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Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys
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We present an extension of the semi-grand-canonical (SGC) ensemble that we refer to as the variance-
constrained semi-grand-canonical (VC-SGC) ensemble. It allows for transmutation Monte Carlo simulations of
multicomponent systems in multiphase regions of the phase diagram and lends itself to scalable simulations
on massively parallel platforms. By combining transmutation moves with molecular dynamics steps, structural
relaxations and thermal vibrations in realistic alloys can be taken into account. In this way, we construct a
robust and efficient simulation technique that is ideally suited for large-scale simulations of precipitation in
multicomponent systems in the presence of structural disorder. To illustrate the algorithm introduced in this
work, we study the precipitation of Cu in nanocrystalline Fe.
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I. INTRODUCTION

The interplay between chemistry and structure is of
paramount importance in materials science. This applies in
particular to alloys where chemical ordering and precipitation
in the presence of surfaces, grain boundaries, dislocations
and other structural features lead to complex behavior. Some
examples of practical importance include Al-Cu alloys, Ni-Co
superalloys as well as steels, the properties of which vary over
a wide range depending on composition and microstructure.
Understanding and eventually controlling these effects is a pre-
requisite for designing and improving materials. In principle,
modeling and simulation are ideally suited to complement and
guide experimental efforts, especially as dimensions shrink
and chemical complexity increases.

The objective of the present work is to develop an algorithm
that enables us to model the equilibrium properties of phase
segregated multicomponent systems containing millions of
particles while taking into account chemical degrees of
freedom, structural relaxations as well as thermal vibrations.
For such an algorithm to be useful on current computing
platforms, it must lend itself to efficient parallelization. This
is difficult to achieve for Monte Carlo (MC) algorithms that
are based on the canonical ensemble.1 Simulations within the
semi-grand-canonical (SGC) ensemble, on the other hand, are
easily parallelized but cannot be used to study precipitation
and interface formation. The objective of the present work is
to develop a MC technique that can both handle multiphase
systems and be parallelized easily and efficiently. Note that
the parallel algorithm discussed in this paper is suitable
for short-range interatomic potentials as described, e.g., by
embedded-atom method,2 bond-order,3 or Stillinger-Weber4

type potentials.
The paper is organized as follows. In Sec. II, we discuss how

to model chemical mixing and phase segregation on the atomic
scale. The most common approach is to sample the chemical
configuration space using transmutational MC methods, which
require as key ingredient an appropriate statistical ensemble.
Following a discussion of the advantages and shortcomings
of existing ensembles with respect to the present application,

we introduce the variance-constrained semi-grand-canonical
(VC-SGC) ensemble, which can be viewed as a general-
ization of the extended Gaussian ensemble technique to
multicomponent systems,5,6 and formulate a simple serial
VC-SGC-MC algorithm. In Sec. III, we address the question
how the MC methods introduced in Sec. II can be adapted
for simulations of systems containing millions of particles.
To this end, we derive transition matrices and their efficient
decomposition. In Sec. IV, we finally discuss the simultaneous
and efficient sampling of chemical, structural and vibrational
degrees of freedom, and consider the precipitation of Cu in
nanocrystalline Fe as an illustrative example.

The algorithms developed in this work have been im-
plemented in the massively parallel molecular dynamics
code LAMMPS7 and the source code is available from the
authors.

II. MODELING CHEMICAL MIXING
AND PRECIPITATION

On the atomic scale, chemical mixing in alloys is most
commonly studied using MC simulations within either the
SGC or the canonical ensemble. Therefore we first discuss
in some detail these two ensembles before deriving the VC-
SGC ensemble, which merges the advantages of the canonical
and SGC ensembles. In the following, we use the subscripts
C, S, and V to indicate quantities that are connected to the
canonical, SGC and VC-SGC ensembles, respectively. For the
sake of simplicity, we limit our discussion to binary alloys.
The generalization to systems containing an arbitrary number
of species is straightforward.

Consider a system of N particles confined in a box
of volume V , where each particle carries a spin of value
0 or 1. A configuration of this system can be denoted
(x3N,σN ), where x3N is a 3N -dimensional vector describing
the positions of every particle, and σN is an N -dimensional
spin vector. The number of spin 1 particles is n = ∑N

i=1 σi ,
and their concentration c = n/N . We denote the energy of a
configuration by U (x3N,σN ).
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A. The canonical ensemble

The canonical ensemble describes the thermodynamics
of systems that are chemically isolated, i.e., the number
of members of each species is kept constant. The partition
function for the canonical ensemble at temperature T for the
binary system defined above is

ZC(c,N ) = �
−3(N−n)
1 �−3n

2

1

n!(N − n)!

×
∫

exp[−βU (x3N,σN )]d3N x, (1)

where β = 1/kBT , �i =
√

h2/2πmikT is the thermal de
Broglie wavelength for component i, and N = {N,V,T }
is the set of independent thermodynamic variables.1 Monte
Carlo simulations in this ensemble sample the probability
distribution

πC(x3N,σN ; c,N ) ∝ exp[−βU (x3N,σN )]. (2)

Efficient sampling of the above distribution involves two kinds
of trial moves: (i) particle displacements x3N → x3N

t and (ii)
compositional changes σN → σN

t that keep the concentration
fixed. In practice, in trial move (i) a particle is selected at
random and assigned a random displacement, while for trial
move (ii) two particles with unlike spins are selected at random
and their spins are exchanged. These trial moves are accepted
with probability

AC = min{1, exp[−β�U ]}, (3)

�U = U
(
x3N

t ,σN
t

) − U (x3N,σN ). (4)

This acceptance probability is designed to satisfy detailed
balance. Approach to equilibrium can be accelerated sub-
stantially if trial moves (i) are biased along the force vector
−∇U (x3N,σN ). This is achieved most easily via a hybrid
technique where particle positions x3N are sampled via
molecular dynamics (MD), while spin degrees of freedom are
sampled using the spin exchange (transmutation) MC moves
described above.

