16 research outputs found

    A scalable method to quantify the relationship between urban form and socio-economic indexes

    Get PDF
    The world is undergoing a process of fast and unprecedented urbanisation. It is reported that by 2050 66% of the entire world population will live in cities. Although this phenomenon is generally considered beneficial, it is also causing housing crises and more inequality worldwide. In the past, the relationship between design features of cities and socio-economic levels of their residents has been investigated using both qualitative and quantitative methods. However, both sets of works had significant limitations as the former lacked generalizability and replicability, while the latter had a too narrow focus, since they tended to analyse single aspects of the urban environment rather than a more complex set of metrics. This might have been caused by the lack of data availability. Nowadays, though, larger and freely accessible repositories of data can be used for this purpose. In this paper, we propose a scalable method that delves deeper into the relationship between features of cities and socio-economics. The method uses openly accessible datasets to extract multiple metrics of urban form and then models the relationship between urban form and socio-economic levels through spatial regression analysis. We applied this method to the six major conurbations (i.e., London, Manchester, Birmingham, Liverpool, Leeds, and Newcastle) of the United Kingdom (UK) and found that urban form could explain up to 70% of the variance of the English official socio-economic index, the Index of Multiple Deprivation (IMD). In particular, results suggest that more deprived UK neighbourhoods are characterised by higher population density, larger portions of unbuilt land, more dead-end roads, and a more regular street pattern

    Diachronic investigation of the urban form of Qom (Iran) through morphometric approach

    Get PDF
    Qom is one of the oldest cities in Iran, with a multi-millennial history dating back to the 4th millennium BC, according to archaeological excavations. Due to different dominations (from ancient Persian dynasties to Islamic ones), the city has gone through successive phases of development and decay, which stratified in its urban form. More recently, due to its advantageous geographical position, several inter-city roads were constructed to converge in Qom, creating a radial structure, whose accessibility has been constantly improved by adding ring roads and filling gaps with local gridded networks. The sum of these transformations produced over time a complex urban form, which remains largely understudied. The aim of this paper is to investigate the morphology of Qom in a systematic manner through the use of a novel method of morphometric analysis based on multiple indicators of urban form describing aspects of the urban fabric and street network, as well as clustering techniques identifying homogeneous urban types in a hierarchical structure according to similarity. The application of this method to official datasets of plots and street segments, provided by the local administration, reveals 11 urban types with distinctive morphological traits, seemingly matching main phases of urban development. This morphometric analysis provides novel insights on one of the most ancient Iranian cities and can be replicated to investigate urban types in further case studies

    Visualization of Traffic Sign Related Rules Used in Road Environment-type Detection

    Get PDF

    Mining large-scale human mobility data for long-term crime prediction

    Full text link
    Traditional crime prediction models based on census data are limited, as they fail to capture the complexity and dynamics of human activity. With the rise of ubiquitous computing, there is the opportunity to improve such models with data that make for better proxies of human presence in cities. In this paper, we leverage large human mobility data to craft an extensive set of features for crime prediction, as informed by theories in criminology and urban studies. We employ averaging and boosting ensemble techniques from machine learning, to investigate their power in predicting yearly counts for different types of crimes occurring in New York City at census tract level. Our study shows that spatial and spatio-temporal features derived from Foursquare venues and checkins, subway rides, and taxi rides, improve the baseline models relying on census and POI data. The proposed models achieve absolute R^2 metrics of up to 65% (on a geographical out-of-sample test set) and up to 89% (on a temporal out-of-sample test set). This proves that, next to the residential population of an area, the ambient population there is strongly predictive of the area's crime levels. We deep-dive into the main crime categories, and find that the predictive gain of the human dynamics features varies across crime types: such features bring the biggest boost in case of grand larcenies, whereas assaults are already well predicted by the census features. Furthermore, we identify and discuss top predictive features for the main crime categories. These results offer valuable insights for those responsible for urban policy or law enforcement

    Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale

    Get PDF
    [EN] Manifold socio-economic processes shape the built and natural elements in urban areas. They thus influence both the living environment of urban dwellers and sustainability in many dimensions. Monitoring the development of the urban fabric and its relationships with socio-economic and environmental processes will help to elucidate their linkages and, thus, aid in the development of new strategies for more sustainable development. In this study, we identified empirical and significant relationships between income, inequality, GDP, air pollution and employment indicators and their change over time with the spatial organization of the built and natural elements in functional urban areas. We were able to demonstrate this in 32 countries using spatio-temporal metrics, using geoinformation from databases available worldwide. We employed random forest regression, and we were able to explain 32% to 68% of the variability of socio-economic variables. This confirms that spatial patterns and their change are linked to socio-economic indicators. We also identified the spatio-temporal metrics that were more relevant in the models: we found that urban compactness, concentration degree, the dispersion index, the densification of built-up growth, accessibility and land-use/land-cover density and change could be used as proxies for some socio-economic indicators. This study is a first and fundamental step for the identification of such relationships at a global scale. The proposed methodology is highly versatile, the inclusion of new datasets is straightforward, and the increasing availability of multi-temporal geospatial and socio-economic databases is expected to empirically boost the study of these relationships from a multi-temporal perspective in the near future.Sapena Moll, M.; Ruiz Fernández, LÁ.; Taubenböck, H. (2020). Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale. ISPRS International Journal of Geo-Information. 9(7):1-22. https://doi.org/10.3390/ijgi9070436S12297Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S. T. A., & Taubenböck, H. (2019). Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of Environment, 228, 164-182. doi:10.1016/j.rse.2019.04.020Wentz, E. A., York, A. M., Alberti, M., Conrow, L., Fischer, H., Inostroza, L., … Taubenböck, H. (2018). Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landscape and Urban Planning, 179, 55-62. doi:10.1016/j.landurbplan.2018.07.007Wentz, E., Anderson, S., Fragkias, M., Netzband, M., Mesev, V., Myint, S., … Seto, K. (2014). Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sensing, 6(5), 3879-3905. doi:10.3390/rs6053879Allen, L., Williams, J., Townsend, N., Mikkelsen, B., Roberts, N., Foster, C., & Wickramasinghe, K. (2017). Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: a systematic review. The Lancet Global Health, 5(3), e277-e289. doi:10.1016/s2214-109x(17)30058-xBelsky, D. W., Caspi, A., Arseneault, L., Corcoran, D. L., Domingue, B. W., Harris, K. M., … Odgers, C. L. (2019). Genetics and the geography of health, behaviour and attainment. Nature Human Behaviour, 3(6), 576-586. doi:10.1038/s41562-019-0562-1Villeneuve, P. J., Jerrett, M., G. Su, J., Burnett, R. T., Chen, H., Wheeler, A. J., & Goldberg, M. S. (2012). A cohort study relating urban green space with mortality in Ontario, Canada. Environmental Research, 115, 51-58. doi:10.1016/j.envres.2012.03.003Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., … Epstein, J. (2004). Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, 112(10), 1092-1098. doi:10.1289/ehp.6877Wilkinson, D. A., Marshall, J. C., French, N. P., & Hayman, D. T. S. (2018). Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. Journal of The Royal Society Interface, 15(149), 20180403. doi:10.1098/rsif.2018.0403Zohdy, S., Schwartz, T. S., & Oaks, J. R. (2019). The Coevolution Effect as a Driver of Spillover. Trends in Parasitology, 35(6), 399-408. doi:10.1016/j.pt.2019.03.010Watmough, G. R., Atkinson, P. M., Saikia, A., & Hutton, C. W. (2016). Understanding the Evidence Base for Poverty–Environment Relationships using Remotely Sensed Satellite Data: An Example from Assam, India. World Development, 78, 188-203. doi:10.1016/j.worlddev.2015.10.031Duque, J. C., Patino, J. E., Ruiz, L. A., & Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135, 11-21. doi:10.1016/j.landurbplan.2014.11.009Venerandi, A., Quattrone, G., & Capra, L. (2018). A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science, 7(1). doi:10.1140/epjds/s13688-018-0132-1Arribas-Bel, D., Patino, J. E., & Duque, J. C. (2017). Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning. PLOS ONE, 12(5), e0176684. doi:10.1371/journal.pone.0176684Faisal, K., Shaker, A., & Habbani, S. (2016). Modeling the Relationship between the Gross Domestic Product and Built-Up Area Using Remote Sensing and GIS Data: A Case Study of Seven Major Cities in Canada. ISPRS International Journal of Geo-Information, 5(3), 23. doi:10.3390/ijgi5030023Liang, H., Guo, Z., Wu, J., & Chen, Z. (2020). GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 65(1), 481-493. doi:10.1016/j.asr.2019.09.035Weigand, M., Wurm, M., Dech, S., & Taubenböck, H. (2019). Remote Sensing in Environmental Justice Research—A Review. ISPRS International Journal of Geo-Information, 8(1), 20. doi:10.3390/ijgi8010020McCarty, J., & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168-179. doi:10.1016/j.landurbplan.2015.03.008Hankey, S., & Marshall, J. D. (2017). Urban Form, Air Pollution, and Health. Current Environmental Health Reports, 4(4), 491-503. doi:10.1007/s40572-017-0167-7Olsen, J. R., Nicholls, N., & Mitchell, R. (2019). Are urban landscapes associated with reported life satisfaction and inequalities in life satisfaction at the city level? A cross-sectional study of 66 European cities. Social Science & Medicine, 226, 263-274. doi:10.1016/j.socscimed.2019.03.009Sapena, M., Ruiz, L. A., & Goerlich, F. J. (2016). ANALYSING RELATIONSHIPS BETWEEN URBAN LAND USE FRAGMENTATION METRICS AND SOCIO-ECONOMIC VARIABLES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 1029-1036. doi:10.5194/isprsarchives-xli-b8-1029-2016Stokes, E. C., & Seto, K. C. (2019). Characterizing and measuring urban landscapes for sustainability. Environmental Research Letters, 14(4), 045002. doi:10.1088/1748-9326/aafab8De Leeuw, J., Georgiadou, Y., Kerle, N., De Gier, A., Inoue, Y., Ferwerda, J., … Narantuya, D. (2010). The Function of Remote Sensing in Support of Environmental Policy. Remote Sensing, 2(7), 1731-1750. doi:10.3390/rs2071731Taubenböck, H., Ferstl, J., & Dech, S. (2017). Regions Set in Stone—Delimiting and Categorizing Regions in Europe by Settlement Patterns Derived from EO-Data. ISPRS International Journal of Geo-Information, 6(2), 55. doi:10.3390/ijgi6020055Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589-8594. doi:10.1073/pnas.1017031108Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. doi:10.3390/ijgi6090288Oldekop, J. A., Sims, K. R. E., Karna, B. K., Whittingham, M. J., & Agrawal, A. (2019). Reductions in deforestation and poverty from decentralized forest management in Nepal. Nature Sustainability, 2(5), 421-428. doi:10.1038/s41893-019-0277-3Sims, K. R. E., Thompson, J. R., Meyer, S. R., Nolte, C., & Plisinski, J. S. (2019). Assessing the local economic impacts of land protection. Conservation Biology, 33(5), 1035-1044. doi:10.1111/cobi.13318Lobo, J., Alberti, M., Allen-Dumas, M., Arcaute, E., Barthelemy, M., Bojorquez Tapia, L. A., … Youn, H. (2020). Urban Science: Integrated Theory from the First Cities to Sustainable Metropolises. SSRN Electronic Journal. doi:10.2139/ssrn.3526940Seto, K. C., Golden, J. S., Alberti, M., & Turner, B. L. (2017). Sustainability in an urbanizing planet. Proceedings of the National Academy of Sciences, 114(34), 8935-8938. doi:10.1073/pnas.1606037114Cities (Urban Audit)https://ec.europa.eu/eurostat/web/cities/backgroundMetropolitan Areas, OECD Regional Statistics [Database]http://dx.doi.org/10.1787/data-00531-enEurostat, Geographical Information and Mapshttps://ec.europa.eu/eurostat/web/gisco/gisco-activities/integrating-statistics-geospatial-information/geostat-initiativeNASA Socioeconomic Data and Applications Center. U.S. Census Gridshttps://sedac.ciesin.columbia.edu/Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., … Dech, S. (2012). TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns. Journal of Applied Remote Sensing, 6(1), 061702-1. doi:10.1117/1.jrs.6.061702GHS-BUILT R2018A—GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975-1990-2000-2014). European Commission, Joint Research Centre (JRC) [Dataset]http://data.europa.eu/89h/jrc-ghsl-10007Chen, J., Cao, X., Peng, S., & Ren, H. (2017). Analysis and Applications of GlobeLand30: A Review. ISPRS International Journal of Geo-Information, 6(8), 230. doi:10.3390/ijgi6080230Land Cover CCI Product User Guide Version 2http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfBechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., … Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 4(1), 199-219. doi:10.3390/ijgi4010199Cao, W., Dong, L., Wu, L., & Liu, Y. (2020). Quantifying urban areas with multi-source data based on percolation theory. Remote Sensing of Environment, 241, 111730. doi:10.1016/j.rse.2020.111730Qiu, C., Schmitt, M., Geiß, C., Chen, T.