7,706 research outputs found

    A scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys

    Get PDF
    We present an extension of the semi-grandcanonical (SGC) ensemble that we refer to as the variance-constrained semi-grandcanonical (VC-SGC) ensemble. It allows for transmutation Monte Carlo simulations of multicomponent systems in multiphase regions of the phase diagram and lends itself to scalable simulations on massively parallel platforms. By combining transmutation moves with molecular dynamics steps structural relaxations and thermal vibrations in realistic alloys can be taken into account. In this way, we construct a robust and efficient simulation technique that is ideally suited for large-scale simulations of precipitation in multicomponent systems in the presence of structural disorder. To illustrate the algorithm introduced in this work, we study the precipitation of Cu in nanocrystalline Fe.Comment: 12 pages; 10 figure

    The ReaxFF reactive force-field : development, applications and future directions

    Get PDF
    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method

    A Tutorial on Advanced Dynamic Monte Carlo Methods for Systems with Discrete State Spaces

    Full text link
    Advanced algorithms are necessary to obtain faster-than-real-time dynamic simulations in a number of different physical problems that are characterized by widely disparate time scales. Recent advanced dynamic Monte Carlo algorithms that preserve the dynamics of the model are described. These include the nn-fold way algorithm, the Monte Carlo with Absorbing Markov Chains (MCAMC) algorithm, and the Projective Dynamics (PD) algorithm. To demonstrate the use of these algorithms, they are applied to some simplified models of dynamic physical systems. The models studied include a model for ion motion through a pore such as a biological ion channel and the metastable decay of the ferromagnetic Ising model. Non-trivial parallelization issues for these dynamic algorithms, which are in the class of parallel discrete event simulations, are discussed. Efforts are made to keep the article at an elementary level by concentrating on a simple model in each case that illustrates the use of the advanced dynamic Monte Carlo algorithm.Comment: 53 pages, 17 figure

    Diagrammatic Coupled Cluster Monte Carlo

    Get PDF
    We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach -- diagCCMC -- allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems, diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.Comment: 31 pages, 6 figure
    • …
    corecore