B. The semigrandcanonical ensemble

The SGC ensemble describes the thermodynamics of
a system in contact with an infinite reservoir at constant
temperature and chemical potential for each species. This
ensemble corresponds to a set of configurations with varying
compositions, but with their ensemble average constrained
by the reservoir. The equilibrium probability distribution of
the SGC ensemble for the binary system defined above thus
becomes

πS(x3N,σN ; �μ,N )

∝ exp{−β[U (x3N,σN ) + �μNĉ(σN )]},

ĉ(σN ) = 1

N

N∑
i=1

σi, (5)

where �μ is a Lagrange multiplier that constrains the average
concentration. The partition function can be expressed in terms

of the canonical one via

ZS(�μ,N ) =
∫ 1

0
ZC(c,N ) exp [−β�μNc] dc. (6)

The SGC ensemble can be sampled using a Monte Carlo
algorithm where trial moves σN → σN

t are made by (i)
selecting a particle at random, (ii) flipping its spin, (iii)
computing the change in energy �U , and concentration �c.
Trial moves are accepted with probability

AS = min {1, exp [−β(�U + �μN�c)]} , (7)

which is designed to satisfy detailed balance.
The acceptance probability expression above has important

physical significance. It shows that in the SGC ensemble, the
force associated with a change in the chemical configuration
does not solely originate from the potential energy function
�U , but also from the term �μN�c. In particular, for any
change in concentration, a constant external chemical driving
force �μN is added to the usual interatomic forces in order
to drive the equilibrium concentration to the desired value.
In physical experiments, �μ corresponds to the chemical
potential difference between the two species. In practice,
it alters the acceptance probability (7) for trial moves that
lead to a concentration change. It is important to note that
in this way, only single-phase equilibria can be established.
This means that, e.g., for immiscible systems such as the one
shown in Fig. 1(a), concentrations inside the miscibility gap
cannot be stabilized. This limitation results from the functional
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FIG. 1. (Color online) (a) Phase diagram for the Ising-type model
system described in the text. The horizontal bar marks the temperature
of 0.8617 U/kB at which all the simulations described in this paper
have been carried out. The closed circles indicate the solubility limits
at this temperature. (b) The chemical driving force �μ as a function
of concentration as obtained from a series of simulations in the SGC
(solid line) and VC-SGC (dashed line) ensembles, respectively.
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dependence between the chemical potential difference �μ

and average concentration 〈ĉ〉S not being one-to-one in the
multiphase regions of the phase diagram.

To illustrate this point, let us consider an Ising-type
Hamiltonian

H = 1

2

∑
i∈A,j∈A

εAA(rij ) + 1

2

∑
i∈A,j∈B

εAB(rij )

+ 1

2

∑
i∈B,j∈B

εBB(rij ), (8)

where rij denotes the neighbor shell of site i in which site
j is located. We use a body-centered cubic (BCC) lattice
with interactions up to the second-neighbor shell and εAA(1) =
εBB(1) = −10 U , εAB(1) = −9.7 U , and εAA(2) = εBB(2) =
εAB(2) = −2 U . The phase diagram for this model system can
be calculated analytically and is shown in Fig. 1(a). We carried
out a series of simulations using the SGC-MC method for a
system containing 2000 sites at a temperature of 0.8617 U/kB ,
starting from a solid solution at 50%. The dependence of �μ

on 〈ĉ〉S determined in this way is depicted by the solid red line
in Fig. 1(b). Note the discontinuity in the �μ–〈ĉ〉S plot, which
occurs in the region of the binary phase diagram where the
miscibility gap is located. This demonstrates that the SGC-MC
method is not suitable for studying phase segregation.

C. The variance-constrained semigrandcanonical ensemble

To simulate systems in multiphase regions of phase diagram
where precipitation occurs, we modify the SGC ensemble by
adding a constraint that fixes the ensemble-averaged squared
concentration 〈ĉ2〉. This limits concentration fluctuations and
thus, when inside the miscibility gap, prevents the concentra-
tion to fluctuate to the phase boundaries. We refer to this ap-
proach as the VC-SGC ensemble, which can be categorized as
an extended Gaussian ensemble. Such ensembles describe the
thermodynamics of systems in contact with finite reservoirs.6

We will show below that the VC-SGC ensemble is ideal for
studying equilibrium properties of multiphase systems and that
it is quite straightforward to devise Monte Carlo algorithms
that sample this ensemble.

In contrast to the SGC ensemble that is characterized by
an infinite reservoir with constant chemical potential �μ, the
reservoir of the VC-SGC ensemble is controlled by two inde-
pendent parameters φ and κ . The statistical mechanical origin
of these parameters is laid out in detail in Appendix. There
it is shown that φ and κ are Lagrange multipliers associated
with constraints on the first and the second moments of the
concentration, respectively. The most probable distribution
subject to these constraints is then derived to be [see Eq. (A4)]

πV(x3N,σN ; φ,κ,N ) ∝ exp[−βU (x3N,σN )]

× exp{−βNĉ(σN )[φ + κNĉ(σN )]}. (9)

We can thus express the partition function of the VC-SGC
ensemble in terms of the canonical one as

ZV(φ,κ,N ) =
∫ 1

0
ZC(c,N ) exp[−βNc(φ + κNc)]dc.

(10)

The VC-SGC ensemble can be considered a generalization
of both the SGC and the canonical ensembles. The former
is obtained trivially by letting κ → 0. In order to obtain the
canonical ensemble, we complete the square in Eq. (9) and
rewrite the VC-SGC probability distribution as

πV(x3N,σN ; φ,κ,N ) ∝ exp[−βU (x3N,σN )]

× exp

{
− βκ

[
Nĉ(σN ) + φ

2κ

]2
}

.