-H. K., & Zhu, X. X. (2020). A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 152-170. doi:10.1016/j.isprsjprs.2020.01.028The Metropolitan Database. Metadata and Release Noteshttp://stats.oecd.org/wbos/fileview2.aspx?IDFile=4aed3009-6020-48f3-8eeb-e01a8e5f61c4Gross Domestic Product (GDP) (Indicator)https://doi.org/10.1787/dc2f7aec-enIncome Inequality (Indicator)https://doi.org/10.1787/459aa7f1-enAir pollution Exposure (Indicator)https://doi.org/10.1787/8d9dcc33-enEmployment Rate (Indicator)https://doi.org/10.1787/1de68a9b-enRedefining “Urban”: A New Way to Measure Metropolitan Areas, OECD Publishinghttps://doi.org/10.1787/9789264174108-enMeijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6), 064006. doi:10.1088/1748-9326/aabd42Sapena Moll, M., & Ruiz Fernández, L. Á. (2015). Descripción y cálculo de índices de fragmentación urbana: Herramienta IndiFrag. Revista de Teledetección, (43), 77. doi:10.4995/raet.2015.3476Urban morphological zones 2006. European Environment Agencyhttps://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2006-1Taubenböck, H., Wiesner, M., Felbier, A., Marconcini, M., Esch, T., & Dech, S. (2014). New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Applied Geography, 47, 137-153. doi:10.1016/j.apgeog.2013.12.002SCHUMM, S. A. (1956). EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY. Geological Society of America Bulletin, 67(5), 597. doi:10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2Sapena, M., & Ruiz, L. Á. (2019). Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Computers, Environment and Urban Systems, 73, 27-39. doi:10.1016/j.compenvurbsys.2018.08.001Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3). doi:10.1214/ss/1009213726GONZALEZ, J., & LEBOULLUEC, A. (2019). Crime Prediction and Socio-Demographic Factors: A Comparative Study of Machine Learning Regression-Based Algorithms. Journal of Applied Computer Science & Mathematics, 13(1), 13-18. doi:10.4316/jacsm.201901002Paul, S. S., Coops, N. C., Johnson, M. S., Krzic, M., Chandna, A., & Smukler, S. M. (2020). Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma, 363, 114177. doi:10.1016/j.geoderma.2020.114177Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324How to Normalize the RMSEhttps://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/Probst, P., Wright, M. N., & Boulesteix, A. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3). doi:10.1002/widm.1301Salvati, L., & Carlucci, M. (2015). Patterns of Sprawl: The Socioeconomic and Territorial Profile of Dispersed Urban Areas in Italy. Regional Studies, 50(8), 1346-1359. doi:10.1080/00343404.2015.1009435Weilenmann, B., Seidl, I., & Schulz, T. (2017). The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landscape and Urban Planning, 157, 468-482. doi:10.1016/j.landurbplan.2016.08.002Huang, J., Lu, X. X., & Sellers, J. M. (2007). A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landscape and Urban Planning, 82(4), 184-197. doi:10.1016/j.landurbplan.2007.02.010Angel, S., Arango Franco, S., Liu, Y., & Blei, A. M. (2020). The shape compactness of urban footprints. Progress in Planning, 139, 100429. doi:10.1016/j.progress.2018.12.001Bechle, M. J., Millet, D. B., & Marshall, J. D. (2011). Effects of Income and Urban Form on Urban NO2: Global Evidence from Satellites. Environmental Science & Technology, 45(11), 4914-4919. doi:10.1021/es103866bMeneses, B., Reis, E., Pereira, S., Vale, M., & Reis, R. (2017). Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability, 9(3), 351. doi:10.3390/su9030351Corbane, C., Pesaresi, M., Kemper, T., Politis, P., Florczyk, A. J., Syrris, V., … Soille, P. (2019). Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data, 3(2), 140-169. doi:10.1080/20964471.2019.162552

