.

The previous model used by HIRA assumes that claims data follows a homo-

geneous distribution, which is too strict of an assumption to assert to hold true in

reality. One well-known counterexample is seasonality. A handful of diseases, flu, for

example, show period surge of infected patients for a specific period of time, a char-

acteristic to which we refer as seasonality. Seasonality implies that the distributions

of claims may shift by time, according to its seasonal surge and dissolution. In fact,

as we can see by observing Figure 3.1 that this assumption is realistic.

Figure 3.1: The distribution of the patient group in a department

Suppose we train the model ignoring these seasonal patterns. The model’s pri-

mary objective to minimize the training error; consequently, the model will focus

solely on claim data whose DRG-code is the majority. Hence, the model won’t per-

form well if it is trained to learn to compute the degree of abuse under the homo-

geneity assumption. A candidate solution is to train the model using observations
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from the same point of time every year. For example, one may choose to use claims

filed in during the 1st financial quarter of last year for training and then use claims

the 1st quarter of this year to estimate the score for the degree of abuse. Such an

approach is still not safe from events that randomly or unexpectedly taking place,

such as medical inventions and innovations. Suppose an ingenious clinical innovation

has intervened between the training period and the scoring period. Then, informa-

tion used for training is outdated and there are new forces governing the features of

claims filed in this year, leading the model to poor performance.

In order to account for seasonality during learning, we train our treatment clas-

sification model with claims data grouped by DRG code. The DRG system is a type

of patient classification scheme (PCS) which provides a means of relating the type

of patients a hospital treats to the costs incurred by the hospital [11]. DRG system

categorizes patient episodes by controlling the fundamental variations, which are

assumed to be always present, among patients. Claims with the same DRG code

include similar disease or treatment.

If we train models by DRG code, then the distribution of claims will be more

homogeneous as compared to the existing model. Even if distinct seasonal char-

acteristics, peculiar to each disease, exist, because the model is trained by similar

diseases. Consequently, our model will produce results robust to seasonality. Sup-

pose we have to detect abuse in medical treatments in department A. Also, suppose

every claim in the department has one of two DRG codes: Da, Db. In the training

set, the number of claim data with the DRG code Da is much larger than that of

Db. In this case, the model will be trained to minimize the training error from the

data with the DRG code Da. It means the training error from the data with the
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DRG code Db is ignored relative to that with the DRG code Da. However, suppose

the number of claim data with DRG code Db is much larger than that of Da in the

test data. In this case, the trained model cannot classify the data with DRG code

Db and the performance of the model will decrease. However, if models are trained

separately for DRG code Da and Db, the performance will not degrade since data

distribution in each data set is similar between the training set and the test set.

In this chapter, we propose to run the treatment classification model by DRG

code unit. If then, the model can classify the treatment robust to seasonality. The

DRG system has been used in patient classification. It has also been serving as the

unit of the DRG-based payment system and as the standard of comparing medical

institutions. Our work show the possibility that the DRG system can be used in the

review process in healthcare insurance.

The rest of the chapter is organized as follows. In section 3.2, we introduce

seasonality in disease and the concept of the DRG system. Section 3.3 provides

detailed descriptions of the proposed model. In addition, we introduce strategies

to compare performance between our model and the method that is suggested by

Lee et al. [47]. In section 3.4, we elaborate on experiment settings. We also provide

detailed description of the data and the preprocessing steps in this section. Section

3.5 reports experiment results. Finally, section 3.6 concludes the paper.

3.2 Literature review

3.2.1 Seasonality in disease

In public health, seasonality is a feature characterized by the surge of a certain

disease recurring at a particular time period ([28], [58]). A variety of infectious dis-
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eases, such as influenza, as well as some respiratory diseases which are non-infectious,

exhibit seasonality.

Even though the awareness for seasonality has existed for a while in the research

field, the underlying mechanism of seasonality has not been fully explained. Clear

understanding of seasonality will certainly prove beneficial for public health in many

different aspects. Fisman [28] claimed that there are four major benefits that may

rise from understanding the full mechanism of seasonality: (1) improved understand-

ing of host and pathogen biology and ecology, (2) enhanced accuracy of surveillance

systems, (3) improved ability to predict epidemics and pandemics, (4)better under-

standing of the long-term implications of global climate change for infectious disease

control. To shed more realistic light on the potential benefits, we take the exam-

ple of the two viral respiratory illnesses: severe acute respiratory syndrome (SARS)

and coronavirus disease 19 (COVID-19). These two diseases are quite similar in a

sense that their main agent of contagion is the coronavirus, which is a type of an

enveloped RNA virus. If seasonal features associated with the spread of SARS were

fully characterized, the results of which may serve as the basis to infer/predict the

seasonality of COVID-19. Then, resources may have been allocated accordingly to

detect and prevent the disease in a timely manner.

3.2.2 Diagnosis related group

Diagnosis-related group (DRG) is one brank of the patient classification system

(PCS), which classifies patients in perspective of clinical records and medical re-

source consumption patterns such as diagnosis, procedures, or functional status [11].

It was first devised in Yale University in the late 1960s. Originally, the objective of
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DRG was to create an efficient method for monitoring the quality of patient care and

the utilization of service for each hospital. Additional adjustments were continuously

made to the system since its first invention, raising its quality to the current level.

Now, DRG is exploited in various ways, including hospital-to-hospital comparisons,

patient classification, and evaluation of medical institutions. At the same time, it is

also used as a unit of the bundled-payment system for healthcare insurance. Bundled-

payment system is known to compensate for the shortcomings of the fee-for-service

payment system which has been popular of choice. Under the fee-for-service payment

system, the insurance company must reimburse for all the treatments provided to

the patient. It is more likely to lead to over-treatment, since the provider can enjoy

greater reimbursement by performing additional procedures. In contrast, under the

bundled-payment system, each patient is classified by the DRG code, and the in-

surance company only has to compensate for the amount predefined for the subject

patient category. In other words, regardless of the number of treatments performed

by the provider, the insurance company compensates only for the pre-determined,

fixed amount. This, by design, deters providers from over-treatment.

The Korean diagnosis-related group (KDRG) is a modified version of DRG,

adjusted to reflect the peculiarity in the medical practice in Korea [38]. The first

version of KDRG, KDRG v1.0, was first devised in 1986. Now it is updated to KDRG

v4.3 with 2,753 codes for classifying the patients. These codes are constructed by

combining Korean classification of diseases (KCD) and treatment codes.

The formation of the DRG code begins by splitting up all the principal diagnoses

available into 23 main diagnostic categories (MDC). Then, the MDCs are subdivided

either into medical or to surgical categories. For example, a patient is classified as
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surgical if the prescription on his/her claim includes surgery/operations. Otherwise,

the patient is classified as a medical case. Surgical cases are further divided into

the groups of finer granularity based on the precise surgical approaches performed;

medical cases, based on the exact principal diagnosis. The DRG code assigned by

this process is called as the Adjacent DRG (ADRG). In order to classify patients as

accurately and appropriately as possible, the age group, as well as the complication

and comorbidity factors, are also considered as the classification criteria. The final

DRG code resulting after the whole process is called the Refined DRG (RDRG)

code. The summary of the KDRG structure is shown in Figure 3.2.

Figure 3.2: The structure of KDRG

3.3 Proposed method

This section details the structure of the proposed model which leans to classify

the entered treatment to be normal or not. In this study, we use the treatment

data, grouped by DRG code, for training as well as for inference. This approach

distinguishes our proposed model from the treatment scoring model, as found in Lee
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et al. [47], which grouped treatment data by the practice department.

3.3.1 Training a deep neural network model for treatment classifi-

cation

The proposed model employs a neural network structure through which a given

treatment classified to be normal or to be abused. The input data for the model

is heterogeneous, containing both numerical and categorical information. Numerical

variables include the unit price of the treatment or the amount of dosage per day,

while gender, age group, or the associated treatment codes are the examples of the

categorical variables. In order to make the best use of such data as a valid input

to a neural network, categorical information must be represented in a form of a

numerical vector. One of the most common approaches is to one-hot encode by the

given categories. It is not, however, an appropriate approach in this case, because

there exist some categorical variables that are of a high-cardinality. If these variables

are one-hot encoded, the dimension of the data would explode, hence the suffer

from the curse of dimensionality. In our model, we rely on an embedding function,

instead, to represent these heterogeneous variables as a vector. Our proposed model

trains the embedding function during the training phase. Classification error is back-

propagated to the embedding layers as well as the hidden layers.

We describe our model mathematically as follows. Define a medical treatment

t
′

= [n1, n2, . . . , nk, c1, c2, . . . , cl], where ni represents the value of the numerical

variable vi and cj represents the value of categorical variable vj . We define dj as

the one-hot encoding vector of cj . We represent a categorical variable vj with value

cj as xj = dTj . Otherwise, we compute an embedding vector for the corresponding
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categorical variable of high-cardinality, represented by xj = dTjWj . Here, Wj stands

for the embedding function of the categorical variable vj .

Another important candidate of the heterogeneous input variables, which calls

for extra-care, is the multi-valued categorical variable. A multi-valued categorical

variable is defined as a variable that has more than one values for each entity. In

our study, the major case of the multi-valued categorical variable may be found

where a patient is diagnosed to carry more than one diseases. Such cases may be

discovered by looking up cases where a practitioner prescribes treatments that may

be associated with all the diseases the patient may be suffering from. Since there does

not exist the grounds for the identification of the casual relationship between the rich

variety of symptoms and the diseases causing these symptoms, as well as the effect

of the prescription of the treatments to the corresponding symptoms, it is highly

likely to prescribe and practice treatments in response to as many as the candidates

of the diseases the subject patient may carry. Such a practice give rise to the multi-

valued categorical variables in the input data. In order to effectively represent these

variables as numerical vectors, we first embed them through our embedding model

and then average the resulting embedding vectors by disease category

We express aforementioned process mathematically as follows. Suppose a given

categorical variable vj is a multi-valued categorical variable. That is, a medical treat-

ment variable t
′
is represented by [n1, n2, . . . , nk, c1, c2, . . . , [cj1, cj2, . . . , cjmt ], . . . , cl],

where [cj1, cj2, . . . , cjmt ] is the value of the multi-valued categorical variable vj for

the corresponding treatment t. Here, mt represents the number of values in the

variable. It is different by each treatment. Then, we compute the embedding vector

for k-th value in multi-valued categorical variable and denote it as xjk = dTjkWj .
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Finally, the embedding vector is averaged by the disease category, which is denoted

as follows.

xj =
1

mt

∑
k

xjk =
1

mt

∑
k

dTjkWj

In summary, the embedding vector of a given heterogeneous categorical variable

is defined as follows:

xt =



dTjWj single-valued, high-cardinality

1
mt

∑
k d

T
jkWj multi-valued, high-cardinality

dTj single-valued, low-cardinality

(3.1)

Given above representation, we now define the input data for the neural network

as following:

t = [n1, n2, . . . , nk,x1,x2, . . . ,xl]

The output of the neural network ŷ = fmodel(t) is calculated by back-propagating

the training loss to both the hidden layer and the embedding layer. Then, the em-

bedding function as well as the parameters for the entire network are updated ac-

cordingly.