(11)

The canonical ensemble is recovered when κ → ∞ and φ =
−2κNc. This can be seen by rewriting the canonical partition
function as

ZC(c,N ) =
∫ 1

0
ZC(c′,N )δ(c − c′)dc′. (12)

Hence the VC-SGC ensemble may be obtained by generalizing
the δ function that fixes the concentration in the canonical
ensemble to a Gaussian with tunable width determined by the
parameter κ . Now in multiphase regions of phase diagrams
where the SGC ensemble is not stable, a VC-SGC ensemble
can be devised by judiciously choosing the two parameters
φ and κ that combine both advantages of the SGC and the
canonical ensembles. Traditionally, the canonical ensemble
has been used to study precipitation inside the miscibility gap.
Our objective with this paper is to show that the same physics
can be studied much more efficiently in the VC-SGC ensemble,
especially when parallel computing is utilized.

Thanks to its similarity with the SGC ensemble, it is
straightforward to formulate a MC algorithm for sampling the
VC-SGC ensemble, where trial moves σN → σN

t comprise (i)
selecting a particle at random, (ii) flipping its spin, and (iii)
computing the change in energy �U and concentration �c as
well as

c̃ = ĉ
(
σN

t

)2 − ĉ(σN )2

2�c
= ĉ

(
σN

t

) + ĉ(σN )

2
. (13)

These trial moves are accepted with probability

AV = min(1, exp{−β[�U + N�c(φ + 2κNc̃)]}). (14)

Once again, this acceptance probability is designed to satisfy
detailed balance. The force associated with a change in spin
configuration receives contributions from both the change
in the interatomic potential energy function �U as well as
the external concentration dependent force N�c(φ + 2κNc̃).
Hence, for a change in concentration, the usual interatomic
forces are augmented with an additional external chemical
driving force that at variance with the SGC ensemble is not
a constant but varies linearly with concentration as Nφ +
2κN2c. When ensemble-averaged, the equilibrium chemical
driving force that corresponds to the chemical potential
difference in physical experiments and the �μ parameter in
the SGC ensemble now becomes

�μ = φ + 2κN 〈ĉ〉V . (15)

This very important relation is derived in the appendix, see
Eq. (A11). It connects the VC-SGC and the SGC ensembles
and will be used extensively in the following to design and
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FIG. 2. (Color online) Dependence of global concentration on the
parameter ratio φ/Nκ obtained from VC-SGC-MC simulations. All
simulations were carried out at a temperature of 0.8617 U/kB for the
model system described in Sec. II B.

analyze Monte Carlo simulations of systems in which several
phases coexist.

We now apply the VC-SGC-MC method to study the
model system described in Sec. II B. Figure 2 illustrates the
relation between the global concentration and the parameter
ratio φ/κ . It clearly demonstrates that using the VC-SGC-MC
algorithm enables us to stabilize the system at arbitrary global
concentrations in and outside the miscibility gap.

The dependence of the standard deviation of the concen-
tration on the variance parameter κ follows a power law
[see Fig. 3(a)], 〈�ĉ2〉V ∝ 1/

√
κ . The relation between the
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FIG. 3. (Color online) Dependence of (a) standard deviation
of concentration and (b) acceptance probability on the variance
constraint parameter κ .
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FIG. 4. (Color online) Comparison of the acceptance rate as a
function of global concentration for the SGC, VC-SGC (κ = 5), and
canonical MC methods. At low concentrations, the canonical MC
method yields the highest acceptance rates while inside the miscibility
gap the VC-SGC-MC achieves the best results.

acceptance probability and κ , on the other hand, is linear with a
negative slope [see Fig. 3(b)]. Increasing κ thus has two effects:
it leads to a smaller standard deviation, while simultaneously
reducing the acceptance probability.

We can also compare the acceptance probability as obtained
with the VC-SGC-MC method with the results for the SGC
and canonical MC methods. As shown in Fig. 4, in the
single-phase regions of the phase diagram the SGC and
VC-SGC-MC methods coincide and produce comparably low
acceptance rates, while the canonical MC method provides
large acceptance rates. However, inside the miscibility gap,
which is the region of interest when it comes to phase
segregation, the VC-SGC method yields the best results.

We now study the functional dependence of the chemical
driving force �μ obtained from Eq. (15) on the average
concentration using the VC-SGC-MC method. The result is
shown in Fig. 1(b) in comparison with the data obtained using
the SGC-MC method. The VC-SGC-MC method produces a
continuous relation between �μ and c throughout the entire
concentration range. In the single-phase regions of the phase
diagram, the SGC and VC-SGC-MC results coincide. Inside
the miscibility gap where the SGC-MC fails, the VC-SGC-MC
method reproduces the van-der-Waals loop associated with the
formation of phase boundaries.8 This is a very important result
that can be used to extract interface free energies.9

To summarize, the VC-SGC-MC method imposes a con-
straint on the variance of the concentration, and allows for
equilibration at arbitrary global concentrations. Thereby, it
merges the advantages of the SGC and the canonical MC
algorithms. In the next section, we show that the VC-SGC-MC
algorithm is also very well suited for parallelization enabling
simulations of systems with many million particles.