    Association between multimorbidity and socioeconomic deprivation on short-term mortality among patients with diffuse large B-cell or follicular lymphoma in England: a nationwide cohort study.

    Get PDF
    OBJECTIVES: We aimed to assess the association between multimorbidity and deprivation on short-term mortality among patients with diffuse large B-cell (DLBCL) and follicular lymphoma (FL) in England. SETTING: The association of multimorbidity and socioeconomic deprivation on survival among patients diagnosed with DLBCL and FL in England between 2005 and 2013. We linked the English population-based cancer registry with electronic health records databases and estimated adjusted mortality rate ratios by multimorbidity and deprivation status. Using flexible hazard-based regression models, we computed DLBCL and FL standardised mortality risk by deprivation and multimorbidity at 1 year. RESULTS: Overall, 41 422 patients aged 45-99 years were diagnosed with DLBCL or FL in England during 2005-2015. Most deprived patients with FL with multimorbidities had three times higher hazard of 1-year mortality (HR: 3.3, CI 2.48 to 4.28, p<0.001) than least deprived patients without comorbidity; among DLBCL, there was approximately twice the hazard (HR: 1.9, CI 1.70 to 2.07, p<0.001). CONCLUSIONS: Multimorbidity, deprivation and their combination are strong and independent predictors of an increased short-term mortality risk among patients with DLBCL and FL in England. Public health measures targeting the reduction of multimorbidity among most deprived patients with DLBCL and FL are needed to reduce the short-term mortality gap

    Sustainable urban development indicators in Great Britain from 2001 to 2016

    Get PDF
    Current planning strategies promoting suburbanisation, land use zoning and low built-up density areas tend to increase the environmental footprint of cities. In the last decades, international and local government plans are increasingly targeted at making urban areas more sustainable. Urban structure has been proved to be an important factor guiding urban smart growth policies that promote sustainable urban environments and improve neighbourhood social cohesion. This paper draws on a series of unique historical datasets obtained from Ordnance Survey, covering the largest British urban areas over the last 15 years (2001–2016) to develop a set of twelve indicators and a composite Sustainable Urban Development Index to quantitatively measure and assess key built environment features and their relative change compared to other areas at each point in time based on regular 1 km2 grids. The results show that there is a relative increase in urban structure sustainability of areas in and around city centres and identify that the primary built environment feature driving these improvements was an increase in walkable spaces

    EO + morphometrics : understanding cities through urban morphology at large scale

    Get PDF
    Earth Observation (EO)-based mapping of cities has great potential to detect patterns beyond the physical ones. However, EO combined with the surge of machine learning techniques to map non-physical, such as socioeconomic, aspects directly, goes to the expense of reproducibility and interpretability, hence scientific validity. In this paper, we suggest shifting the focus from the direct detection of socioeconomic status from raw images through image features, to the mapping of interpretable urban morphology of basic urban elements as an intermediate step, to which socioeconomic patterns can then be related. This shift is profound, in that, rather than abstract image features, it allows to capture the morphology of real urban objects, such as buildings and streets, and use this to then interpret other patterns, including socioeconomic ones. Because socioeconomic patterns are not derived from raw image data, the mapping of these patterns is less data demanding and more replicable. Specifically, we propose a 2-step approach: (1) extraction of fundamental urban elements from satellite imagery, and (2) derivation of meaningful urban morphological patterns from the extracted elements. We refer to this 2-step approach as “EO + Morphometrics”. Technically, EO consists of applying deep learning through a reengineered U-Net shaped convolutional neural network to publicly accessible Google Earth imagery for building extraction. Methods of urban morphometrics are then applied to these buildings to compute semantically explicit and interpretable metrics of urban form. Finally, clustering is applied to these metrics to obtain morphological patterns, or urban types. The “EO + Morphometrics” approach is applied to the city of Nairobi, Kenya, where 15 different urban types are identified. To test whether this outcome meaningfully describes current urbanization patterns, we verified whether selected types matched locally designated informal settlements. We observe that four urban types, characterized by compact and organic urban form, were recurrent in such settlements. The proposed "EO + Morphometrics" approach paves the way for the large-scale identification of interpretable urban form patterns and study of associated dynamics across any region in the world