3.3.2 Comparing the Performance of DRG-based Model against the

department-based Model

The difference between the treatment scoring model as proposed by Lee et al.[47] and

our method roots from data used for training and inference. Lee et al.[47] suggests

grouping data by department for training and inference. In contrast, we group the
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Figure 3.3: The structure of treatment classification model

input data by DRG codes in attempts to reflect the homogeneity of data, while

retaining the robustness to seasonality. In this section, we suggest ways to compare

out DRG-based model against the department-based model.

Denote the medical treatment set for a given department A for training as

Xtrn
A = {tA1, tA2, . . . , tAnA

}, and the trained model from Xtrn
A is represented as fA.

Moreover, let the medical treatment set with DRG code k, for training, be denoted

Xtrn
k = {tk1, tk2, . . . , tknk

}, and the trained model from Xtrn
k , as fk. The treatment

set for department A for inference is represented as Xinf
A = {t′A1, t

′
A2, . . . , t

′
AmA
},

while treatments in the inference set with a DRG code k denoted as Xinf
k =

{t′k1, t
′
k2, . . . , t

′
kmk
}. Now, suppose there appears DRG codes a, b, . . . , k in the given

department A. Then, we can train fa, fb, . . . , fk by exploiting Xtrn
a , Xtrn

b , . . . , Xtrn
k .

Now, for treatments that are prescribed in the department A with DRG code i, we

represent them, with Xinf
Ai . It can easily be seen that the treatment set prescribed

by department A is the union of Xinf
Ai . Mathematically,

Xinf
A =

⋃
i

Xinf
Ai =

⋃
i

{t|t ∈ Xinf
A , t ∈ Xinf

i }
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We denote the classification result of Xinf
A through the model fA is denoted

as ŶDEP = fA(Xinf
A ) = {fA(t)|t ∈ Xinf

A }. At the same time, the classification

result of Xinf
Ai via the model fi is ŶAi = fi(X

inf
Ai ) = {fi(t)|t ∈ Xinf

Ai }. We concate-

nate ŶAa, ŶAb, . . . , ŶAk and denote the resulting representation as ŶDRG. Finally, we

compare ŶDEP , ŶDRG, against the true label in order to evaluate the two models’

performance. From now on, we define department-based model as the model for cal-

culating ŶDEP and refer to it as the DEP model. Similarly, we define the DRG-based

model as the model for calculating ŶDRG and refer to it as the DRG model. Figure

3.4 illustrates the entire process.

Figure 3.4: Comparison between DEP model and DRG model
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3.4 Experiments

We evaluate our model on real data which were submitted to HIRA in 2017. We

report the performance of our model, with Lee et al.’s [47] as the baseline. The

previous method is a scoring model trained with data grouped by department. In

subsection 3.4.1, we provide a detailed description of the data as well as the pre-

processing steps. We elaborate on performance evaluation metrics in 3.4.2. Finally,

training details are presented in 3.4.3.

3.4.1 Data Description and Preprocessing

As described in subsection 2.4.1, we worked with several databases that were sep-

arately stored within the HIRA data warehouse. Each database stores important

features about insurance claims such as claim information, diseases diagnosed and

treatments assigned, and the review entailments by the agency. We list the detailed

description of each database is presented in Table 2.2. We extracted claim records

filed in 2017 that were manually reviewed. [111] During the process, we consulted

the on-site field experts and included variables advised as significant by them.

Table 3.1: Data statistics

Department
Number of

Representative
DRG codes

Number of
claims

Number of
treatments

Overtreatment
ratio

A 15 316,761 22,410,573 2.13%
B 6 45,000 2,898,893 2.00%
C 2 296,238 23,331,836 5.58%
D 3 113,587 6,922,504 0.67%
E 4 169,374 7,550,371 1.61%

Following upon the compilation of data, we grouped the resulting claim records
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by department, as well as the DRG 3-digit code. The reason why we use DRG 3-digit

code, instead of the RDRG which is of 6-digit, is because RDRG codes are of too

fine granularity. If data is grouped by RDRG codes, then a handful of classes will

be empty since grouping is too specific, hence insufficient for learning. As a result,

we resorted to DRG 3-digit codes for grouping.

The final complication towards which we should carefully approach during anal-

ysis is that more than one DRG 3-digit code may appear even after we group claims

by department. For example, given our dataset, approximately two hundred 3-digit

DRG codes are observed from the claims filed for the department of internal medicine

in 2017. However, the kick here is that the number of treatments for each DRG code

follows a long-tail distribution. In other words, a large number of claims cases are

associated with only a handful of “important DRG codes”, while few claim reports

occur for most of the rest of the DRG codes that are “relatively less important”.

Ideally, one would like to models for all the 3-digit DRG codes uniformly across the

training phase and compare the performance as illustrated in section 3.3. However,

it is impossible, since there are not enough treatment cases with 3-digit DRG codes

observed to train the models. Given the restriction on the observed 3-digit DRG

codes, we select DRG codes that make up the majority in each department and

train the model. Then, we make DRG models using the data that corresponds to

the DRG codes. Also, make DEP models using the data corresponds to the data

filed from the department and having such DRG codes. Then, we compare the DEP

models and DRG models as we already presented in subsection 3.3.2.

The resulting data is processed further following the two important preprocess-

ing schemes: grouping treatments, and integrating treatment codes. First, we cate-
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Figure 3.5: The abuse ratio and the distribution of the treatment of two DRG codes

gorize the treatments into four separate groups. The logic for such a process is as

follows: suppose that there exists a patient who has received a spine surgery. We

assume that the treatments prescribed and practiced for the patient may be com-

partmented into four distinct categories: the basic treatment, medical procedure, the

prescription, and the recovery materials. The basic treatment category includes sim-

ple, potentially recurrent medical practices such as admission, consultation, nursing,

or providing meals. The medical procedure group entails what practitioners actually

conducted on a patient, such as X-rays, MRI examinations, or an operation. The

prescription category groups the details of drugs prescribed by the practitioners,

such as, for example, the nonsteroidals anti-inflammatory drug. Finally, the recov-

ery materials categorizes all materials needed to recover. A major example of the
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recovery materials include those for orthosis.

The distribution of DRG codes in data, as well as the class groups, after catego-

rization as described above is quite unbalanced. We take an example and illustrate

such a case of class imbalance in Figure 3.5. Figure 3.5 illustrates the class ratio

and the distribution of each treatment group of the data with the DRG code. The

upper figures are the ratio and the distribution of the data with DRG code of A,

while the lower figures are those of the data with DRG code of B. Here, DRG code

A corresponds to the appropriate medical DRG codes, while code B corresponds to

the surgical DRG codes. It can be easily seen that these two measures behave quite

differently from each other. For DRG code A, there are few treatments related to the

recovery material group. On the other hand, about 25% of treatments in the basic

treatment group are considered to be overtreatment. However, the picture changes

completely with DRG code B. Approximately 6.0% of all treatments appear in the

recovery material group. At the same time, only 2.5% of the treatments in the basic

treatment group are considered to be overtreatment. On the contrary, about 12% of

treatments in the recovery material group are considered to be overtreatment. As

seen from the above observations, categorizing treatments into more homogeneous

groups may lead to more insightful analysis.

Nevertheless, we agglomerated some of the divisions of treatments showing sim-

ilar characteristics into a single category. For example, Figure 3.6 shows that the

category values are too finely grained. HIRA’s claim filing process requires for the

associated category value to be exactly identified and entered. However, our pro-

posed model does not require such fine granularity in terms of the categories, and it

suffices to agglomerate some of the finer categories if their medical implications are
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similar.

Figure 3.6: An example of unifying categories with similar meaning

3.4.2 Performance Measures

We compare the performance of our DRG model against the DEP model when the

patient distribution changes from the training set to the test set. First, in the case of

comparing models with the classification performance of treatments, we follow the

process described in subsection 3.3.2.

Before we elaborate on ways to measure the proposed model’s performance on

classifying different claims filed, we need to draw a clean line between the normal

claim and the abnormal claim. In this study, we define an abnormal claim to include

more than a single overtreatment assigned or practiced as part of the claim. When

we classify claims, not treatments, the problem of class imbalance aggrevates. The

ratio of overtreatments to all treatments amounts only to from 0.6% to 5%, while the

ratio of abnormal claims among all claims is about from 15% to 40%. In this case,

we train several classification models in order to fully utilize claim-level information

by employing the decision tree (DT), random forest (RF), neural network (NN), and
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logistic regression (LR) models.

3.4.3 Experimental Settings

The treatment-classification model comprise of a neural network with embedding

layers accounting for the categorical variables with high cardinality. ReLU [64] is

used as the activation function for the hidden layers to reflect non-linearity when

drawing the decision boundary. We employ Adam [39] optimizer with the initial

learning rate set at 0.0002. In order to prevent overfitting, we use dropout [85] and

early stopping [74] techniques. For categorical variables with high cardinality, we

tried different embedding dimensions corresponding to their cardinality. Since the

problem of class imbalance eminent, we over-sample data points from the minority

class for every batch.

We tested our model with a variety of hyper-parameter settings for each depart-

ment and DRG code. In each case, we selected a model with the largest area under

the precision-recall curve (AUPRC) reported during the validation phase [21]. Then,

we selected the best threshold value with the best f1-score. Our selection process is

illustrated in Figure 3.7. Pytorch package [70] was used for training the treatment-

level information, while scikit-learn package [71] was employed to train to classify

the claim-level information.

3.5 Results

3.5.1 Overtreatment Detection

We report the performance of the treatment classification in Table 3.2. In every case,

the claim distribution is simlar between the training set and the test set 1. For the
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Figure 3.7: Training and selecting the best abused treatment detection model

departments C and E, the distribution is similar between the test set 1 and the test

set 2. In other cases, there is a difference in the distribution between test sets.

As for test set 1, the DEP model performs slightly better than the DRG model in

most cases. It can be seen that the proposed model potentially learns different types

of patients better. However, for the test set 2, different results are observed. In most

cases, the DRG model performs better as compared to the DEP model. Moreover,

the decrease in the performance of the DEP model is quite dramatic, while the DRG

model shows relatively more stable performance. So, when the distribution for most
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prominent patient type is shifted, the DEP model fails to perform well. However,

as for the DRG models, every model trains the treatment pattern according to the

each patient type. Hence, even if the patient distribution changes, the degradation

in performance is not so severe. Altogether, we conclude that the DRG model is

more robust to the change in the distribution of the patient type as compared to

the DEP model when classifying the treatments.