III. PARALLELIZATION STRATEGIES FOR
LARGE SYSTEMS

There are a multitude of problems involving precipitation,
especially in the presence of structural defects such as
dislocations, grain boundaries, and surfaces, which require
simulations of systems with hundreds of thousands or millions
of particles. Efficient parallelization schemes with good
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scalability are a necessity in order to address these problems.
Here, we focus on short-range interaction potentials as
described, e.g., by embedded-atom method,2 bond-order,3 or
Stillinger-Weber4 type potentials.

Monte Carlo simulations in the canonical ensemble do not
lend themselves to efficient parallelization since trial moves
in this scheme involve exchange of two particles that can
be located on any two processors. Although it is possible
to conceive elaborate distributed algorithms, it is difficult to
implement a scheme that ensures unbiased sampling and still
avoids spending a considerable fraction of simulation time
on interprocessor communication. The SGC ensemble, on the
other hand, can be parallelized easily but, as discussed in
Sec. II B, cannot be used to study precipitation. The purpose
of this work is to develop a Monte Carlo technique that can
both handle multiphase systems and can be parallelized easily
and efficiently. In the following, we discuss parallelization
strategies for the SGC as well as the VC-SGC ensembles and
demonstrate their excellent scalability and efficiency.

A. Domain decomposition for sampling trial moves

Consider for simplicity a simulation box in the shape of
a cube with linear dimension L. In systems with short-range
interactions, the most common parallelization strategy is to
subdivide the simulation box into a regular lattice of NCPU

equivalent cells {Ci} with linear dimension Lc = L/Nc, where
NCPU = Nc × Nc × Nc. (The generalization to noncubic cells
is straightforward).

At every Monte Carlo step, a cubic domain Di is chosen
inside each cell Ci in such a way as to ensure that equivalent
domains on different processors are noninteracting. This
means that the total energy change �U associated with
arbitrary spin flips inside the domains {Di} can be written as
the sum of the independent local energy changes �Ui on each
processor, i.e., �U = ∑NCPU

i=1 �Ui . Note that all domains Di

are equivalent with linear dimension LD = Lc − Rc, where
Rc is the effective interaction radius in the system. For pair
interactions, this radius equals the cutoff radius of the potential,
while for three-body potentials, it is usually twice the cutoff
radius.

It is easy to see that for the above parallelization strategy
to be possible the linear dimension Lc must be larger than Rc.
Let us first discuss the case when Lc is exactly twice Rc. In this
case, the independent domains will have the linear dimension
LD = Rc. They constitute the eight nonoverlapping octants of
each cell Ci as depicted in Fig. 5. In this figure, all domains
“A” are noninteracting and so are all domains “B,” etc. At each
Monte Carlo trial move, one of the eight octants is chosen
at random. It is important that all cells Ci work on the same
octant simultaneously since only in this way, the trial moves
on different processors are with certainty noninteracting.

The above method of subdividing each cell Ci into eight
non-overlapping octants also works when LC > 2Rc. How-
ever, bear in mind that confining the local trial moves to
noninteracting domains produces weak spatial correlations
that can slow down the approach to equilibrium, especially
when phase segregation and growth of precipitates is expected.
These spatial correlations are minimized if the total volume
of the domains {Di} is maximized. This can be achieved
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FIG. 5. (Color online) Spatial decomposition (solid lines) and
subsequent division into octants (dashed lines) of a system with
short-ranged interactions. Sets of octants with the same letter are
independent of each other. One such set is marked in yellow.

by growing each octant to a cube with linear dimension
LD = Lc − Rc. The eight distinct domains thus generated
inside each cell Ci do overlap. This leads to the central region
of Ci be covered by all eight Di . To ensure uniform sampling,
the particles in the outer regions of the Ci cells must be selected
with higher probability than those in the center. This can be
achieved by assigning differential weights to the particles in
the system depending on their position inside Ci (see the right
panel of Fig. 6) prior to making trial moves.

It is now straightforward to devise an efficient parallel
Monte Carlo algorithm where each trial move is composed
of NCPU local moves σN

t → σN
t + �σN

t (i) carried out inside
the domains {Di} synchronously on all processors. To ensure
uniform sampling, a trial move is constructed in two stages: (i)
select one of the eight independent domains {Di} at random and
broadcast to all processors; message passing can be avoided
by synchronizing the seed for the random number generator
on all processors, and (ii) on each processor i, pick a particle
at random inside the chosen domain and flip its spin. Different
parts of the domain may be sampled with different weights.

It is important to note that the composite trial move σN →
σN + ∑NCPU

i=1 �σN
t (i) constructed in this way will be rejected at

a very high rate. In the following section, we describe how one
can improve the above procedure in order to obtain reasonable
acceptance probabilities for composite trial moves.

B. Parallel Monte Carlo algorithms

1. Monte Carlo sampling of SGC ensemble

In this section, we describe how one can devise parallel
Monte Carlo simulations in the SGC ensemble with composite
trial moves constructed from trial moves simultaneously
generated on all processors. The algorithm is as follows: (i) on
each processor i make a local trial move �σN

t (i) according to
one of the procedures described in Sec. III A and (ii) compute
the local changes in energy �Ui and concentration �ci and
accept this move with probability

Ap

S (i) = min{1, exp[−β(�Ui + �μN�ci)]}, (16)
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FIG. 6. (Color online) Schematic representation of an optimal spatial decomposition (compare Fig. 5). For a pair potential, the domains
have to be separated by at least one cutoff distance, while for potentials with three-body terms, the separation has be to at least two cutoff
distances.

otherwise set �σN
t (i) = 0. The global composite trial move is

now σN → σN + ∑NCPU
i=1 �σN

t (i). Thanks to the independence
of the domains Di , the transition probability for this move is
proportional to

∏NCPU
i=1 Ap

S (i) and satisfies detailed balance.