    "Domains of deprivation framework" for mapping slums, informal settlements, and other deprived areas in LMICs to improve urban planning and policy : a scoping review

    Get PDF
    The majority of urban inhabitants in low- and middle-income country (LMIC) cities live in deprived urban areas. However, statistics and data (e.g., local monitoring of Sustainable Development Goals - SDGs) are hindered by the unavailability of spatial data at metropolitan, city and sub-city scales. Deprivation is a complex and multidimensional concept, which has been captured in existing literature with a strong focus on household-level deprivation while giving limited attention to area-level deprivation. Within this scoping review, we build on existing literature on household- as well as area-level deprivation frameworks to arrive at a combined understanding of how urban deprivation is defined with a focus on LMIC cities. The scoping review was enriched with local stakeholder workshops in LMIC cities to arrive at our framework of Domains of Deprivations, splitting deprivation into three different scales and nine domains. (1) Socio-Economic Status and (2) Housing Domains (Household scale); (3) Social Hazards & Assets, (4) Physical Hazards & Assets, (5) Unplanned Urbanization and (6) Contamination (Within Area scale); and (7) Infrastructure, (8) Facilities & Services and (9) city Governance (Area Connect scale). The Domains of Deprivation framework provides a clear guidance for collecting data on various aspects of deprivation, while providing the flexibility to decide at city level which indicators are most relevant to explain individual domains. The framework provides a conceptual and operational base for the Integrated Deprived Area Mapping System (IDEAMAPS) Project for the creation of a data ecosystem, which facilitates the production of routine, accurate maps of deprived “slum” areas at scale across cities in LMICs. The Domains of Deprivation Framework is designed to support diverse health, poverty, and development initiatives globally to characterize and address deprivation in LMIC cities

    “Domains of deprivation framework” for mapping slums, informal settlements, and other deprived areas in LMICs to improve urban planning and policy : a scoping review

    Get PDF
    The majority of urban inhabitants in low- and middle-income country (LMIC) cities live in deprived urban areas. However, policy efforts and the monitoring of global goals and agendas such as the United Nation's Sustainable Development Goals (SDGs) and UN-Habitat New Urban Agenda are hindered by the unavailability of statistical and spatial data at metropolitan, city and sub-city scales. Deprivation is a complex and multidimensional concept, and presently, there is a strong focus within the existing literature on household-level (including individual) deprivation and less on area-level deprivation and this is problematic because deprivation at the area and household-level are known to interrelate and result in multiple challenges for individuals and communities. Within this scoping review, we build on existing literature that focuses on household- or area-level deprivation to arrive at a combined understanding of how urban deprivation is defined in relation to LMIC cities. The scoping review of existing literature was used in conjunction with local stakeholder workshops to produce a framework titled “Domains of Deprivation Framework”. The Domains of Deprivation Framework conceptualizes urban deprivation at three different scales, including at the household scale, within the area scale and at the area connect scale. It includes nine domains, (1) Socio-Economic Status and (2) Housing Domains (Household scale); (3) Social Hazards & Assets, (4) Physical Hazards & Assets, (5) Unplanned Urbanization and (6) Contamination (Within Area scale); and (7) Infrastructure, (8) Facilities & Services and (9) City Governance (Area Connect scale). The Domains of Deprivation Framework is designed to support diverse urban, health, poverty, and development initiatives globally to characterize and address deprivation in LMIC cities from a holistic perspective, combining traditional data sources (e.g., surveys or census data) with new data sources (e.g., Earth Observation data)
    corecore