Table 3.2: Performance of the overtreatment detection

Department Model
Accuracy Precision Recall F1

Test1 Test2 Test1 Test2 Test1 Test 2 Test1 Test2

A
DEP 0.9473 0.9565 0.2132 0.2027 0.4305 0.2809 0.2852 0.2355
DRG 0.9485 0.9560 0.2090 0.2197 0.3979 0.3318 0.2741 0.2644

B
DEP 0.9678 0.9769 0.2907 0.3545 0.4227 0.2501 0.3445 0.2933
DRG 0.9642 0.9703 0.2575 0.2739 0.4178 0.3303 0.3186 0.2994

C
DEP 0.9423 0.9373 0.5247 0.5017 0.6382 0.6259 0.5759 0.5569
DRG 0.9419 0.9403 0.5221 0.5210 0.6378 0.6472 0.5742 0.5773

D
DEP 0.9790 0.9745 0.1333 0.0347 0.4025 0.1285 0.2003 0.0546
DRG 0.9901 0.9922 0.2768 0.2301 0.3227 0.1479 0.2980 0.1801

E
DEP 0.9807 0.9809 0.3340 0.3927 0.4416 0.3884 0.3803 0.3905
DRG 0.9780 0.9780 0.2952 0.3381 0.4631 0.4122 0.3606 0.3715

3.5.2 Abnormal Claim Detection

Table 3.3 reports the performances of DEP models, DRG models, and the models

that utilize claim-level variables. Above all, we can see that the DEP models and the

DRG models exploiting the treatment-level variables perform better than the other

models. It implies that the models with the treatment-level variables may perform

better than the models with the claim-level variables when classifying claims.

Also, the degradation in the performance of the DEP model from the test set1

to the test set 2 is clearly apparent; yet, the decrease in performance for the DRG

model is not as large as the DEP model. It may suggest that the DRG model is
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more robust to the changes in the distribution of the patient type than the DEP

model when classifying the claims.

Table 3.3: Performance of the abnormal claim detection

Department Model
Accuracy Precision Recall F1

Test1 Test2 Test1 Test2 Test1 Test 2 Test1 Test2

A

DEP 0.5989 0.6156 0.5013 0.5193 0.8593 0.7486 0.6332 0.6132
DRG 0.5969 0.6186 0.4998 0.5205 0.8627 0.7988 0.6329 0.6306
LR 0.4976 0.5128 0.4282 0.4402 0.9465 0.9473 0.5896 0.6011
NN 0.4973 0.5131 0.4286 0.4408 0.9555 0.9558 0.5918 0.6034
DT 0.5763 0.5747 0.4396 0.4451 0.4050 0.3960 0.4213 0.4191
RF 0.4771 0.4893 0.4165 0.4267 0.9266 0.9261 0.5747 0.5843

B

DEP 0.6568 0.6709 0.5213 0.5942 0.7095 0.4940 0.6010 0.5395
DRG 0.6179 0.6295 0.4847 0.5200 0.7750 0.6643 0.5964 0.5832
LR 0.4558 0.4688 0.3967 0.4171 0.9277 0.9146 0.5558 0.5729
NN 0.4462 0.4592 0.3939 0.4134 0.9451 0.9266 0.5561 0.5717
DT 0.5761 0.5744 0.4178 0.4463 0.3941 0.3837 0.4056 0.4126
RF 0.4469 0.4555 0.3932 0.4110 0.9339 0.9177 0.5534 0.5677

C

DEP 0.7085 0.7129 0.6951 0.7198 0.9207 0.9043 0.7922 0.8016
DRG 0.7085 0.7200 0.6984 0.7266 0.9097 0.9035 0.7902 0.8054
LR 0.5776 0.6069 0.5762 0.6069 0.9941 0.9934 0.7296 0.7535
NN 0.5827 0.6126 0.5792 0.6103 0.9942 0.9937 0.7319 0.7562
DT 0.6037 0.5968 0.6624 0.6845 0.6293 0.6181 0.6454 0.6496
RF 0.6007 0.6293 0.5920 0.6237 0.9754 0.9755 0.7368 0.7609

D

DEP 0.5621 0.4753 0.2337 0.1918 0.7017 0.6709 0.3506 0.2983
DRG 0.8038 0.8033 0.4347 0.3749 0.5480 0.2741 0.4848 0.3167
LR 0.6381 0.6119 0.2416 0.2643 0.6180 0.6116 0.3474 0.3691
NN 0.8443 0.8143 0.6667 0.3846 0.0020 0.0012 0.0041 0.0024
DT 0.7619 0.7346 0.2431 0.2622 0.2497 0.2372 0.2464 0.2491
RF 0.5295 0.4977 0.2115 0.2264 0.7398 0.7062 0.3289 0.3429

E

DEP 0.7119 0.6893 0.5293 0.5311 0.6970 0.6076 0.6017 0.5668
DRG 0.6999 0.6868 0.5138 0.5266 0.7188 0.6308 0.5992 0.5740
LR 0.6068 0.6089 0.3689 0.3914 0.8622 0.8471 0.5167 0.5354
NN 0.6008 0.6015 0.3682 0.3894 0.8907 0.8768 0.5210 0.5393
DT 0.6923 0.6824 0.3676 0.3946 0.3643 0.3628 0.3659 0.3780
RF 0.5641 0.5627 0.3468 0.3675 0.8916 0.8935 0.4993 0.5208

3.6 Summary

The distribution of health insurance claims shifts from time to time due to season-

ality of several diseases. Nevertheless, there are few abuse detection models which
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effectively account for seasonality. Most studies employ coarsely grained derived vari-

ables, defined at the provider or claim-level, for example, which makes it even more

difficult to address the seasonality issues when modelling abuse detection algorithms.

In the previous chapter, we proposed an abusive provider detection model using

treatment-level information. The proposed model detects abusive providers for each

given department. The underlying assumption of the proposed abusive provider de-

tection model is that claims are similarly distributed in the training and the test

sets. This assumption may not hold true for some departments. If we ignore this

difference in modeling, the performance will be decreased.

In order to tackle seasonality issues, we implement an abuse detection model

which incorporates treatment classification to detect abuse cases for each DRG code.

DRG is a type of the patient classification system (PCS), which classifies patients

into groups based on clinical features and the consumption pattern of medical re-

sources. We observe that claims with the same DRG code show similarity regardless

of the timing of the filing. Instead of running a single model separately for each

department, we propose to a model embodying multiple structures specific to DRG

codes selected as important for each given department. We also run the single model

for each department and compare the results with our proposed model. Experiment

results show our proposed model performs well across different time windows, while

the department-wise single models show degradation in performance.

This paper contributes to the existing literature by building the abuse detec-

tion model which effectively accounts for seasonality in health insurance claims.

Moreover, we provide ground evidence for DRG, an ontology originally designed to

categorize patients, to be used in the claim review process.
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Chapter 4

Detection of overtreatment with graph embedding
of disease-treatment pair

4.1 Background

Practitioners can prescribe a wild range of different treatments for the same patient.

Moreover, there exist myriads of drugs that share the same efficacy. Yet, practitioners

have a tendency to stick to their preferred choice of the drug and prescribe it to their

patients, even though other options are available. The product may be selected based

on the practitioners’ clinical experience or personal preference. This same affinity

towards specific choices can be observed not only from drug prescription but also

from practicing medical procedures.

Suppose there are two practitioners who prescribe different drugs, which actually

have similar medical efficacy, to the same patient. Two separate claims will be filed

for each practice. Now, when the reviewers examine these claims, based on their

expertise, it can easily be determined that both cases are normal since both pre-

scriptions are appropriate responses to patient’s disease. The machine, however, will

have to establish such relational knowledge from scratch, and it will have to learn

it from data. However, previously suggested models are not designed to efficiently

deal with the complex relationships between the disease and the treatments.
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In the previous chapters, embedding vectors for both diseases and treatments are

learned simultaneously. Hence, these embedding vectors are in separate spaces. In

order to add the relationship between disease and treatment, we simply concatenate

the embedding vectors additionally feed to the model. However, it is not sufficient

of an approach to include complex disease-treatment relationship.

Figure 4.1: An example of different prescription from different practitioners to the
same patient

Let us illustrate the reasoning behind this assertion by taking a toy example.

Suppose there is a claim in the test set with the same diseases as found in some of

the claims in the training set. Suppose, however, treatments prescribed in the test

claim are different from those prescribed in the training claims, even though the

patients in these claims suffered from similar diseases. A näıve model will classify

the treatment prescribed in the test set at random, because it is a practice pattern

unseen during the training. The naive model does not know that the diseases in both

train and test claims are similar to each other. It won’t be able to learn that, even

though the prescribed treatments differ in the train claim and the test claim, the

medical efficacy of the treatments are actually very similar. One the contrary, if the

correct disease-treatment relationship can be modeled before the training, then the
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following abuse detection model would certainly perform better.

In this chapter, we propose an overtreatment detection model which consid-

ers the intricate disease-treatment relationships in prior to training. The proposed

method consists of two stages. During the first stage, the disease-treatment network

is constructed from the claims data. During the second stage, the model is trained

to learn vector representations of entities from the disease-treatment network using

node embedding methods. With the trained embedding vectors, we predict link for-

mation between treatment and diseases in the claim in order to determine whether

the treatment listed in the given claim is unnecessary to the subject patient. We test

employing different network embedding models and suggest strategies to choose the

most appropriate method. Our selection metric is the average performance on link

prediction between the disease and the treatment.

The rest of the chapter is organized as follows. In section 4.2, we review the lit-

erature on graph embedding methods and the applications of the graph embedding

method in biomedical data. Also, we introduce several studies about medical con-

cepts embedding. Section 4.3 provides detailed descriptions of the proposed model.

In section 4.4, we elaborate on experiment settings. We also describe the data in this

section. Section 4.5 reports the experiment results. Finally, section 4.6 concludes the

paper.

4.2 Literature review

In this section, we explained some state-of-the-art graph embedding network meth-

ods and their application to biomedical data. In subsection 4.2.1, we briefly in-

troduced some graph embedding methods. In subsection 4.2.2, we reviewed about
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applying graph embedding methods in biomedical data. Finally, We described some

methods related to medical concept embedding in section 4.2.3.

4.2.1 Graph embedding methods

The graph embedding methods can be divided into four categories: matrix factorization(MF)-

based methods, random walk-based methods, deep learning-based methods, and

other methods. In this subsection, we briefly reviewed each category and corre-

sponding methods.

