13,468 research outputs found

    A scheme for determining vehicle routes based on Arc-based service network design

    Get PDF
    In freight transportation, less-than-truckload carriers often need to assign each vehicle a cyclic route so that drivers can come back home after a certain period of time. However, the Node-Arc model for service network design addresses decisions on each arc and does not determine routes directly, although the vehicle balancing constraint ensures that the number of outgoing vehicles equals the number of incoming vehicles at each node. How to transform the optimized service network into a set of vehicle routes remains an important problem that has not yet been studied. In this paper, we propose a three-phase scheme to address this problem. In the first stage, we present an algorithm based on the depth-first search to find all of the different cyclic routes in a service network design solution. In the second stage, we propose to prune poor cyclic routes using real-life constraints so that a collection of acceptable vehicle routes can be obtained before route assignment. Some of the pruning can also be done in the first stage to speed up the proposed algorithm. In the third stage, we formulate the problem of selecting a set of cyclic routes to cover the entire network as a weighted set covering problem. The resulting model is formulated as an integer program and solved with IBM ILOG CPLEX solver. Experimental results on benchmark instances for service network design indicate the effectiveness of the proposed scheme which gives high-quality solutions in an efficient way

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    ROUTING DESIGN FOR LESS-THAN-TRUCKLOAD MOTOR CARRIERS USING ANT COLONY TECHNIQUES

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results.

    A new management scheme to support reverse logistics processes in the agrifood distribution sector

    Get PDF
    During the last decades, reverse logistics and reuse of products have received growing attention as profitable and sustainable business strategies. Looking at the agrifood distribution sector, every day thousands of agrifood stores throw away large quantities of food product no longer suitable for sale. This "waste product", in the majority of cases, could still find new uses as animal feed or fertilizer. The return flow of food product is a typical problem of reverse logistics. This study proposes a new bi-modular scheme for managing the process of collection of "food waste" resulting from the agribusiness distribution sector and its subsequent distribution to livestock farms and collection centers located in the area of interest. The proposed management scheme consists of two modules: - module 1: to cluster the observed area into convenient collection sectors by means of clustering algorithms; - module 2: to identify optimal retrieval routes within each cluster by using Vehicle Routing models. The province of Cagliari in Sardinia (Italy) has been identified as test area. An extensive data collection process has been performed in order to collect the information necessary to portray the existing scenario. The following businesses have been recorded: grocery stores and supermarkets with at least 400 sqm of retail area, livestock farms with at least 200 heads of cattle, feed mills. A number of variables concerning location, type, size and demand data have been collected for each recorded unit.The management scheme has been implemented in a software platform and successfully applied in the test area. The outcome provides useful insights to stakeholders and suggests avenues for further research in the area in order to develop a more general and intuitive tool for managing reverse logistics processes in agrifood chains

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    Transportation-mission-based Optimization of Heterogeneous Heavy-vehicle Fleet Including Electrified Propulsion

    Get PDF
    Commercial-vehicle manufacturers design vehicles to operate over a wide range of transportation tasks and driving cycles. However, certain possibilities of reducing emissions, manufacturing and operational costs from end vehicles are neglected if the target range of transportation tasks is narrow and known in advance, especially in case of electrified propulsion. Apart from real-time energy optimization, vehicle hardware can be meticulously tailored to best fit a known transportation task. As proposed in this study, a heterogeneous fleet of heavy-vehicles can be designed in a more cost- and energy-efficient manner, if the coupling between vehicle hardware, transportation mission, and infrastructure is considered during initial conceptual-design stages. To this end, a rather large optimization problem was defined and solved to minimize the total cost of fleet ownership in an integrated manner for a real-world case study. In the said case-study, design variables of optimization problem included mission, recharging infrastructure, loading--unloading scheme, number of vehicles of each type, number of trips, vehicle-loading capacity, selection between conventional, fully electric, and hybrid powertrains, size of internal-combustion engines and electric motors, number of axles being powered, and type and size of battery packs. This study demonstrated that by means of integrated fleet customization, battery-electric heavy-vehicles could strongly compete against their conventional combustion-powered counterparts. Primary focus has been put on optimizing vehicle propulsion, transport mission, infrastructure and fleet size rather than routing