2. Monte Carlo sampling of VC-SGC ensemble

The similarity of the SGC and VC-SGC ensembles dis-
cussed in Sec. II C suggests that parallelization strategies
might be similar as well. A closer inspection, however,
reveals that for a composite trial move σN → σN

t , where
σN

t = σN + ∑NCPU
i=1 �σN

t (i), we have

ĉ
(
σN

t

)2 − ĉ(σN )2 
=
NCPU∑
i=1

ĉ
[
σN + �σN

t (i)
]2

. (17)

This implies that there is a coupling between the domains Di ,
and as a result, the simple method outlined in the previous
section for the SGC ensemble cannot be directly applied to the
parallel sampling of the VC-SGC ensemble. To resolve this
issue, we first modify the acceptance probability distribution
Eq. (14) for the serial sampling of the VC-SGC ensemble as
follows:

AV = min(1, exp{−β[�U + N�c(φ + 2κNc0)]})
× min{1, exp[−βκN2�c(c̃ − c0)]}, (18)

where c̃ was defined in Eq. (13). It is easy to verify that
the acceptance probability distribution in Eq. (18) satisfies
detailed balance. The parameter c0 introduced in Eq. (18) can
change the acceptance probability and thus the approach to
equilibrium but it does not affect the final result. An optimal
choice is

c0 = 〈ĉ〉V. (19)

In practice, the simulations are performed with c0 chosen to
be the best guess for the average concentration. In Sec. III C,
we will explicitly demonstrate the correlation between c0, κ ,
and φ and discuss acceptance rates for the simple Ising model
introduced earlier.

We can now formulate a parallel Monte Carlo algorithm in
the VC-SGC ensemble with composite trial moves comprising
NCPU synchronous local moves σN → σN + ∑NCPU

i=1 �σN
t (i):

(i) on each processor i make a local trial move as detailed in
the Sec. III A and (ii) compute the local changes in energy �Ui

and concentration �ci and accept this move with probability

Ap,loc
V (i) = min(1, exp{−β[�Ui + N�ci (φ + 2κNc0)︸ ︷︷ ︸

=�μ0

]}),

(20)

otherwise set �σN
t (i) = 0. Following Eq. (18), the global

trial move σN → σN + ∑NCPU
i=1 �σN

t (i) may be accepted with
probability

Ap,glob
V = min

{
1, exp

[
− 2βκN2

∑
i

�ci(c̃i − c0)

]}
= min[1, exp(−βκN2�ctot{�ctot − 2[ĉ(σN ) − c0]})],

(21)

where �ctot = ∑NCPU
i=1 �ci is the total change in concentration

due to the composite trial move. This quantity can be efficiently
computed using for example the message passing interface10

allgather command.

C. Efficiency of the parallel VC-SGC-MC method

In arriving at Eq. (20), we have introduced the parameter
c0 and the abbreviation �μ0 = φ + 2κNc0. Together with κ

these parameters determine the average and the variance of
the concentration. In this section, we will demonstrate the
correlation between these parameters using the simple Ising
model described in Sec. II B.

The derivation of the transition matrix for the parallel
VC-SGC-MC method in the previous section revealed a
close resemblance with the parallel SGC-MC method. In
particular, the acceptance probabilities Ap

S (i) and Ap,loc
V (i) in

Eqs. (16) and (20) become identical if �μ0 = �μ. This of
course requires c0 to be chosen according to the optimality
condition Eq. (19). This insight greatly simplifies the choice
of parameters for the parallel VC-SGC-MC method.

In Fig. 7(a), we show the average concentration obtained
in simulations with different values of �μ0 and κ , for a fixed
target concentration of c0 = 0.25 located inside the miscibility
gap. All simulations were carried out using 64 CPUs, a 4 ×
4 × 4 decomposition, and a BCC lattice with 40 × 40 × 40
conventional unit cells. The number of particles per processor
is thus equal to the number of particles in the serial VC-SGC-
MC simulations discussed in Sec. II C.

184203-6



SCALABLE PARALLEL MONTE CARLO ALGORITHM FOR . . . PHYSICAL REVIEW B 85, 184203 (2012)

 20

 22

 24

 26

 28

 30

A
ve

ra
ge

 c
on

ce
nt

ra
tio

n 
(%

)

 

κ = 100

κ = 101

κ = 102

κ = 104

(a)

 0

 10

 20

 30

−0.2 0.0 0.2

A
cc

ep
ta

nc
e 

pr
ob

ab
ili

ty
 (

%
)

Chemical potential constraint Δμ0 (U / particle)

(b)

FIG. 7. (Color online) (a) Average concentration and (b) accep-
tance probability obtained from parallel VC-SGC-MC simulations
using different combinations of the parameters �μ0 and κ for
c0 = 0.25 in Eq. (21).

For small values of κ , the average concentration varies
strongly with �μ0. As κ is increased, the total concentration
is confined to small variations about c0 and the average
concentration becomes less sensitive to the choice of �μ0.
Comparison with Fig. 1(b), where the chemical driving force
is shown as a function of average concentration 〈ĉ〉, reveals
that 〈ĉ〉 equals c0 exactly when �μ = �μ0. This confirms
Eq. (19) and validates the underlying connection between the
SGC and VC-SGC-MC methods.

While for sufficiently large values of κ , the parameter
�μ0 does not affect the average concentration, it does have a
significant impact on the acceptance probability as illustrated
in Fig. 7(b). For a given value of κ , the acceptance probability
becomes maximal if �μ = �μ0, which again confirms the
optimality condition Eq. (19). Similar to the case of the serial
VC-SGC-MC algorithm [compare Fig. 3(b)], we also find that
for a fixed value of �μ0, the acceptance probability decreases
with increasing κ as shown explicitly in Fig. 8. It is, however,
remarkable that over a rather wide range, the value of κ

does not have a significant negative impact on the acceptance
probability.