MF-based methods

Originally, the matrix factorization method has been widely adopted for di-

mension reduction of the data matrix. The data matrix is factorized into lower-

dimensional matrices while preserving the manifold structure. The MF-based graph

embedding method is factorizing matrices, which represent graph properties, to ob-

tain node embedding vectors in lower dimension space. There are several graph

embedding methods that utilize matrix factorization methods such as locally linear

embedding(LLE) [76], Laplacian eigenmaps(LE) [7], Graph Factorization(GF) [2],

GraRep [9], and HOPE [69].

In LLE, find k-nearest neighbors(k-NN) of each data and make an adjacency

matrix based on the k-NN result. Then, factorize the matrix using the matrix fac-

torization method such as Singular Value Decomposition(SVD). While LLE [76] uses

the constructed matrix itself, LE [7] factorizes graph Laplacian Eigenmaps to pre-

serve pairwise node similarities. It converts finding embedding vector problem to

generalized eigenvector problem. GF [2] directly factorize the proximity matrix of a

graph under each edge is already existed. These methods aim to preserve 1st-order

73



proximity. However, many networks have important features in high-order proximi-

ties.

GraRep and HOPE are two important methods that preserve high-order proxim-

ities. In GraRep [9] method, authors capture network the local and global structure

by generating multiple k-step embedding vectors by factorizing multiple k-step tran-

sition probability matrices, and concatenate those vectors. HOPE [69] is used to get

embedding vectors of the directed graph which has asymmetric transitivity. The ba-

sic idea of HOPE is that a node should have two different embedding vectors because

each node can be used as a target node. It defines some important high-order prox-

imity measures such as Katz index [37], and get embedding vectors that preserve

such measures. SVD is used to factorize the matrices in both methods.

Random walk-based methods

Random walk is a stochastic process with random variables W 1
vi ,W

2
vi ,...,W

k
vi such

that every value is randomly chosen from the neighbors of previous value. In other

words, if W j
vi = vj , then W j

vi must be randomly chosen from N(vj), which means

the neighbors of node vj . In short, a random walk in a network is a node sequence in

which every node is connected to the previous node. It is commonly used to capture

structural relationship between nodes of the network. Perozzi et al. [72] found that

the distribution of vertices appearing in short random walks is similar to the distri-

bution of words appearing in sentences under certain circumstances. Inspired by this

observation, they suggested a method named DeepWalk, which utilizes SkipGram

[61] model in random walks to learn the embedding vector of each node. Also, the

hierarchical softmax method was used to train SkipGram model ([62], [63]). After

this study, there have been several papers that utilize the word embedding model in
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NLP to random walks. Grover and Leskovec [29] suggested node2vec model that uses

the biased random walk rather than unbiased random walk in DeepWalk. They used

the biased random walk to preserve the local structure and the global structure by

using breadth-first searching and depth-first searching in generating random walks.

With these random walks, they trained SkipGram model with negative sampling.

Perozzi et al. [73] proposed Walklets, which is another extension of DeepWalk. They

modified a strategy of generating random walk to skipping some nodes each random

walk. By this strategy, they made it possible to generate random walks that contain

multiple k-steps proximities.

Diffusion component analysis (DCA) [13] is another random walk-based embed-

ding method, but quite different from previous methods. While previous methods

are node embedding methods utilizing SkipGram model, DCA calculates the dif-

fusion state that is defined as the probability distribution in stationary state with

random walk with restart (RWR) strategy. This strategy captures both local and

global structural property. Also, it makes possible to overcome the noise and sparsity

of the network, so that this method can be used in the biological network.

While these methods were concerned only about proximities, struc2vec [75] is a

graph embedding method that preserves structural identity. The authors of struc2vec

explain the structural identity as a concept a symmetry in which network nodes are

identified according to the network structure and their relationship to other nodes

[75]. In other words, a node pair having structural identity means both nodes perform

similar roles in the network. Firstly, define the structural similarity and construct a

multilayer weighted network where all nodes exist in every layer. Then, generate the

context for each node by using biased random walks with the multilayer network.
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Then, train a SkipGram model with the hierarchical softmax method to learn node

embedding vector for each node with random walks.

These methods are for the homogeneous networks, which refer to networks with

a single type of nodes and edges. However, there are much more networks which

are not homogeneous such as author-paper-venue, customer-products-seller network.

These networks are called heterogeneous networks which include different types of

nodes and edges. There are several studies about embedding methods for these

networks, such as metapath2vec [23] and Heterogeneous Information Network Em-

bedding (HINE) [35]. Here, both methods are random walk-based method. Except

for generating random walks method, metapath2vec is quite similar to DeepWalk.

They suggest meta-path based random walks for the heterogeneous network, which

generates random walks by pre-defined node type sequence. Otherwise, HINE [35]

does not utilize SkipGram method in training. The authors first defined two meta-

path based proximity measures for a heterogeneous network. Then, train embedding

vectors of nodes while preserving those proximities.

Deep learning-based methods

Deep learning has been achieved success in various domains. Deep learning-based

embedding methods are the embedding methods that utilize some deep learning ar-

chitectures. SDNE [92] is a kind of node embedding model which utilizes the deep

auto-encoder to proximity matrix of the network to map it to nonlinear latent space

while preserving the network structure. By using the auto-encoder, the embedding

vector preserves the second-order proximity. It makes 1st order proximity also be

preserved by applying Laplacian eigenvector proximity measure to embedding vec-

tors. DNGR [10] is another model that utilizes auto-encoder structure The authors
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chose the stacked denoising auto-encoder structure to find non-linear embedding

vectors in low dimensional space and robust to the noise of the network. Graph

convolutional network (GCN) [41] and variational graph auto-encoder (GAE) [40]

are also important deep learning-based model. Both of them use the convolutional

neural network (CNN) in network data which achieves great success in the com-

puter vision domain. GCN applies the convolutional operation to network data by

using the proximity matrix and feature matrix of the network. GAE is a kind of

auto-encoder that uses GCN encoder and the simple inner product decoder.

Other methods

There are several important methods that are not included in any category. Mul-

tidimensional scaling(MDS) [33] learns embedding vectors by preserving the distance

of all node pairs in the embedding space. However, it does not consider different re-

lationships might have different importance. Isomap [88] overcome this shortage by

constructing k-NN network and learn embedding vectors while preserving the dis-

tance between a node and its k-NNs. LINE [86] is a node embedding method that

preserves the first-order and second-order proximity. The authors suggested preserv-

ing 1st order proximity by minimizing the distance between the empirical distribu-

tion of nodes in the original graph and the distribution from embedding space. Also,

they suggest minimizing the distance between the empirical conditional distribution

of ‘context’ node vj given a single node vi and the conditional distribution of them

in the embedding space.
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Table 4.1: graph embedding methods

Category Algorithm Method

Matrix
factorization

LLE [76]
matrix factorization
(e.g. SVD)

LE [7]
matrix factorization
(e.g. eigen-decomposition)

GF [2]
matrix factorization
(e.g. SVD)

GraRep [9]
matrix factorization
(e.g. SVD)

HOPE [69]
matrix factorization
(e.g. SVD)

Random
walk

DeepWalk [72] skip-gram with random walk

node2vec [29] skip-gram with random walk

Walklets [73] skip-gram with random walk

DCA [13]
stationary distribution with
random walk with restart strategy

struc2vec [75] skip-gram with random walk

metapath2vec [23] skip-gram with meta-path based random walk

HINE [35]
proximity preserving model with
meta-path based random walks

Deep
learning

SDNE [92] Autoencoder with proximity matrix

DNGR [10] Denoising autoencoder with PPMI matrix

GCN [41]
CNN model with
adjacency matrix and feature matrix

GAE [40]
Autoencoder with
GCN encoder and simple inner product decoder

Others MDS [33] Preserving Euclidean distances of all node pairs

Isomap [88]
Preserving Euclidean distances of
each node and its k-nearest neighbors

LINE [86] Preserving 1st-order and 2nd-order proximity
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4.2.2 Application of graph embedding methods to biomedical data

analysis

The network embedding method is applied mainly in three topics: pharmaceutical

data analysis, multi-omics data analysis, and clinical data analysis. In this subsec-

tion, we explained each category and review several studies.

Pharmaceutical data analysis

The usage of graph embedding or graph analysis in pharmaceutical data can

be categorized as three important issues: drug-target interaction (DTI) prediction,

drug-drug interaction (DDI) prediction, and drug-disease association (DDA) pre-

diction. DTI prediction means predicting the interactions between drugs (chemical

compound) and target (protein). DDI prediction is to predict the result of drug co-

prescription. DDA prediction means predicting the clinical result when a patient,

who has a specific disease, takes a specific drug.

Previously, DTI prediction was mainly performed by constructing proximity ma-

trices and factorize them by matrix factorization methods. Yamanashi et al. [102]

proposed a method of predicting unknown DTI by using known DTI data, chemical

data, and genomic data. They construct a known drug-target bipartite network by

DTI data and factorize the similarity matrix by eigenvalue decomposition. Next,

train models that represent the correlation between embedding space and chemi-

cal/genomic space. Then, the unknown DTI can be inferred by the model. Cobanoglu

et al. [18] proposed a method that predicting DTI by using the collaborative filtering

method only with known DTI data, not any external data. They applied the prob-

abilistic matrix factorization method to the known DTI network to get embedding

vector of each node in drug-protein and predict unknown DTI by active learning
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with learned embedding vectors. Ezzat et al. [25] suggested a method that predicts

DTI by the graph embedding method and ensemble learning. They conducted a

feature sub-spacing to inject diversity for classifier ensemble and tried three differ-

ent dimension reduction methods: SVD, Partial Least Squares(PLS), and LE. Then,

train homogeneous base learners with the resulting vectors and predict with each

model’s score. Also, there is another method that uses the k-NN method and graph

regularization matrix factorization method to predict unknown DTI [26].

While MF-based methods were used in previous studies, random-walk based

methods are also commonly used in DTI prediction. Luo et al. [54] developed a

model named DTINet to predict DTIs from a heterogeneous network that is con-

structed by integrating drug-related information. They used extended DCA to learn

embedding vectors for each node in the heterogeneous network. Then find the best

projection from drug space to target space by finding mapped feature vectors of

drugs are similar to the known interacting target. Then, infer new interactions of

a drug by ranking the target candidates and projected feature vector of the drug.

Zong et al. [110] proposed a similarity-based DTI prediction method by constructing

a drug-target-disease tripartite network. After construction, train embedding vec-

tors for each node to predict the drug-target association. They utilized DeepWalk

method to learn embedding vectors. Alshahrani et al. [3] proposed another method

that integrates external information to construct a heterogeneous network. They in-

tegrated gene ontology(GO), protein-protein interactions(PPIs), DTIs, gene-disease

interactions, drug side effects, and disease-phenotype information to construct the

network. They utilized a modified DeepWalk method to learn embedding vectors

that captures the structure of the network. Then, they trained the logistic regres-

80



sion model to predict the unknown DTIs.

