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ABSTRACT
Today’s societies are enveloped in an ever-growing telecom-
munication infrastructure. This infrastructure offers impor-
tant opportunities for sensing and recording a multitude of
human behaviors. Human mobility patterns are a promi-
nent example of such a behavior which has been studied
based on cell phone towers, Bluetooth beacons, and WiFi
networks as proxies for location. However, while mobility
is an important aspect of human behavior, understanding
complex social systems requires studying not only the move-
ment of individuals, but also their interactions. Sensing so-
cial interactions on a large scale is a technical challenge and
many commonly used approaches—including RFID badges
or Bluetooth scanning—offer only limited scalability. Here
we show that it is possible, in a scalable and robust way,
to accurately infer person-to-person physical proximity from
the lists of WiFi access points measured by smartphones car-
ried by the two individuals. Based on a longitudinal dataset
of approximately 800 participants with ground-truth inter-
actions collected over a year, we show that our model per-
forms better than the current state-of-the-art. Our results
demonstrate the value of WiFi signals in social sensing as
well as potential threats to privacy that they imply.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
social sensing; wifi; proximity; interactions; social networks;

1. INTRODUCTION
We are surrounded by an ever-increasing number of telecom-

munication infrastructures, such as mobile phone networks,
WiFi access points, or Bluetooth beacons. In addition to
their intended function of providing connectivity, these in-
frastructures offer an unprecedented opportunity for sensing,
modeling, and subsequent analyzing of a wide range of hu-
man behaviors [26]. Here we show how our interactions with
other people can be inferred in a reliable and scalable way,
using signals from WiFi access points.

Being able to infer person-to-person proximity events with
high spatio-temporal resolution enables modeling of phe-
nomena such as spreading of diseases and information [21],
formation of social ties [12], as well as group dynamics [42].

Commercial applications vary from distributed ad hoc net-
working [27] to romantic matchmaking [10].

Despite the importance of understanding networks of close
proximity interactions, there is a scarcity of scalable and ef-
ficient ways to obtain data for large populations. This is
due to the fact that technology has only recently developed
to the point, where collection of such high resolution data
has become technologically feasible. The data sources used
for investigating mobility of individuals, such as call detail
records (CDRs) from mobile operators [16], are too coarse in
terms of temporal and spatial resolution to allow inference of
person-to-person proximity. On the other hand, the current
state-of-the-art methods for measurement of physical prox-
imity require using specialized hardware (e.g., sociometric
badges) [32, 37] or smartphones sensing each other through
Bluetooth [11, 3, 48]. Specialized hardware adds cost and
complexity to experimental deployments, effectively limit-
ing their scale. Bluetooth scanning realized on participants’
mobile phones increases power consumption [14]—limiting
temporal resolution that can be achieved—and requires the
devices to be in Bluetooth discoverable mode. This require-
ment raises privacy [52] and security concerns [40]. When a
phone is in discoverable mode the location of its owner can
be tracked by third parties, a fact commonly used by re-
searchers [25, 34], and advertisers [9]. Moreover, whenever a
phone is discoverable, a malicious actor can attempt to pair
to it in order to steal contact lists or content of messages.
For these reasons phone manufacturers make it difficult (or
impossible) for a handset to remain discoverable indefinitely.
iOS and Android 6.0+ devices disable discoverability when-
ever the user exits the Bluetooth settings screen. Older An-
droid devices let the user set the discoverability timeout to,
at maximum, five minutes. In our study we relied on the
fact that in Android versions 4.1 - 6.0 it is still possible to
set unlimited discoverability timeout programmatically, but
this might change at any point in the future. Apart from the
privacy and security issues of using Bluetooth for sensing,
another shortcoming is that Bluetooth data lacks location
context. When co-presence of individuals is inferred through
devices sensing each other, an additional step is usually re-
quired to estimate the location of the meeting, for example
by comparing Bluetooth scans with GPS measurements [42],
by using fixed infrastructure of RFID transmitters [44], or
Bluetooth beacons [25]. In the light of these problems, it is
clear that alternative methods for tracking person-to-person
interactions are needed. There have been attempts at ex-
ploiting WiFi signals for social sensing (e.g., [30, 24, 29,
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23] further described in the related work section) but their
general applicability is unclear. The previous methods re-
lied on a single feature for comparing list of detected WiFi
devices, they were only trained and tested in controlled en-
vironments, and they lack verification on longer timescales.