Now that we have understood the interplay between the
parameters �μ0, κ , and c0, we can formulate an optimal
strategy for choosing their values: (i) determine the chemical
driving force �μS in the vicinity of the two-phase region using
the SGC-MC method. This requires simulations involving only
small system sizes since we are only interested in single-phase
equilibria [compare Fig. 1(b)]. (ii) Choose a value of κ

based on the desired standard deviation of the concentration
(compare Fig. 3). (iii) Set �μ0 = �μS and c0 to the desired
concentration inside the miscibility gap. In this way, the
parameter φ = �μ0 − 2κNc0 is determined as well. For all
subsequent simulations inside the miscibility gap, �μ0 can be
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FIG. 8. (Color online) Acceptance probability as a function of
variance constraint parameter κ for different target concentrations c0

and optimal values for �μ0 as obtained with the parallel VC-SGC-
MC algorithm.

held fix and only c0 is tuned to obtain the desired concentration.
From Fig. 8, one observes that at an average concentration of
50% the parallel VC-SGC-MC algorithm achieves a maximal
acceptance ratio of about 34%, which compares favorably with
a maximum value of about 47% for the serial VC-SGC-MC
method (see Fig. 3).

To investigate the performance of the parallel VC-SGC-MC
algorithm in the weak-scaling limit, a series of simulations
with an increasing number of processors was carried out in
which the number of particles per processor was kept constant
(2000 particles, 10 × 10 × 10 conventional unit cells), while
the total system size was increased along with the number of
processors. The results of the scaling analysis are summarized
in Fig. 9. As can be seen by comparison with the dashed line, in
the weak scaling limit, the acceptance probability scales better
than logarithmically with the number of processors. These
results provide clear evidence that the VC-SGC-MC algorithm
is ideally suited for simulations of very large systems.

The good scalability of the algorithm can be rationalized
as follows: in the first part of a VC-SGC-MC trial step, a
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FIG. 9. (Color online) Acceptance probability as a function of the
number of processors both in the weak-scaling limit using �μ0 = 0,
κ = 10, and c0 = 0.5. The dashed line represents logarithmic scaling.
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composite move is constructed that in the second part is
accepted or rejected as a whole. The collective accep-
tance/rejection of a large number of individual moves could
suggest that the acceptance probability for the second rejection
decreases rapidly with the number of individual moves and
thus the number of processors. The first acceptance/rejection,
however, ensures that the combination of the individual moves
form a cluster move that is already “optimized” and therefore
has a relatively low probability to be rejected in the second
part of the VC-SGC-MC trial move.

IV. APPLICATION TO REALISTIC ALLOYS

A. Sampling structural relaxation and vibrations

In the previous sections, we have discussed in detail
the development of an efficient parallel MC algorithm for
studying systems with millions of particles at arbitrary global
concentrations. For the purpose of demonstration, we consid-
ered a simple lattice model. In many practical applications,
however, the configuration space includes continuous particle
coordinates leading to structural relaxations and thermal
vibrations.

As shown in Sec. II A, structural and chemical degrees of
freedom can be separated readily in the partition function.
This allows us to sample the corresponding integrals with
different techniques. A straightforward approach is to combine
transmutation and displacement MC trial moves. In practice,
this algorithm, however, often converges poorly especially
when structural relaxations are involved. As indicated after
Eq. (3), a much more efficient way to sample displacements
is obtained by combining transmutation Monte Carlo moves
with molecular dynamics simulations. In practice, one carries
out a MD simulation that is interrupted every nth MD step
to execute m MC trial moves. While optimal sampling is
obtained if n = m = 1 [compare comment after Eq. (3)], for
computational efficiency it is beneficial to choose larger values.
This does not affect sampling as long as the total number of
MD/MC cycles is sufficiently large, i.e., n is much smaller
than the total number of MD steps.

We have applied the hybrid MC/MD approach for modeling
chemical ordering and/or precipitation in several metallic
alloys in the vicinity of heterogeneities such as dislocations,
grain boundaries and surfaces. In the next section, we consider

the precipitation of Cu in Fe-rich Fe-Cu nanocrystals as an
illustration for the type of problems that can be studied using
our algorithm. Other examples include the study of grain
boundary pinning in Cu due to Fe impurities,11 structural phase
transformations of Cu precipitates in BCC iron,12 short-range
order in Fe-Cr alloys,13 and the properties of helium bubbles
in Fe and Fe-Cr alloys14 can be found in Ref. 13, where we
used a preliminary version of the present algorithm to study
short-range order in Fe-Cr alloys as a function of temperature
and composition.

B. Cu precipitation in Fe nanocrystals

We will now concern ourselves with VC-SGC-MC/MD
simulations of Cu precipitation in dilute nanocrystalline
ferritic Fe-Cu alloys. The very small solubility of Cu in Fe
(0.07% at 700 K) gives rise to a very strong driving force
for precipitation. The different crystal structures of Fe (body-
centered cubic, BCC) and Cu (face-centered cubic, FCC) as
well as the mechanical instability of bulk BCC-Cu, imply
that as Cu precipitates grow structural phase transformations
occur. This realization in conjunction with the technological
importance of Fe-Cu alloys has lead to a considerable amount
of research in this field (see, e.g., Refs. 15 and 16). Here, we
compare the precipitation of Cu in dilute nanocrystalline Fe-Cu
alloys simulated using two different interatomic potential
models.