There were also several studies predicting DDIs. Zhang et al. [107] proposed a

method that formulates DDI prediction as a matrix completion problem. Firstly,

they integrated multiple external drug-related information and learned embedding

vectors. Also, they suggested a method named ‘Manifold Regularized Matrix Fac-

torization’ (MRMF), which is a kind of MF-based embedding method, to learn

embedding vectors. Then, they found similarity factors between node pairs with

embedding vectors and known DDI information. Ma et al. [56] proposed a model

that calculates similarities between drugs in multi-view. They used GAE to integrate

multiple types of drug features and attentive model to make the model adaptive to

data. They also used the model to predict unknown DDI. Zitnik et al. [109] proposed

a model named ‘Decagon’, which is aimed to predict DDI, especially polypharmacy

side effects. Firstly, they constructed a multimodal graph from PPIs, DTIs, and

polypharmacy side effect information. Different types of interactions are labeled by

different edge types. The unknown DDIs are predicted by link prediction between

drug nodes using modified GAE. The node information is encoded by the GCN

based encoder. Then, the decoder takes pairs of embedding vector and scores the

edge between them.

Predicting DDAs is also an important issue in pharmaceutical data analysis.

Dai et al. [20] first embedded gene-gene interaction network by eigenvalue decom-

position and get embedding vectors of drugs and disease with the gene embedding

vectors, drug-gene interactions, and disease-gene interactions. Then, factorize the

known drug-disease association matrix. Finally, the unknown DDAs can be inferred

by the embedding vectors of drugs and diseases, and the matrix factorization result
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of known drug-disease association matrix. Wang et al. [94] constructed a drug-disease

network from free text, especially extracted from papers in PubMed and learn em-

bedding vector with modified LINE. Then, the correlation of the drug-disease pair

is calculated by the embedding vectors and find DDA patterns.

Multi-omics data analysis

The term ‘omics’ means a field of study in biology that ends with ‘-omics’, such as

genomics. These studies are about researching characteristics of biological molecules

such as their structures, functions, or dynamics. The network-based approach is a

valuable method in these studies in finding a relationship between entities. Here, we

reviewed three important topics that utilize graph embedding methods: proteomics,

genomics, and transcriptomics data analysis.

Many studies that apply graph embedding methods in proteomics is focused on

assessing and predicting PPIs, or predicting protein functions. Kuchaiev et al. [45]

proposed a de-noising PPIs model with MDS-based graph embedding approach to

address high false positive and false negative in PPIs. You et al. [104] used isomap

to embed the PPI network in low dimensional space. Then, assess and predict the

PPIs by comparing embedding vectors of the node pair. Lei et al. [49] proposed a

two-step model that assesses and predicts PPIs. First, combine multiple genomic

and proteomics information by logistic regression approach to construct a weighted

PPI network. Then, get embedding vectors by extended isomap and predict the

unknown PPIs. Wang et al. [97] proposed ProsNet, which predicts the PPI by con-

structing a heterogeneous molecular network and embedding the network in low

dimensional space. The heterogeneous molecular network is constructed by includ-

ing the molecular networks of several species and gene ontology graph. Then, the
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embedding vectors are calculated by meta-path based extended DCA.

Graph embedding methods are utilized for various purposes in analyzing genomic

data. As We already reviewed in the previous subsection, Cho et al. [13] proposed

DCA, which is an important graph embedding method, to learn node embedding

vectors with RWR strategy. Wang et al. [95] proposed a method named clusDCA,

which predicts the gene function. They learned embedding vectors from gene-gene

interaction network and GO by DCA. Then, they trained a projection model from

gene space to GO space. With projected vectors and embedding vectors in GO

space, they predicted the gene function of the gene. There is also another DCA-

based model named PACER that aims to pathway identification [96]. The main

idea of this method is to construct a heterogeneous network and embedded gene

and pathway in a unified space. They used gene expression, drug response-gene

expression, PPIs, and pathway information to construct the network. Li et al. [51]

proposed a model named SCRL, which aims to learn the representation of a single

cell RNA sequence. The basic idea of this model is constructing cell-ContexGene

and Gene-ContextGene networks and learning embedding vectors by extended LINE.

Zeng et al. [106] constructed a heterogeneous gene-disease network from human genes

and other species’ genes information. Then, they calculated embedding vectors by

factorizing the matrix and predicted the pathogenic human genes.

Transcriptomics is a study of an organism’s transcriptome, which is all about

RNA transcript. In this field of study, The graph embedding methods are mainly

used to identify the miRNA-disease association. Shen et al. [81] developed Collab-

orative Matrix Factorization for miRNA-Disease Association(CMFRDA) that iden-

tifies the miRNA-disease association. They constructed a miRNA-disease bipartite
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graph and factorized the matrix by the SVD for initialization. Then, they update

the factorized matrix until the predefined loss is converged. Li et al. [50] proposed

a similarity-based miRNA-disease prediction model. They constructed the miRNA-

disease bipartite network and learned similarity by embedding the network with

DeepWalk. Then, they infer the miRNA-disease interaction by the distance between

embedding vectors of a node pair.

Clinical data analysis

There are several papers about analyzing the clinical data, such as medical

knowledge graph, electronic health records (EHRs) and electronic medical records

(EMRs). Choi et al. [16] suggested learning embedding vectors from three differ-

ent data sources: medical journals, medical claims, and clinical narratives. Different

types of concepts are embedded in a common low-dimensional space. They tried

two embedding methods: SkipGram and matrix factorization. Wang et al. [93] sug-

gested a method to recommend appropriate medicine for patients. They constructed

heterogeneous network by combining medical knowledge network, patient-medicine

network, and patient-disease network. They trained embedding vectors of the net-

work by using translation-based embedding method and LINE. Choi et al. [15] de-

veloped a model named GRAM, which aims to learn low-dimensional representation

with medical concept ontology. They utilized the attention method to leverage the

parent-child relationship of the ontology.
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Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

Pharmaceutical

data analysis
Yamanashi et al. [102] DTI prediction Matrix factorization

Cobanoglu et al. [18] DTI prediction
Probabilistic matrix

factorization

Zheng et al. [108] DTI prediction Matrix factorization

Ezzat et al. [25] DTI prediction Matrix factorization

Ezzat et al. [26] DTI prediction
Matrix factorization

(SVD, PLS, LE)

Luo et al. [54] DTI prediction DCA

Zong et al. [110] DTI prediction DeepWalk

Alshahrani et al. [3] DTI prediction Modified DeepWalk

Zhang et al. [107] DDI prediction matrix factorization

Ma et al. [56] DDI prediction GAE

Zitnik et al. [109] DDI prediction modified GAE

Dai et al. [20] DDA prediction

Eigenvalue

decomposition,

Matrix factorization

Wang et al. [94] DDA prediction modified LINE

Multi-omics

data analysis
Kuchaiev et al. [45] Denoising PPI Extended MDS
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Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

You et al. [104]
Assessing PPI,

PPI prediction
Isomap

Lei et al. [49]
Assessing PPI,

PPI prediction
Extended Isomap

Wang et al. [97] PPI prediction
Meta-path based

extended DCA

Cho et al. [13]
Node embedding in

biological network
DCA

Wang et al. [95]
Gene function

prediction
Extended DCA

Li et al. [51]

Learn the

representation of

single cell RNA-seq

Extended LINE

Zeng et al. [106]
Predict pathogenic

human genes
Matrix factorization

Wang et al. [96]
Pathway

identification
DCA

Shen et al. [81]

Identify potential

miRNA-disease

association

Matrix factorization
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Table 4.2: Applications of graph embedding methods in biomedical data analysis

Tasks Authors Purpose Embedding method

Li et al. [50]
miRNA-disease

prediction
DeepWalk

Clinical

data analysis
Choi et al. [16]

Medical concept

embedding

SVD,

SkipGram

Choi et al. [15]
Medical concept

embedding
GRAM

Wang et al. [93]
Medicine

Recommendation

Translation based,

LINE

4.2.3 Medical concept embedding methods

In order to apply various machine learning methods in clinical data, the medical

concept in the clinical data should be vectorized. There have been researches to

embedding medical concept to get embedding vector for various purpose, such as

predicting patients’ visits.

Choi et al. [14] proposed a medical concept representation method named med2vec

from EHR datasets. Here, they define a visit vector Vt, and represent it as a binary

vector xt ∈ 0, 1|C| , where the i-th entry is 1 only if ci ∈ Vt. Then, represent the

binary vector in intermediate low dimensional space, and concatenate the vector

with demographic information. Embed the concatenated vectors into the final low

dimensional space and predict the other binary vectors in a context window. Not

only they used inter-visit information, but also they used inter-visit information to
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preserve code-level information. Another work done by the Choi’s team is GRAM

[15], which is we already reviewed in the subsection 4.2.2. It utilized the attention

model to each node in the medical concept ontology to learn low-dimensional em-

bedding vectors that leverage the parent-child relationship. Song et al. [83] proposed

another ontology-based medical concept model named MMORE. The model learns

multiple embedding vectors for the ancestors of the leaf nodes and the final embed-

ding vectors are calculated by combining those embedding vectors with an attention

mechanism.

Cai et al. [8] proposed an embedding method that considers the temporal in-

formation because the scopes medical concept varies greatly in terms of temporal

scope. The embedding vectors are calculated from other EMR data codes that are

in a certain time window with the attention model. Xiang et al. [101] claimed that

the embedding vectors of medical concepts should consider temporal dependency.

They tried word2vec, PPMI, and FastText [36] with large EHR datasets to learn

embedding vectors of medical concepts to overcome this issue.

4.3 Proposed method

This section presents our overtreatment detection model using graph embedding

method. Subsection 4.3.1 details the process of the medical information network

from the medical treatments found in healthcare insurance claims. More specifically,

we present how to compute the edges of the network from the treatment data. Sub-

section 4.3.2 describe our strategies for choosing the best method for embedding the

constructed network in order to carry out the overtreatment detection task. We solve

the link prediction problem and compare performances among the select methods.
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Finally, we construct the overtreatment detection model by using graph embedding

in subsection 4.3.3. We sample negative edges from the constructed network, in par-

ticular, and use the embedding vectors of the nodes, trained and chosen as described

in subsection 4.3.2, to predict links.

4.3.1 Network construction

Our healthcare insurance claim data consists of three parts: (1) basic claim informa-

tion; (2) disease information, and; (3) treatment information. Basic claim includes

claim-wise elements as claim identifiers, general practitioner (GP) information, sub-

ject patient profiles, as well as the relevant DRG code. Disease information reports

the list of diseases the subject patient has. The treatment information encompass

all the details of treatments that the general practitioner has prescribed the patient.