Present work. Here we study the problem of inferring
physical proximity between pairs of individuals from a list
of WiFi signals sensed by their phones. We use a longitu-
dinal dataset containing WiFi and Bluetooth scan results
from hundreds of participants, collected over a year as part
of the Copenhagen Network Study [48]. Using Bluetooth as
ground-truth for physical proximity, we train a model for
comparing the results of WiFi scans from two devices to de-
termine whether two individuals were in close physical prox-
imity. We employ a number of interpretable metrics to com-
pare the lists of visible WiFi access points, such as Jaccard
similarity or correlation of received signal strengths. Apart
from comparing the lists directly, we can derive context from
just the number of routers seen in the lists: more populated
areas tend to have more routers available. Furthermore,
we exploit the characteristics of interaction dynamics, for
example that people are more likely to meet during work
hours, or on a Friday afternoon than on a Sunday night.
Importantly, our algorithm for using WiFi signals to infer
proximity does not rely on positioning the routers in phys-
ical space. Co-location is not inferred by thresholding the
distance between the estimated location of two individuals.
Instead, their WiFi environments are compared and then
we estimate the similarity directly. As a final step, we are
able to combine these insights using machine learning mod-
els to achieve the area under receiving operator curve (AUC
ROC) scores of up to 0.89 in the proximity inference task.
We show that our model works in a range of environments,
does not depend on particular access points, and its per-
formance does not deteriorate over time. Our experiments
demonstrate that we are able to track close-proximity inter-
actions over time and in different social and spatio-temporal
contexts. Overall, our approach performs better than previ-
ously suggested solutions.

Contribution. We present a novel approach for tracking
close-proximity person-to-person interactions based on ex-
isting infrastructure of WiFi networks and off-the-shelf con-
sumer smartphones and compare its performance against
existing methods.

2. EXPERIMENTAL DESIGN
The dataset used in this work was collected as part of

the Copenhagen Networks Study [48]. It covers mobility
and interaction records of approximately 1 000 students at
Technical University of Denmark, over a two year period.
Each student was equipped with a LGE Nexus 4 Android
smartphone as a data collecting device. On each phone, an
application based on the Funf Open Sensing framework [3]
gathered readings from multiple sensors including:

• Bluetooth scans (every 5 minutes): each scan con-
tains a list of discoverable devices,∗their unique identi-
fiers, user defined names, and received signal strength
(RSSI). Because we know which anonymized partici-
pant identifier corresponds to which Bluetooth unique

∗smartphones in the study were specifically configured to be
in Bluetooth discoverable mode

training test

total observations 0.5M 115.5M
% positive 31% 31%
unique users 812 820
median number of access
points per observation

7.0 7.0

mean number of access
points per observation

11.3 11.3

Table 1: Summary statistics of the dataset used to
infer proximity events.

identifier, we can monitor proximity between the par-
ticipants.

• WiFi scans (every 5 minutes): each scan contains a
list of WiFi access points (both traditional routers and
mobile hotspots), their unique identifiers (BSSIDs or
MAC addresses), network names they transmit (SSIDs),
and RSSI.

The collector app additionally collected the data requested
by other applications on the phone. Therefore, the tempo-
ral resolution of the data for some of the users can be even
higher than one sample every 5 minutes.

All data in the Copenhagen Networks Study was collected
with the participants’ informed consent, with an emphasis
on ensuring awareness of the complexity and sensitivity of
the collected data [46]. The study setup, including security,
privacy, and informed consent has been approved by Danish
Data Protection Agency. Further details of the study can
be found in Ref. [48].

3. METHODS
In brief, our task is to compare the lists of WiFi routers

seen by users A and B approximately at the same time (with
at most ∆t = 300 seconds difference) and determine whether
the two users were in close physical proximity. We use Blue-
tooth data as ground truth for physical proximity to train
and verify our models.