First, a nanocrystalline BCC-Fe sample with dimensions
of 18.8 nm in all Cartesian directions was created as fol-
lows. Eleven randomly oriented BCC seeds (average grain
diameter 4 nm) were distributed evenly in the simulation cell
and nanocrystallites were constructed by filling the Voronoi
volumes around each seed. The resulting grain boundary
structure was relaxed using conjugate gradient minimization
and subsequently equilibrated at a temperature of 700 K for
500 ps using MD simulations. The final sample contained
548 565 atoms.

VC-SGC-MC/MD simulations were performed at 700 K
using �μ0 = −0.60 eV in Eq. (20), κ = 1000 in Eq. (21),
and a target concentration c0 = 4%. One MC cycle (equivalent
to Nat MC trial moves where Nat is the number of atoms)
was carried out per 20 MD steps. The equations of motion
were integrated for 1 200 000 MD steps (including 60 000
MC cycles) using a time step of 2.5 fs. Temperature and

(a) (b) (c) (d)

FIG. 10. (Color online) Representative snapshots obtained after full equilibration in simulations using the (a) and (b) LF potential and (c)
and (d) the PM potential. Coloring according to common-neighbor analysis. (a) and (d) BCC Fe atoms, Fe and Cu grain-boundary atoms are
shown in white, pink, and blue, respectively. (b) and (c) Fe and Cu grain-boundary atoms are shown in gray and blue, respectively.
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pressure were maintained using the Nosé-Hoover thermostat
and barostat, respectively.

Interatomic interactions were modeled using both the Fe-
Cu potential by Ludwig et al.17 (LF) and the potential by
Pasianot and Malerba18 (PM). The LF potential is based on
the Fe potential by Simonelli et al.19 and the Cu potential
by Voter,20 while the PM potential employs the Fe potential
by Mendelev et al.21 and the Cu potential by Mishin et al.22

Both potentials give solubilities at 700 K that are very close to
the experimental value (LF: 0.15%, PM: 0.07%, experiment:
approximately 0.07%), and thus the target concentration of 4%
is far beyond the solubility limits for either potential.

Figure 10 summarizes the key results of our analysis. As
expected, both potentials show a very small number of Cu
atoms in the center of the grains. As the total Cu concentration
of about 4% is far larger than the bulk solubility this implies
that excess copper is located in grain boundaries. While the
two potentials agree with regard to the latter trend, they yield
very different results when it comes to the distribution of the
Cu in the grain boundaries. Whereas the LF potential predicts
a homogeneous distribution with little spatial correlation
between the Cu atoms [see Figs. 10(a) and 10(b)], the PM
potential yields contiguous Cu precipitates that are agglom-
erated along only a few neighboring grain boundaries. While
this result showcases the kind of insight that can be gained
using the VC-SGC-MC/MD hybrid simulation technique, it
also demonstrate that further work in the area of potential
development and verification is needed before a reliable study
of Cu precipitation at grain boundaries in Fe can be conducted.

V. CONCLUSIONS

In the present paper, we have developed a hybrid molecular
dynamics/Monte Carlo (MD/MC) algorithm, which is ideally
suited for simulating multicomponent systems using samples
with millions of particles in both single and multiphase regions
of the phase diagram. The most important component is an
efficient and scalable transmutation MC method that samples
the variance-constrained SGC ensemble. The VC-SGC-MC
algorithm can be used to stabilize multiphase equilibria and
therefore allows to study precipitation and phase segregation.
Since it features a better-than-logarithmic scaling of the
acceptance probability with the number of processors, the
method is ideally suited for studying very large systems
containing several million particles. Finally, by combining the
VC-SGC-MC method with molecular dynamics, one obtains a
very powerful hybrid scheme that takes into account chemical
mixing and precipitation, structural relaxations as well as
thermal vibrations.

We have applied the algorithm developed in this work to
study the precipitation of Cu in nanocrystalline Fe using two
different interatomic potentials. While both potentials predict
excess Cu to be located in the grain boundaries, they yield
very different results for the distribution of impurity atoms in
the grain boundaries. Further work in potential development
and verification is required in order to obtain interatomic
potential models that provide reliable predictions for element
distribution near inhomogeneities such as dislocations, grain
boundaries, and surfaces.

The hybrid MC/MC algorithm described in this paper has
already been applied to study for example grain boundary
pinning in Cu due to Fe impurities,11 structural phase transfor-
mations of Cu precipitates in BCC Fe,12 short-range order in
Fe-Cr alloys,13 and the properties of helium bubbles in Fe and
Fe-Cr alloys.14 The relation to free energy integration that is
implicit to Eq. (A11) has furthermore been utilized in Ref. 9
to obtain the temperature and orientation dependence of free
interface energies in Fe-Cr alloys. The algorithms developed
in the present work have been implemented in the massively
parallel MD code LAMMPS.7 The source code is available from
the authors.
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APPENDIX: DERIVATION OF THE VC-SGC ENSEMBLE

In this appendix, we derive the VC-SGC ensemble for the
binary system discussed in Sec. II. Consider a system of N

particles confined in a box of volume V , where each particle
carries a spin of value 0 or 1. Since the VC-SGC ensemble only
manipulates the chemical degrees of freedom, we consider
for simplicity a system frozen onto a lattice of an arbitrary
configuration x3N . The phase space � of this system consists
of the set of ρ = 2N different spin configurations {σN }. To
simplify the notation below, we enumerate the ρ configurations
in �: {1,2, . . . ,ρ}, and thus any spin configuration σN can be
uniquely identified by its index number.