Figure 2.5 illustrates an example of a claim typically found in our data set

The toughest challenge in constructing a network from in insurance claim data set

is that the casual relationship between the disease and the treatment is not apparent.

A claim contains information on the main and sub-diseases diagnosed as well as the

type and amount of treatments, yet it still remains in dark exactly for which disease

each treatment was prescribed. The absence of exact disease-treatment matching

poses as a problem in the following sense: suppose an edge between a disease and

a treatment is formed if they appear in the same claim. For example, if diseases

A and B are listed together with treatments C and D for an arbitrary claim case

c, then an edge will be formed between disease A and treatments B and C. Now,

suppose that, in reality, treatment D was prescribed for disease B only and, likewise,

treatment C only for disease A. Then, the edge between disease A and treatment D
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carries wrong relational information. That is, in other words, edge formation based

on co-occurrence may lead to misleading representations.

In order to address above issue, we resort to the concept of the relative risk

(RR) as a vehicle to infer the relationship and form edges accordingly ([60], [100]).

Relative risk is a statistical measure of statistical method utilized in cohort studies

to infer the association between an outcome and a factor.

For example, suppose ‘B’ is an outcome and ‘A’ is a factor. Then, RR(A,B) is

defined as follows:

RR(A,B) =
p(B|A)

p(B| ∼ A)

If the resulting value is larger than 1, then factor ‘A’ is considered to be associated

with outcome ‘B’.

Now, we construct disease-treatment network as following. We begin by forming

edges between the main diseases and the RDRG codes. If a claim has a specific

RDRG code and main disease(s) listed, then edges are formed between the code and

the corresponding main diseases. The main diseases, then, are connected with sub-

diseases listed for the same claim, if any. Finally, we form edges between the diseases

and treatments by exploiting the RR measure. More specifically, RRs are computed

for all the disease-treatment pairs in the training set. Then, an edge formed for

the disease-treatment pair whose RR value is greater than 1. The resulting network

comprises undirected, unweighted edges.

4.3.2 Link Prediction between the Disease and the Treatment

In order to detect overtreatment by using node embedding vectors, we first need

to select the most appropriate node embedding method which learns to represent
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Figure 4.2: Network construction by co-occurrence and association relationship

nodes effectively from the constructed network as vectors on the embedding space.

In this subsection, we detail the process of choosing the best embedding method

among other candidates, which constitutes two main steps: edge sampling and link

prediction.

Edge sampling

We begin by spliting the edge set from the original network G = (V,E) into

two sub-graphs: the training set, Gtrn = (V,Etrn) and the test set, Gtst = (V,Etst).

Since Etrn represents all the observable, hence positive, samples, we re-denote Etrn

as Etrnpos . In contrast, negative samples are not directly observed from the claims

data. Thereupon, we define negative edges as the set of all the combination pairs

between the diseases and treatments in the training set that are not in Etrnpos . Then,

sample several negative edges from this set. The number of negative edges sampled
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should be equal to
∣∣Etrnpos ∣∣. This set of sampled negative edges are denoted by Etrnneg.

Similarly, we define the set of edges observed in the test set, Etst, as the positive

edge samples and denote them by Etstpos. Negative edges are sampled in a similar

fashion as explained above for the training set negative samples, which is denoted

by Etstneg. This validates that the set of negative edges sampled for the test set will

not intersect with those in Etrnpos , E
trn
neg, nor in Etstpos.

Link prediction

At this stage, we employ a selection of node embedding methods to learn to

represent nodes from Gtrn as vectors on an embedding space. Suppose an arbitrary

embedding model learns to present nodes u, v in the Gtrn, which are connected by

the edge e = (u, v). We denote the corresponding embedding vectors for the nodes

u, v by xu,xv, respectively. The embedding vector for the corresponding edge e is

defined as xe = [xu,xv], which results from concatenating the embedding vectors

of the connected nodes. We denote the sets of the embedding vectors of the edges

in Etrnpos , E
trn
neg by Xtrn

pos , X
trn
neg, respectively. Similarly, the sets of embedding vectors of

edges in Etstpos, E
tst
neg are denoted by Xtst

pos, X
tst
neg, respectively. Then, using Xtrn

pos , X
trn
neg,

we train a logistic regression model, hθ(e), using to learn to classify whether a given

edge is positive or negative. Finally, we evaluate the classification result of hθ(e)

with Xtst
pos, X

tst
neg.

The entire process for disease-treatment link prediction is illustrated in Figure

4.3. We repeat this process several times and compute the average performance of

select embedding methods in solving the link prediction task. Details on the models

employed in the experiment can be found in section 4.4.
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Figure 4.3: The process of link prediction between the disease and the treatment

4.3.3 Overtreatment Detection

In the previous subsection, we detailed out the process for choosing the best net-

work embedding model by comparing the average performance in disease-treatment

link prediction. In this subsection, we elaborate on the framework of our overtreat-

ment detection model which utilizes the embedding vectors of nodes. Overtreatment

detection model involves two stages: edge sampling and overtreatment detection.

Edge sampling

Different from the previous subsection, We define the network corresponding

to the training set as Gtrn = (V,Etrn); the network corresponding to the test set,

Gtst = (V,Etst). Note that the nodes that do not appear during the training were

also removed from the test set, hence the node set for the training is exactly what
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is used for the test set. The negative edge sampling process must be differentiated

from what was defined in the previous subsection so as to reflect that, at this time,

we need disease-treatment pair samples based on association. Take, for an exam-

ple, a claim i which includes diseases dtrni1 , d
trn
i2 and treatment ttrni1 . It may be the

case that the prescription of ttrni1 is due to dtrni1 , while dtrni2 is irrelevant. Such a re-

lation should be translated to an edge e1 = (dtrni1 , t
trn
i1 ). On the other hand, an edge

e2 = (dtrni2 , t
trn
i1 ) would provide misleading information, hence should not be formed.

In case of subsection 4.3.2, the challenge is not as severe since e2 can be sampled as

a negative edge while learning to classify the disease-treatment relationship. How-

ever, in terms of evaluating the claims for overtreatment, edge sampling based on

co-occurrence leads to a serious problem, since co-occurrence does not necessarily

imply association. Mistakenly connecting ttrni1 to dtrni2 may lead to mis-labeling the

claim i as an overtreatment case, while it actually is not, for ttrni1 was an appro-

priate choice of prescription in response to dtrni1 . Given that our ultimate goal is to

detect overtreatment, such mis-labeling problem will cause grave degradation of our

detection model.

In order to tackle this issue, we sample negative edges claim-by-claim, unlike the

edge sampling described in the previous subsection where edges were sampled from

the entire network all at once. Our negative edge sampling process preceeding the

overtreatment detection proceeds as follows. Given a single claim, we identify all

the diseases included in the claim. Then, we look up treatments, from the rest of

the claim data set, that are not matched with either of the identified diseases. All

possible combinations of the identified diseases (from the subject claim case) and the

looked up treatments (from the rest of the claims data) are considered as negative
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edges candidates of the given claim. sample as many negative edges as the number

of positive edges found in the claim.

We describe the process with an example. Suppose a claim includes diseases of

dtrni1 , d
trn
i2 . All the treatments that are related to dtrni1 and those to dtrni2 are represented

as N(dtrni1 ), N(dtrni2 ), respectively. Then, the negative edges are sampled from the set

Enegi = {(u, v)|u ∈ {dtrni1 , dtrni2 }, v /∈ {N(dtrni1 ) ∪ N(dtrni2 )} where u represents the

disease node and v, the treatment node. Here, treatment nodes matched with the

disease nodes from corresponding to claim i is not in fact related to any of the given

diseases. We denote the edge set from the training set as Etrnpos ; those from the test

set, Etstpos. Similarly, the negative disease-treatment edge set that sampled for the

disease nodes found in the training set is denoted by Etrnneg; for those found in the

test set, Etstneg.

Figure 4.4: Claim-wise negative edge sampling

Overtreatment detection

We propose to detect overtreatment in two different ways. First approach is to

detect overtreatment naively, using the network resulting from the training set, per
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se. Another approach involves training node embedding models. Both approaches

assume that a given case is associated with overtreatment if the link between the

diseases and the treatments listed in the claim. The näıve network approach proceeds

as follows: if there is a disease-treatment edge in Etstpos which does not exists in Etrnpos ,

the corresponding treatment is classified as overtreatment. For example, suppose

that a claim includes diseases d1, d2, . . . , dm and a treatment tk in the test set. If the

treatment satisfies the condition of (d1, tk), (d2, tk), . . . , (dm, tk) /∈ Etrnpos , we classify

the subject treatment as overtreatment.

In case of node embedding approach, we first train our model to learn to vector

representations of nodes that are connected by the edges in Etrnpos . Then, a logis-

tic regression model hθ(e) is employed to learn to classify edges using Etrnpos and

Etrnneg. We test the training results using Etstpos and Etstneg. If the test result reports

that all of the diseases are not connected to a treatment found in the given claim,

and the corresponding treatment is considered as overtreatment. Mathematically,

we denote the embedding vectors of diseases d1, d2, . . . , dm,by xd1 ,xd2 , . . . ,xdm ,

and the embedding vector of the treatment tk by xtk . Given the treatment tk,

if the prediction results for each respective diseases included in a given claim,

hθ([xd1 ,xtk ]), hθ([xd2 ,xtk ]), . . . , hθ([xdm ,xtk ]) are all negative, then treatment tk

is classified as overtreatment. We graphically illustrate the overall framework of our

overtreatment detection model in Figure 4.6.

4.4 Experiments

In order to evaluate our proposed model, we experiment on real-world data. Our

dataset consists of health insurance claims submitted to HIRA in 2017. Subsection
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Figure 4.5: Unnecessary treatment detection by link prediction result

4.4.1 provides detailed descriptions of our dataset. Subsection 4.4.2 presents the

training details.