3.1 Data preparation

WiFi. We found that in our dataset there are multi-
ple WiFi routers that share the same MAC address, a phe-
nomenon which might confound our task. We use a simple
heuristic to remove these “ambiguous” routers since finding
the optimal way of identifying them would warrant a publi-
cation on its own. Here we rely on the network name they
broadcast. Because the routers at the DTU campus broad-
cast up to four network names (SSID) per MAC address,
we remove the scans of routers which broadcast five or more
network names throughout the observation. We found 3950
offending MAC addresses, which corresponds to only 0.04%
of all unique MAC addresses in the data. However, scans of
these routers constitute 1.4% of all scan results.

Next, we identify one home router for each participant per
month. We employ the following heuristic for each partici-
pant:

1. Bin the time information of WiFi scan history. The
size of the bin does not influence the results signifi-
cantly, here we use 10 minutes.



2. Sort the list of routers by the number of timebins in
which they appear, in descending order.

3. The router that appears in the biggest number of time-
bins is assumed to be the home router.

The details of the procedure are described in Ref. [39].

Bluetooth. Due to the imperfect firmware and soft-
ware running on the phones, Bluetooth data is not always
available—not all users are scanning and discoverable at all
times. This can introduce a situation in which two persons
are proximate, but Bluetooth does not capture that event.
We divide the dataset into one hour subsets and select only
the WiFi and Bluetooth data from people who were seen
and who saw at least one other person through Bluetooth.
This strict approach makes the task more difficult, as it re-
moves long periods where individuals are alone, for example
night-time samples of students who do not live with other
participants.

Negative samples. To train our model we also need to
provide negative examples. For dyads in this category we
choose potential interactions between two people who did
not see each other on Bluetooth, but whose lists of scan re-
sults share at least one overlapping router. Compared to
selecting negative samples by randomly sampling dyads this
definition brings the task closer to a real-life scenario of dis-
covering very close physical proximity (up to approximately
10 meters). As a result, the dataset has 31% positive and
69% negative samples.

3.2 Dataset statistics
Table 1 shows the details about the dataset. Through

a year of data we found 116M potential interactions. We
randomly select 0.5M of them to train the models.

We note that in our dataset people are near to access
points more than 95% of time, and the average count of
routers in a single scan is 12, see Figure 1A. We also observe
that in 99% of cases of Bluetooth sightings the correspond-
ing WiFi scans overlap by at least one access point. This
indicates that there is a potential in using WiFi scan re-
sults to infer the co-presence with high recall. Conversely,
in more than 31% of cases where there is at least one over-
lapping access point, the two devices are also close accord-
ing to Bluetooth. This indicates that WiFi signals can be
applied to the task resulting in a high precision solution.
In general, pairs of people who are in Bluetooth proximity
scan more routers in common than those who are not, see
Figure 1B. The majority (53%) of meetings happen during
working hours (from 8am to 7pm) on campus.

3.3 Methods of comparison
We use a number of metrics to compare two lists of WiFi

scan results and use these metrics as features in a supervised
machine learning approach. We divide the features into the
following categories: availability of access points, received
signal strength, presence + RSSI, timing, popularity, and
location. Table 2 lists the features we apply, and Figure 2
shows how the probability of an interaction changes as a
function of each feature’s value. In this section we describe
each feature in detail. Citations refer to the first articles
using the features for the purpose of person to person contact
detection.
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Figure 1: a. More than 95% of scans report at least
one access point, and 12 APs on average. b. Peo-
ple in Bluetooth proximity scan more overlapping
routers than those who are not proximate.

category features

AP presence overlap, non-overlap, union,
jaccard

RSSI spearman, pearson, manhat-
tan, euclidean

AP presence +
RSSI

top AP, top AP±6dB

timing hour of week

popularity min popularity, max popu-
larity, Adamic-Adar

location at home, at DTU

Table 2: Features used to infer close-proximity in-
teractions.

