6,712 research outputs found

    Depicting urban boundaries from a mobility network of spatial interactions: A case study of Great Britain with geo-located Twitter data

    Full text link
    Existing urban boundaries are usually defined by government agencies for administrative, economic, and political purposes. Defining urban boundaries that consider socio-economic relationships and citizen commute patterns is important for many aspects of urban and regional planning. In this paper, we describe a method to delineate urban boundaries based upon human interactions with physical space inferred from social media. Specifically, we depicted the urban boundaries of Great Britain using a mobility network of Twitter user spatial interactions, which was inferred from over 69 million geo-located tweets. We define the non-administrative anthropographic boundaries in a hierarchical fashion based on different physical movement ranges of users derived from the collective mobility patterns of Twitter users in Great Britain. The results of strongly connected urban regions in the form of communities in the network space yield geographically cohesive, non-overlapping urban areas, which provide a clear delineation of the non-administrative anthropographic urban boundaries of Great Britain. The method was applied to both national (Great Britain) and municipal scales (the London metropolis). While our results corresponded well with the administrative boundaries, many unexpected and interesting boundaries were identified. Importantly, as the depicted urban boundaries exhibited a strong instance of spatial proximity, we employed a gravity model to understand the distance decay effects in shaping the delineated urban boundaries. The model explains how geographical distances found in the mobility patterns affect the interaction intensity among different non-administrative anthropographic urban areas, which provides new insights into human spatial interactions with urban space.Comment: 32 pages, 7 figures, International Journal of Geographic Information Scienc

    Spaceprint: a Mobility-based Fingerprinting Scheme for Public Spaces

    Get PDF
    In this paper, we address the problem of how automated situation-awareness can be achieved by learning real-world situations from ubiquitously generated mobility data. Without semantic input about the time and space where situations take place, this turns out to be a fundamental challenging problem. Uncertainties also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the category, and the actual identity of a space can be discovered from the extracted situation patterns. Doing so, we use different real-world mobility datasets with data about the presence of mobile entities in a variety of spaces. We also evaluate the performance of this technique by showing its robustness against uncertainties

    Inferring Person-to-person Proximity Using WiFi Signals

    Get PDF
    Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches---including RFID badges or Bluetooth scanning---offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply

    Consuming the million-mile electric car

    Get PDF
    Unlike for many consumer products, there has been no strong environmental case for extending the life of internal combustion engine cars as the majority of their environmental impact is fuel consumed in use and not the energy and materials involved in manufacturing. Indeed, with improving fuel efficiency, product life extension is environmentally undesirable; older, less fuel-efficient cars need to be replaced by newer more fuel-efficient models. Electric vehicles (EVs) are predominantly considered environmentally beneficial by using an increasingly decarbonised fuel – electricity. However, LCA analyses show that EVs have substantial environmental impacts in their materials, manufacturing and disposal. The high ‘embedded’ environmental impacts of EVs fundamentally change the case for product life extension. Thus, product life extension is desirable for EVs and they are suited to it. While petrol and diesel cars have an average lifetime mileage of 124,000 miles (200,000 Kilometres), the case for the million-mile (1.6 million Kilometre) electric car appears strong. Although it may be technically possible to produce a million-mile EV, how will such vehicles be consumed given that the car consumption is complex, involving, for example, extracting use and symbolic value? In this contribution we explore the nature of the relationship between cars and the consumer that moves beyond technical and functional value to understand what form of access consumers require to an EV across its entire 50-year life. If such consumption aspects are overlooked then, even if the million-mile car is technically viable, it is unlikely to be adopted and the environmental benefits they may yield will be lost.Peer reviewedFinal Accepted Versio

    SLIM : Scalable Linkage of Mobility Data

    Get PDF
    We present a scalable solution to link entities across mobility datasets using their spatio-temporal information. This is a fundamental problem in many applications such as linking user identities for security, understanding privacy limitations of location based services, or producing a unified dataset from multiple sources for urban planning. Such integrated datasets are also essential for service providers to optimise their services and improve business intelligence. In this paper, we first propose a mobility based representation and similarity computation for entities. An efficient matching process is then developed to identify the final linked pairs, with an automated mechanism to decide when to stop the linkage. We scale the process with a locality-sensitive hashing (LSH) based approach that significantly reduces candidate pairs for matching. To realize the effectiveness and efficiency of our techniques in practice, we introduce an algorithm called SLIM. In the experimental evaluation, SLIM outperforms the two existing state-of-the-art approaches in terms of precision and recall. Moreover, the LSH-based approach brings two to four orders of magnitude speedup
    • …
    corecore