4.4.1 Data Description

As described in subsection 2.4.1, there are several databases separately stored within

the HIRA data warehouse. Each database stores important information about in-

surance claims such as basic claim information, treatment information, disease in-

formation, and the filing review details. We provide details on each database in

Table 2.1. From claims filed to HIRA in 2017, we extracted records that are man-

ually reviewed. Also, we selected cases assigned to one of the following five 3-digit

DRG codes for modeling and evaluation: B60(quadriplegia, paraplegia, and spondy-

lopathy), B63(Parkinson disease, neurological neoplasm, hemiplegia, degenerative

nervous system disorder), D64(disequilibrium, otitis media, upper respiratory in-

fections), I07(simple spinal surgery, intervertebral disc removal), I68(non-surgical

cervical and spinal conditions). Table 4.3 reports summary statistics of each DRG

code group.
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Figure 4.6: The process of unnecessary treatment detection by link prediction be-
tween the disease and the treatment

Table 4.3: Treatment data statistics

Treatment type B60 B63 D64 I07 I68

Procedure 804,306 1,562,496 1,951,333 4,504,776 10,586,623
Prescription 275,559 524,895 1,073,685 2,393,032 3,950,746

Material 17,384 16,947 32,712 509,183 40,753

1902 3-digit disease codes and 9765 treatment codes were included in the data

set. Treatments are conventionally categorized into four different groups: basic treat-

ments, procedure, prescription, and materials. Basic treatment refers to the group of

treatments that may be prescribed anytime, regardless of types of diseases a patient

is diagnosed with. For example, consultation, admission, nursing, and meals fall into

this group. Since these types of treatments does not provide any meaningful informa-

tion in relation to diseases, we discard them as we construct the disease-treatment

network. Procedures are include treatments practitioners conduct on patients, such

as X-ray examinations, MRI examinations, and surgical operations. Prescription
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refers to the detailed information about drugs practitioners prescribe such as, for

example, the nonsteroidals anti-inflammatory drug. Finally, material is a group of

treatments that require materials for recovery Orthosis is a good example of the

material treatment. There are 5854, 2319, 1225 treatment codes in the procedure,

prescription, material groups, respectively.

4.4.2 Experimental Settings

Our proposed method extracts disease-treatment relationship carefully by incorpo-

rating all the information available in the claim filing, instead of relying on simple

co-occurrence. Multiple stages exploiting different information build up to the final

disease-treatment network stage-by-stage. We begin by constructing networks sepa-

rately for each DRG 3-digit code. Given a DRG 3-digit code, we extracted relevant

RDRG codes, disease codes, procedure codes, prescription codes, and material codes

that appear in our data. Then, we set each of these codes as individual nodes. RDRG

code is of the finest granularity for DRG code in the KDRG code system. Then, for

each RDRG code, we extracted the main disease codes and sub disease codes from all

the claims with the matching the RDRG codes. Then, we connect the RDRG codes

with the matching main disease codes. At the same time, we formed links between

the main disease code nodes and the relevant sub-disease code nodes. Finally, we add

treatment codes to the network and connect them with the associated disease codes

as detailed in subsection 4.3.1. The diseases codes are grouped as detailed in sub-

section 4.4.1. Then the resulting network, by design, ensures that every treatment

node is assigned to one of the three labels: procedure, prescription, or material. We

present the possible types of disease-treatment pair edges in the resulting network
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in Table 4.4. We also provide the graphical snapshot of the network in Figure 4.7.

Table 4.4: Edges in the network and their type

Edge Type

RDRG - main disease co-occurrences
main disease - sub diseases co-occurrence

diseases - procedures association
diseases - prescriptions association

diseases - material association

Figure 4.7: RDRG-disease-treatment network

In order to choose the best node embedding model to carry out the disease-

treatment link prediction task, we trim the network by looking up the claims filed

from January 2017 to September 2017 only. We split the edge sets into the training

and the test set by the ratio of 7:3. The node embedding models we experimented

with are as following: GF [2], HOPE [69], GraRep [9], DeepWalk [72], node2vec [29],

metapath2vec [23], SDNE [92], LINE [86].

We report performances of various link prediction models employed, of which

the respective unit link is defined to connect the disease and the corresponding

procedure, the disease and the prescription, or the disease and the materials. We
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repeated the experiment for link prediction 10 times and report the average of the

accuracy measures as the principal reporting metric for the overall performance.

We choose the model with the highest average performance as the best embedding

method for our network.

As for the overtreatment detection model as described in subsection 4.3.3, the

training and the validation sets were built from the claims filed from January 2017

to September 2017. The test set comprises claims filed to HIRA from October 2017

to December 2017. We repeated the experiment 10 times and report the average

accuracy as the performance metric.

We set hyper-parameters as follows. First, we fix the dimension of embedding

vectors at 32 in every case. We tested various configurations and landed on the values

reported. We set both the number of random walk per node and the length of each

random walk at 32 for DeepWalk and node2vec methods. In case of node2vec, we

set the two key hyper-parameters p, q, which, altogether, generate a biased random

walk, at p = 0.5, q = 2.0. On the other hand, metapath2vec requires to define the

meta-paths in order to generate random walks. We set the meta-paths to be either

‘Treatment-Disease-Treatment’, or ‘Treatment-Disease-RDRG-Disease-Treatment’.

The former meta-path implies that ‘treatments caused by the same disease’, while

the latter, ‘treatments for the same kind of patients’. We also fix the number of

the random walk per node at 32. For SkipGram we set the window size for training

at 6. For LINE, which considers information of neighboring nodes up to the 2nd

order proximity, we set the negative ratio at 5. For GF, we fix parameter for the

regularization term of the L2-norm loss at 0.00001. We used the 2-step transition

probability matrix for GraRep method. The auto-encoder spart of the SDNE model
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takes the structure of [n−256−32−256−n], where n is the input dimension. Training

batch size was set at 128 with the learning rate equal to 0.01. The parameters α, β in

the loss function and ν in the regularization term is set to α = 0.1, β = 1.1, ν = 0.3,

respectively We used pytorch [70], scikit-learn [71], scipy [91], numpy [67] packages

to implement the aforementioned models.

4.5 Results

4.5.1 Network Construction

In this subsection, we compare the results between two distinct approaches to con-

struct the disease-treatment network: (1) the simple co-occurrence-based approach,

and; (2) the association-based approach. In previous subsections, we have claimed

that simple co-occurrence per claim filings does not necessarily imply association.

In this subsection, we will provide empirical justification for our arguments.

Figure 4.8: Networks constructed by co-occurrence and association relationship.
(left): Co-occurrence (right): Association

Figure 4.8 represents the relationship between the main disease with code S12
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(fracture of neck) and relevant sub-diseases from claim reports labeled with the DRG

3-digit code I07, whose linkage was determined by the two different approaches afore-

mentioned. The left-hand side panel of Figure 4.8 shows the graphical representation

of the relationships between the main disease S12 and the sub-diseases based on the

simple co-occurrence, while the right-hand side panel shows that based on associa-

tion. From now on, we refer to the left-hand side and the right-hand side network

as the co-occurrence network and the association network, respectively.

In case of the co-occurrence network, every treatment which co-occurred with

the main disease S12 under the DRG 3-digit code of I07 is linked not only to the

main disease S12 but as well as to all the sub diseases which appeared with S12, as

apparent on the left-side panel of Figure 4.8. On the contrary, treatment nodes from

the association network clearly appear to be distributed more sparsely across the

sub-diseases linked to the main disease S12, as shown on the right-side panel of Figure

4.8. We do not have the privilege of disclosing all the treatment nodes presented in

Figure 4.8 due to personal information protection issues; yet, with permission from

the appropriate authorities, we take an example from each network to provide an

empirical justification for our argument. From the co-occurrence network, we have

found that a link was formed between the main disease node noting a neck fracture

with the treatment node for lumbar spine imaging. It is easy to see that there is no

clear connection between the disease and the treatment mentioned. It is most likely

due to the case in which a patient whose main disease of diagnose was the neck

fracture, while lumbar spine imaging was prescribed for one of the sub-diseases not

directly related or caused by the main disease.

On the contrary, for the association network, the number of direct linkages be-
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tween the treatment nodes and the main disease node is far less than that of the

co-occurrence network, while the different treatment types are dispersed throughout

the range of the sub-diseases. Not surprisingly, the linkage between the fracture of

neck and the lumbar spine imaging was missing from the association network.

4.5.2 Link Prediction between the Disease and the Treatment

In this subsection, we report the result of link prediction via node embedding. We

trained a selection of node embedding models to learn vector representations for the

nodes from the disease-treatment network and compared performance on solving

the link prediction problem using the learned embedding vectors, the methodology

of which is described in detail in subsection 4.3.2. Table 4.5, Table 4.6, and Table

4.7 reports each model’s performance on the link prediction task using the disease-

procedure, the disease-prescription, and the disease-material relations, respectively.

In all cases, metapath2vec outperforms other models. This may be due to the char-

acteristics peculiar to the network. Our network is constructed from a variety of

information covering a rich range of different aspects of health insurance claims,

hence strongly heterogeneous in nature. It is made of different types of nodes and

edges. While other methods are devised for networks of homogeneous nature, the

metapath2vec is designed to work well as heterogeneous network.

Based on the results from the link prediction test, we have selected the metap-

ath2vec, of which the resulting embedding vectors are to be fed to the overtreatment

detection model. The details on the overall mechanism of overtreatment model uti-

lizing node embedding is elaborated in described in subsection 4.3.3.
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Table 4.5: Link prediction results of disease-procedure

Method B60 B63 D64 I07 I68

HOPE 0.7337 0.7570 0.7768 0.7531 0.7662
SDNE 0.5769 0.5568 0.6162 0.3877 0.6357

node2vec 0.7426 0.7539 0.7795 0.7596 0.7720
GraRep 0.7338 0.7548 0.7798 0.7651 0.7747
LINE 0.7222 0.7386 0.7688 0.7609 0.7680
GF 0.1906 0.1970 0.1871 0.2037 0.1915

DeepWalk 0.7402 0.7534 0.7779 0.7621 0.6357
metapath2vec 0.8270 0.8357 0.8610 0.8534 0.8478

Table 4.6: Link prediction results of disease-prescription

Method B60 B63 D64 I07 I68

HOPE 0.7864 0.7927 0.7973 0.7808 0.8078
SDNE 0.6790 0.6532 0.6770 0.5320 0.7341

node2vec 0.7762 0.7890 0.7898 0.7731 0.8064
GraRep 0.7851 0.7907 0.8001 0.7847 0.8148
LINE 0.7794 0.7881 0.7896 0.7783 0.8063
GF 0.1701 0.1638 0.1732 0.1734 0.1672

DeepWalk 0.7721 0.7865 0.7879 0.7709 0.8067
metapath2vec 0.8155 0.8214 0.8297 0.8241 0.8487

4.5.3 Overtreatment Detection

Table 4.8 reports the performance test for the overtreatment detection. The term

‘without embedding’ refers to overtreatment detection models which utilizes the

network resulting from the training set per se. The ‘proposed method’ refers to the

overtreatment detection models which exploit node embedding methods to solve the

link prediction problem, the mechanism of which is elaborated in detail in subsection

4.3.3. For most of the cases, the proposed model outperforms the ‘without embed-

ding’ model. This may potentially imply that our proposed model performs better

when some relational patterns are found only in the training set or in the test set,

hence classifying freshly encountered treatments better.
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Table 4.7: Link prediction results of disease-material