Availability of access points (AP presence). First,
we compare the list of routers seen by the two phones, re-
gardless of their received signal strengths. We introduce the
following measures: overlap: the raw count of overlapping
routers [24]; union: size of the union of the two lists; jac-
card: ratio between the size of the intersection and the size
of the union of the two lists [23]. non-overlap: the raw
count of non-overlapping routers (size of union minus size
of overlap) [24]; Figure 2A-C presents the interplay between
the values of the three parameters and the probability of an
interaction. Intuitively, the greater the number of common
routers two phones see in a scan, the higher the probabil-
ity of them being in close proximity. Perhaps surprisingly,
this probability also depends on the size of the union: the
larger the union of the two lists the lower the probability
of an interaction. This can be explained by the fact that
the number of available access points is positively correlated
with the population density [39]. Hence, popular places are
likely to attract people who do not necessarily interact with
one another. Conversely, two people in a relatively unpopu-
lar location are more likely to be there together. The visible
dip in the union plot, corresponding to lower probability of
meeting with around 30 routers present, might correspond
to a particular location where many non-interactions hap-
pen (for example a dining hall). Nevertheless, we expect
that, in general, the probability of interaction is negatively
correlated with the size of union. Using Jaccard similarity
between the two lists allows to recognize interactions regard-



Figure 2: The larger the number of common routers
two phones see, the higher the probability of close
proximity. At the same time, the more routers they
see in total, the lower the probability of an interac-
tion — densely populated areas have more routers
and more people who are not necessarily interacting.
Jaccard similarity allows us to recognize interactions
regardless of the number of visible access points.

less of the number of visible access points.

Received Signal Strength Indicator (RSSI). Next, we
focus on comparing the received signal strength of the over-
lapping routers. While received signal strength (RSSI) is not
generally a reliable proxy for distance [38], two co-located
people can be expected to have similar RSSI readings for
the overlapping routers. We investigate the spearman and
pearson correlation coefficients of received signal strengths
of the overlapping routers. For brevity we only present the
results for the spearman metric Figure 2D — the values of
the two metrics are highly correlated (Spearman’s ρ = 0.89,

pval < 0.001). Note that because there are instances where
the correlation is undefined (not a number) or not statisti-
cally significant (with pval > 0.05), we replace such values
of the coefficients with the mean values of valid correlations
(see section 3.4 for details of the imputation). This im-
plies that there are no examples of small correlations (which,
given only a few values to compare, are not statistically sig-
nificant) and there is a dip in probability of interactions
corresponding to the mean value of correlation coefficients.

Furthermore, we also calculate the difference between RSSI
of overlapping routers by measuring the `1 and `2 distances
and dividing the results by the number of overlapping routers.
For simplicity we call these features manhattan and eu-
clidean and define them in Equations 1 [30] and 2 [23] re-
spectively.

m =

∑
i

|RSSIA,i −RSSIB,i|

N
(1)

e =

√∑
i

(RSSIA,i −RSSIB,i)2

N
(2)

where RSSIA,i is the received signal strength or access point
i as measured by user A, and N is the total number of
overlapping routers. Figure 2E shows that with growing
distance, the probability of an interaction falls.

AP presence + RSSI. It has been previously shown that a
good heuristic for determining whether a user is in the same
location during two measurements is to verify whether they
measure a common strongest router [15]. Here, we verify
whether this approach can be used for inferring co-location:
if two users measure the same router as the strongest one, we
assume they are in close proximity. We investigate the strict
case, top AP. Additionally, we allow for some variability
in the measured strength: feature top AP±6dB assumes
a positive value if there is at least one overlapping access
point in the lists of routers of A and B within 6dB from the
top router.

Popularity. Additionally, we inspect how many different
participants of the study scanned the overlapping routers
within five minutes of the meeting—intuitively if only a few
persons were in a given location they were more likely to
be there together, rather than by chance. We find the least
and the most popular among the overlapping routers and re-
port min popularity and max popularity. As we show
in Figure 2F, this intuition is not entirely confirmed by the
data. The correlation between the number of individuals
present and the probability that any two of them are inter-
acting is low (Spearman’s ρ = 0.15, pval < 0.001). Note
that popularity and the size of union are correlated (Spear-
man’s ρ = 0.48, pval < 0.001) — more routers are located
in popular places, so the more routers there are around, the
more people see each of them. However, to achieve a good
estimation of popularity, we need data from the entire pop-
ulation, while the number of routers around can be obtained
just from data of just the two individuals. Additionally, we
use a score inspired by a measure introduced by Adamic and
Adar [2], defined as:

aa(u1, u2) =
∑
i

1

log(popularity(APi))
. (3)



Here, each overlapping router is weighted more the fewer
people scanned it. In this case, the higher the value, the
higher the probability of a meeting between two people.