    Gemischt-autonome Flotten in der urbanen Logistik

    Get PDF
    We consider a city logistics application in which a service provider seeks a repeatable plan to transport commodities from distribution centers to satellites. The service provider uses a mixed autonomous fleet that is composed of autonomous vehicles and manually operated vehicles. The autonomous vehicles are only able to travel independently on feasible streets of the heterogeneous infrastructure but elsewhere need to be pulled by manually operated vehicles in platoons. We introduce the service network design problem with mixed autonomous fleets to determine a tactical plan that minimizes the total costs over a medium-term time horizon. The tactical plan determines the size and mix of the fleet, schedules transportation services, and decides on the routing or outsourcing of commodities. We model this problem as an integer program on a time-expanded network and study the impact of different problem characteristics on the solutions. To precisely depict the synchronization requirements of the problem, the time-expanded networks need to consider narrow time intervals. Thus, we develop an exact solution approach based on the dynamic discretization discovery scheme that refines partially time-expanded networks containing only a fraction of the nodes and arcs of the fully time-expanded network. Further methodological contributions of this work include the introduction of valid inequalities, two enhancements that exploit linear relaxations, and a heuristic search space restriction. Computational experiments show that all evaluated variants of the solution approach outperform a commercial solver. For transferring a tactical plan to an operational solution that minimizes the transshipment effort on a given day, we present a post-processing technique that specifically assigns commodities to vehicles and vehicles to platoons. Finally, we solve a case study on a real-world based network resembling the city of Braunschweig, Germany. Analyzing the tactical and operational solutions, we assess the value of using a mixed autonomous fleet and derive practical implications.Wir betrachten eine Anwendung der urbanen Logistik, bei der ein Dienstleister einen wiederholbaren Plan für den Gütertransport von Distributionszentren zu Satelliten anstrebt. Dafür setzt der Dienstleister eine gemischt-autonome Flotte ein, die sich aus autonomen Fahrzeugen und manuell gesteuerten Fahrzeugen zusammensetzt. Die autonomen Fahrzeuge können nur auf bestimmten Straßen der heterogenen Infrastruktur selbstständig fahren, außerhalb dieser müssen sie von manuell gesteuerten Fahrzeugen mittels Platooning gezogen werden. Wir führen das „service network design problem with mixed autonomous fleets“ ein, um einen taktischen Plan zu ermitteln, der die Gesamtkosten über einen mittelfristigen Zeithorizont minimiert. Der taktische Plan bestimmt die Größe und Zusammensetzung der Flotte, legt die Transportdienste fest und entscheidet über das Routing oder das Outsourcing von Gütern. Wir modellieren dieses Problem als ganzzahliges Programm auf einem zeiterweiterten Netzwerk und untersuchen die Auswirkungen verschiedener Problemeigenschaften auf die Lösungen. Um die Synchronisationsanforderungen des Problems präzise darzustellen, müssen die zeiterweiterten Netzwerke kleine Zeitintervalle berücksichtigen. Daher entwickeln wir einen exakten Lösungsansatz, der auf dem Schema des „dynamic discretization discovery“ basiert und partiell zeiterweiterte Netzwerke entwickelt, die nur einen Teil der Knoten und Kanten des vollständig zeiterweiterten Netzwerks enthalten. Weitere methodische Beiträge dieser Dissertation umfassen die Einführung von Valid Inequalities, zweier Erweiterungen, die lineare Relaxationen verwenden, und einer heuristischen Suchraumbegrenzung. Experimente zeigen, dass alle evaluierten Varianten des Lösungsansatzes einen kommerziellen Solver übertreffen. Um einen taktischen Plan in eine operative Lösung zu überführen, die die Umladevorgänge an einem bestimmten Tag minimiert, stellen wir eine Post-Processing-Methode vor, mit der Güter zu Fahrzeugen und Fahrzeuge zu Platoons eindeutig zugeordnet werden. Schließlich lösen wir eine Fallstudie auf einem realitätsnahen Netzwerk, das der Stadt Braunschweig nachempfunden ist. Anhand der taktischen und operativen Lösungen bewerten wir den Nutzen einer gemischt-autonomen Flotte und leiten Implikationen für die Praxis ab
    corecore