Method B60 B63 D64 I07 I68

HOPE 0.8328 0.8682 0.8961 0.7892 0.8679
SDNE 0.7122 0.7436 0.8563 0.5560 0.7340

node2vec 0.8511 0.8783 0.9110 0.7914 0.8881
GraRep 0.8363 0.8674 0.8991 0.7978 0.8756
LINE 0.8288 0.8607 0.8939 0.7878 0.8779
GF 0.7122 0.7436 0.8563 0.5560 0.7340

DeepWalk 0.8424 0.8753 0.9103 0.7992 0.8874
metapath2vec 0.9359 0.9467 0.9655 0.9038 0.9538

Table 4.8: Unecessary treatment detection by the network only and embedding vec-
tors from the network

Type of
treatment

Method B60 B63 D64 I07 I68

Procedure
Without

embedding
0.9365 0.9346 0.9231 0.9387 0.8784

Proposed
method

0.9632 0.9667 0.9591 0.9768 0.9719

Prescription
Without

embedding
0.8950 0.8844 0.9041 0.8983 0.8383

Proposed
method

0.9331 0.9010 0.9386 0.9238 0.9367

Material
Without

embedding
0.8677 0.9230 0.8761 0.9168 0.8949

Proposed
method

0.9469 0.9177 0.8820 0.9547 0.8985

4.6 Summary

In the previous chapters, we proposed models for detecting abuse in medical treat-

ments. These models, however, have yet to consider the relationship between diseases

and treatments explicitly. Accounting for the disease-treatment relationship is im-

portant in a sense that, without doing so, detection models cannot properly process

different drugs that have similar efficacy. There may be cases when different practi-

tioners prescribe different drugs to a patient, where these drugs targets to alleviate
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the symptoms of the same disease. In order to process such cases appropriately, de-

tection models need to be able to learn the intricate relationship between diseases

and treatments.

This chapter presents a network-based approach through which the relationship

between the diseases and treatments is considered during the abuse detection pro-

cess. Our proposed model consists of three stages. During the first stage, a disease-

treatment network is constructed based on information from claim filings. Since the

association between diseases and treatments is not explicitly expressed, we infer the

relationship by computing the relative risk (RR). Second stage involves selecting

the best graph embedding method from several candidates available. We select the

best method by comparing performances on link prediction. During the final stage,

we solve a link prediction problem as the vehicle of overtreatment detection. If our

link prediction model predicts links to be nonexistent for all of the diseases and

treatments listed in a given claim, then the claim is classified as an overtreatment

case.

We test the proposed model using the real-world claims data. Results show that

the proposed method classify the treatment well which does not explicitly exist in

the training network. The main contribution of this paper is that our model accounts

for the disease-treatment relationship, which are not explicitly observed, during the

process of overtreatment detection. Our model works well with practice patterns

encountered the test phase only.
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Chapter 5

Conclusion

5.1 Contribution

Abuse is a critical problem in the healthcare insurance industry. It refers to the med-

ical service or the practice that is not consistent with the generally accepted sound

fiscal practices. Reimbursing such cases cause waste of resources, eventually leading

to the loss of the insurance company. Especially, abusive behaviors in national health

insurance lead to social costs, which increase the premiums that the taxpayers have

to pay. Therefore, detecting abuse behaviors and preventing compensation for them

is a very important issue.

Currently, field professionals review the claims manually in order to screen out

abuse cases. However, the astronomical increase in the number of claim filings is

severely burdening the review process. Moreover, reviewing the claims require pro-

found background knowledge and expertise, which makes the review process very

costly. Adversities of such manual efforts calls for a more efficient review process. In

response, past literature has employed various datamining techniques to automati-

cally detect problematic claims or abusive providers. However, these studies do not

utilize the treatment prescriptions, information of the finest granularity found in

health insurance claims data. Existing studies relies on the claim-level or provider-
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level variables that are derived from the raw data, leading to relatively poor perfor-

mance in detecting abusive claims.

The contributions of this dissertation is four-fold. Firstly, models we propose are

based on medical treatment prescriptions, which is the lowest level of information

available in the healthcare insurance claim. To our best knowledge, medical treat-

ments have never been used in abuse detection. Using treatment prescriptions allows

modelling abuse detection at various levels: treatment, claim, and provider-level.

Secondly, we show that our finer-grained model outperforms models with higher

level information. Thirdly, we propose a model which directly deals with season-

ality, adding a realistic touch. Finally, we propose the abuse treatment detection

model which account for the relationship between diseases and treatments, one of

the most important information included in the medical treatment.

In chapter 2, we propose a scoring model based on which abusive providers

are detected. Previous studies related to this topic rely primarily on provider-level

variables. The coarse granularity of the mode leads to relatively poor performance.

We propose the neural network-based scoring model that measures the degree of

abuse for each provider. The model use treatments as input data. At the same time,

we devise the evaluation metrics to quantify the efficiency of the review process.

Experiment results show that the review process with the proposed model is more

efficient than that with the previous model which uses the provider-level variables

as input variables.

In chapter 3, we propose the method of detecting overtreatment and problematic

claims under seasonality, which reflects more reality to the model. Several diseases

are associated with seasonality. That is, in other words, the distribution claim is

109



different from time to time. If the detection model does not consider this difference,

its performance is not robust to the period in some departments. Instead of a single

model for a department, we propose to a structure with multiple models built for

several important DRG codes in the department. We test our proposed model using

the real-world claim filings data, and results show that the proposed method is

time-robust.

In chapter 4, we propose an overtreatment detection model accounting for the re-

lationship between the disease and treatment. We discuss situations in which abuse

detection may not work properly without the knowledge on the association rela-

tionship between disease and treatments. We propose an overtreatment detection

approach method for detecting unnecessary treatment, which incorporating node

embedding and link prediction methods. By solving the link prediction problem us-

ing the embedding vectors of nodes in the disease-treatment network, the model can

infer pairs of disease and treatment unnecessarily reported in the insurance claims.

We test our model using the real-world insurance claims data, and results show

that our approach indeed works well with detecting claims with overtreatments. We

additionally show that our model can be used in classifying the disease-treatment

relationship.

5.2 Future Work

In this dissertation, we propose various abuse detection models based on the medical

treatment prescription data. While our proposed models show satisfying results,

there still is room for improvement. First of all, our current approach does not

detect overtreatment on the claim-level. The underlying assumption here is that
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treatments listed in a claim are independent of one another. This may lack reality,

since treatments can be prescribed to complement one another. If inference can be

made on the level of individual treatments in a claim, more precise detection may

be conducted.

Also, the proposed model in chapter 4 is for detecting totally unnecessary treat-

ment, not for detecting necessary but overused treatment. In order to detect such

treatment, we have to incorporate the proposed methods in this thesis. For example,

train embedding vectors by graph embedding methods and train treatment classifi-

cation model in chapter 2 or 3.

Finally, we can improve the performance by incorporating the data from external

source. In chapter 4, we construct the disease-treatment network statistically using

the claims data. However, it is unclear whether the constructed network has captured

the true relationship. For example, suppose a practitioner prescribes several drugs

to the patient. Some of the prescriptions may have been meant to complement

each other. On the other hand, there may be the case in which the prescription

includes a combination of drugs that causes side-effects when ingested together. The

disease-treatment network we construct does not reflect such information. Due to

the confidentiality contract, we could not utilize data from external sources as we

conducted the study. However, it would help improve model performance if we could

include external source data or knowledge graphs such as Drugbank[99], Twosides

database [87], or SIDER [46] database.
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국문초록

사람들의 기대수명이 증가함에 따라 삶의 질을 향상시키기 위해 보건의료에 소비하는

금액은 증가하고 있다. 그러나, 비싼 의료 서비스 비용은 필연적으로 개인과 가정에

게 큰 재정적 부담을 주게된다. 이를 방지하기 위해, 많은 국가에서는 공공 의료 보험

시스템을 도입하여 사람들이 적절한 가격에 의료서비스를 받을 수 있도록 하고 있다.

일반적으로, 환자가 먼저 서비스를 받고 나서 일부만 지불하고 나면, 보험 회사가 사후

에 해당 의료 기관에 잔여 금액을 상환을 하는 제도로 운영된다. 그러나 이러한 제도를

악용하여 환자의 질병을 조작하거나 과잉진료를 하는 등의 부당청구가 발생하기도 한

다. 이러한 행위들은 의료 시스템에서 발생하는 주요 재정 손실의 이유 중 하나로, 이를

방지하기 위해, 보험회사에서는 의료 전문가를 고용하여 의학적 정당성여부를 일일히

검사한다. 그러나, 이러한 검토과정은 매우 비싸고 많은 시간이 소요된다. 이러한 검

토과정을 효율적으로 하기 위해, 데이터마이닝 기법을 활용하여 문제가 있는 청구서나

청구 패턴이 비정상적인 의료 서비스 공급자를 탐지하는 연구가 있어왔다. 그러나, 이

러한 연구들은 데이터로부터 청구서 단위나 공급자 단위의 변수를 유도하여 모델을

학습한 사례들로, 가장 낮은 단위의 데이터인 진료 내역 데이터를 활용하지 못했다.

이논문에서는청구서에서가장낮은단위의데이터인진료내역데이터를활용하여

부당청구를탐지하는방법론을제안한다.첬재,비정상적인청구패턴을갖는의료서비

스제공자를탐지하는방법론을제안하였다.이를실제데이터에적용하였을때,기존의

공급자 단위의 변수를 사용한 방법보다 더 효율적인 심사가 이루어 짐을 확인하였다.

이 때, 효율성을 정량화하기 위한 평가 척도도 제안하였다. 둘째로, 청구서의 계절성이

존재하는 상황에서 과잉진료를 탐지하는 방법을 제안하였다. 이 때, 진료 과목단위로

모델을 운영하는 대신 질병군(DRG) 단위로 모델을 학습하고 평가하는 방법을 제안하
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였다. 그리고 실제 데이터에 적용하였을 때, 제안한 방법이 기존 방법보다 계절성에 더

강건함을 확인하였다. 셋째로, 동일 환자에 대해서 의사간의 상이한 진료 패턴을 갖는

환경에서의 과잉진료 탐지 방법을 제안하였다. 이는 환자의 질병과 진료내역간의 관계

를 네트워크 기반으로 모델링하는것을 기반으로 한다. 실험 결과 제안한 방법이 학습

데이터에서 나타나지 않는 진료 패턴에 대해서도 잘 분류함을 알 수 있었다. 그리고 이

러한 연구들로부터 진료 내역을 활용하였을 때, 진료내역, 청구서, 의료 서비스 제공자

등 다양한 레벨에서의 부당 청구를 탐지할 수 있음을 확인하였다.

주요어: 부당청구 탐지, 건강보험, 진료내역, 딥러닝, 데이터마이닝

학번: 2014-30327
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