Timing. In contrast to the other features we described, tim-
ing does not rely on comparing the list of scan results. In-
stead, we use the timestamp of each potential meeting to ex-
ploit the temporal characteristics of human interactions. As
a reminder, we only consider a potential interaction if both
parties have WiFi scans within 300 seconds from one an-
other. For simplicity, we assume that the timestamp of the
potential interaction is the lower of the two scan timestamps.
We notice that the prior probability of two people being
proximate depends on the time of day and the day of week,
as shown in Figure 2I-K. While there is only a small vari-
ability between the days of the week (Figure 2J), the proba-
bility of the interaction during a day (Figure 2I) appears to
be driven both by the class schedule—the probability is the
highest during classes, and drops during lunchtime—and by
after-school social activities. Only by combining the two fac-
tors (Figure 2K), we get the full picture: the probability of
interactions from Monday to Tuesday is driven by the school
schedule; Friday is a mixture of scheduled and social interac-
tions, with the probability remaining high far into the night
hours; Saturday is characterized by interactions starting in
the late afternoon and into the night; and on Sunday our
participants interact mostly during daytime, with no visible
lunch breaks. We add a feature to capture these patterns:
hour of week: from 0 to 167.

Location. The last category, location, contains two binary
features. A meeting is considered at home if at least one of
the routers in the union corresponds to the home router of
one of the users (the heuristic for home location detection
is explained in 3). A meeting is assumed to take place at
DTU if at least one of the routers in the union broadcasts
a WiFi network name of dtu, as all access points on the
campus do.

3.4 Imputing missing values
Two of our features are Pearson and Spearman correla-

tions. There are two cases in which it is not possible to
calculate the correlation: (1) if there are fewer than three
routers available for comparison, (2) if at least one person
reads all the signal strengths at the same level. In such cases
we assume a NaN (not-a-number) value of ρ to be imputed
later on. Additionally, we assume a NaN value of ρ if the cor-
relation is not significant with the pval < 0.05. This results
in multiple missing values for the two features. The simplest
approach is to skip such observations, but that would imply
not training the model in cases with few routers available.
We therefore impute the values by assigning the mean value
of the feature (averaged over all the non-NaN training ex-
amples) when we encounter NaN values. This average from
training is preserved and used to impute missing values in
the test set. We verified in our data that other approaches,
such as using the median value of the feature or using k
nearest neighbors to impute the missing value [50], do not
improve the consecutive predictive performance.

4. RESULTS
In this section we evaluate the performance of each feature

and each featureset in the task of proximity inference. Then,

we examine the robustness of our best model to short train-
ing as well as the various types of environments in which the
interactions happen.

4.1 Performance of single features
We first show how well one can infer close-proximity in-

teractions using single features. We report the area under
Receiver Operating Characteristic curve (AUC ROC) as the
first metric of performance in Table 3. Then, we select the
threshold at which the F1 score (the harmonic mean be-
tween precision and recall) is maximized in the training set.
We also report the F1 score at the threshold optimal for
the training set along with the AUC ROC for the test data
(111.5 million previously unseen samples).

The results are presented in Table 3. We find that the
single best performing feature is Jaccard similarity between
the two lists of routers. As expected, thresholding on time
information is not meaningful (it is equivalent to assuming
that all interactions after a certain hour of a certain day of
week are close proximity interactions). It is important to
note that the performance in test does not drop compared
to training, which means that the thresholds are not just
specific to the training data.

4.2 Performance of feature sets
We train a Gradient Boosting Classifier for each category

of features and present the results in Table 4. The param-
eters of the classifier are tuned each time through a grid
search of the parameter space with 5-fold cross validation.
Furthermore, we compare the model based on the features
proposed by Krumm et al. [24] to models based on richer
sets of features, see Table 4. In the original work, Krum
et al. did not find any performance improvements of using a
combined model over using single features. Here, we show
that combining the features they proposed does improve the
performance. Our Simple model is based on features that do
not require long term data collection and are not specific to
our deployment. It performs better than any single feature
or group of features, and it outperforms the model based on
the features introduced by Krumm. Enhancing the model
with the information on popularity (the General model) fur-
ther improves the performance. Finally, using all features,
including timing and location (which might be specific to
this experiment as they depend on our campus as location
and the time schedule typical for students), does not improve
the performance of the classifier.