Let  be the set of M representative configurations in �

and denote by nα the number of times the αth state appears
in . We can uniquely define  by the set of numbers
{n1,n2, . . . ,nρ}. The sum of the occupation numbers nα are
constrained according to

M =
ρ∑

α=1

nα. (A1)

We now introduce three more constraints for (i) the average
energy U , (ii) the average concentration of spin zero particles
c, and (iii) the square of the concentration of spin zero particles
v2. These constraints can be expressed as

U = 1

M

ρ∑
α=1

nαU (α), c = 1

M

ρ∑
α=1

nαĉ(α),

v2 = 1

M

ρ∑
α=1

nαĉ(α)2.

Above, we have denoted the potential energy for the state
α by U (α) and its concentration by ĉ(α). For any given set
 = {nα}, there are multiple ways of choosing its elements
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from �. We use this to define the multiplicity η of a set :

η = M!∏ρ

α=1 nα!
.

The relative probability of two sets with the same average
energy U is now determined by the ratio of their multiplicities.
In the thermodynamic limit, i.e., large N and large M , the most
probable , i.e., the set with the largest multiplicity, will cor-
respond to the equilibrium probability distribution in �. Under
the above constraints, the most probable distribution of {nα} is
determined by minimizing the functional Q({nα}; μ,β,φ̃,κ̃):

Q = − ln η − μ

(
ρ∑

α=1

nα − M

)
− β

(
ρ∑

α=1

nαE(α) − MU

)

− φ̃

(
ρ∑

α=1

nαĉ(α) − Mc

)
− κ̃

(
ρ∑

α=1

nαĉ(α)2 − Mv2

)
.

(A2)

Above, μ, β, φ̃, and κ̃ , are Lagrange multipliers that are
introduced as independent variables to facilitate the con-
strained minimization of the functional Q with respect to the
occupation numbers {nα}. At its minimum, the derivative of the
functional Q with respect to the independent variables is set
to zero. Setting ∂Q/∂nα to zero determines their equilibrium
distribution:

nα = exp[−μ − βU (α) − φ̃ĉ(α) − κ̃ ĉ(α)2].

Using this result in Eq. (A1), we obtain an explicit expression
for the chemical potential μ

exp(μ) = 1

M

ρ∑
α=1

exp[−βU (α) − φ̃ĉ(α) − κ̃ ĉ(α)2]. (A3)

Now it is possible to define the equilibrium probability of any
state α in � as

πV(α) = Z−1
V exp(−β{U (α) + Nĉ(α)[φ + κNĉ(α)]}),

(A4)

where ZV = Meμ, and we have introduced the definitions

φ̃ = Nβφ, κ̃ = N2βκ, (A5)

in order to reproduce the equilibrium probability distribution
of the VC-SGC ensemble Eq. (9). Let us now define the phase
space �c of configurations with a fixed concentration c. The
canonical free energy FC(c) for this set can be defined as
follows:

exp[−βFC(c)] =
∑
α∈�c

exp[−βE(α)]. (A6)

In this way the partition function Eq. (A3) can be rewritten as

ZV =
∫ 1

0
exp{−β[FC(c) + Nc(φ + κNc)]}dc. (A7)

Setting ∂Q/∂φ̃ and ∂Q/∂κ̃ in Eq. (A2) to zero and using
the definitions (A5) and (A6) provides for a system of two

equations to determine the two unknowns φ and κ:

c = Z−1
∫ 1

0
c exp{−β[FC(c) + Nc(φ + κNc)]}dc, (A8)

v2 = Z−1
∫ 1

0
c2 exp{−β[FC(c) + Nc(φ + κNc)]}dc. (A9)

In solving the above equations, we assume that v is chosen
such that it is much smaller than c and 1 − c. Then it is possible
to represent FC(c) by its Taylor expansion to second order
around c:

FC(c) = FC(c) + ∂FC

∂c

∣∣∣∣
c

(c − c) + 1

2

∂2FC

∂c2

∣∣∣∣
c

(c − c)2,

and replace the integrals in Eqs. (A7)–(A9) above with
indefinite Gaussian integrals

1 = Z̃−1
V

∫ ∞

−∞
exp[−A(c − c) − B(c − c)2]dc,

c = Z̃−1
V

∫ ∞

−∞
c exp[−A(c − c) − B(c − c)2]dc, (A10)

v2 = Z̃−1
V

∫ ∞

−∞
c2 exp[−A(c − c) − B(c − c)2]dc,

where

A = β

[
∂FC

∂c

∣∣∣∣
c

+ N (φ + 2κNc)

]
,

B = β

[
1

2

∂2FC

∂c2

∣∣∣∣
c

+ N2κ

]
,

Z̃V = ZV exp{β[FC(c) + Nc(φ + κNc)]}.
It is now easy to see that the system of equations (A10) can

be satisfied when

A = 0 and B = 1

2(v2 − c2)
.

Hence within the VC-SGC ensemble, the thermodynamic
forces (φ and κ) that give rise to a given average concentration

c and its standard deviation s0 =
√

v2 − c2, are related to the
derivatives of the Helmholtz free energy at c as follows:

Nφ = ∂2F

∂c2

∣∣∣∣
c

− ∂F

∂c

∣∣∣∣
c

− c

βs2
0

,

N2κ = 1

2

(
1

βs2
0

− ∂2F

∂c2

∣∣∣∣
c

)
.

The first derivative of the free energy with respect to the
concentration of one species, i.e., the difference in chemical
potential between the two species �μ, can therefore be
calculated from the average concentration according to

�μ ≡ − 1

N

∂FC

∂c

∣∣∣∣
c

= φ + 2κNc. (A11)

We have thus arrived at the important relation Eq. (15), which
is used extensively in this paper. In the same way, a similar
relation can also be obtained between the second derivative
and the variance of the concentration which reads

−∂2FC

∂c2

∣∣∣∣
c

= 2N2κ − 1

βs2
0

. (A12)
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