4.3 WiFi similarity and physical proximity
Here, we verify whether there is a correlation between how

close people are in physical space (approximated by the re-
ceived Bluetooth signal strength measured on their phones)
and the probability that our models misclassify the sample
as “non-interaction”. As we show in Figure 3, the shorter
the distance over which an interaction happens (high Blue-
tooth RSSI), the lower the probability of missing that in-
teraction. This shows that the similarity measure between
WiFi lists introduced by our models has a physical interpre-
tation: a more similar WiFi environment indicates proxim-
ity in a more granular way than just the Bluetooth 10 meter
range.

4.4 Training period and performance in test
Figure 4 shows how the number of samples used for train-



AUC ROC F1

category feature train test train test

AP
presence

overlap 0.77 0.77 0.61 0.61
jaccard 0.84 0.84 0.69 0.68
union 0.53 0.53 0.48 0.48
non-overlap 0.74 0.74 0.58 0.57

RSSI

spearman 0.70 0.70 0.57 0.58
pearson 0.71 0.71 0.59 0.59
manhattan 0.60 0.60 0.51 0.51
euclidean 0.59 0.59 0.51 0.51

Presence
+ RSSI

top AP 0.60 0.60 0.48 0.48
top AP±6dB 0.75 0.74 0.65 0.65

Popularity
min popularity 0.54 0.54 0.48 0.48
max popularity 0.59 0.59 0.49 0.50
adamic adar 0.77 0.77 0.62 0.62

Timing hour of week 0.51 0.51 0.48 0.48

Location
at DTU 0.61 0.61 0.51 0.51
at home 0.64 0.64 0.55 0.55

Table 3: Performance of single features and fea-
ture categories in the task of inferring close prox-
imity interactions. Jaccard similarity between lists
of routers seen by the two devices is the best per-
forming single feature. F1 are given for a threshold
that maximizes F1 in the training set.
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Figure 3: The distance over which an interaction
happens can be approximated using Bluetooth re-
ceived signal strength (RSSI). Very close proxim-
ity contacts are unlikely to be misclassified as non-
interactions. The lower the RSSI (the more distant
the two potentially interacting people), the higher
the probability, that our models miss the interac-
tion.

ing influences the performance of the full model in test. We
compare the performance of a random forest classifier and
a gradient boosted classifier and find that the latter has a
slightly higher performance for training sets larger than 1000
samples. On the other hand, training of the random forest
classifier can parallelized, thus making the process faster.

4.5 Importance of features
Here we show how important each feature is for the ma-

chine learning model. In the implementation we use [35]
the feature importance is defined as the total decrease in
node impurity weighted by the probability of reaching that
node, averaged over all trees of the ensemble [1]. Figure 5
shows the accumulated results from 30 training rounds of
the gradient boosted classifier on randomly selected subsets

AUC ROC F1

featureset train test train test
AP presence: overlap,
non-overlap, jaccard,
union

0.85 0.85 0.69 0.69

RSSI: spearman,
pearson, manhattan,
euclidean

0.78 0.79 0.62 0.62

Presence+RSSI: top AP,
top AP±6dB

0.75 0.75 0.65 0.65

Popularity: min,
max, adamic adar

0.79 0.79 0.62 0.62

Location: at DTU,
at home

0.65 0.65 0.55 0.55

NearMe: overlap,
non-overlap, spearman,
euclidean

0.87 0.87 0.71 0.71

Simple: AP presence,
RSSI, Presence + RSSI

0.88 0.88 0.72 0.72

General: AP presence,
RSSI, Presence + RSSI
Popularity, at home

0.89 0.89 0.73 0.73

Full: all features 0.89 0.89 0.73 0.73

Table 4: Performance of feature sets in the task of
inferring close proximity interactions. We train a
Gradient Boosted Classifier on selected subsets of
features: each feature category listed in Table 3,
NearMe [24], Simple (no features that are specific
to this experiment or require longer term data col-
lection), General (without features that could be
specific to this experiment), and Full (all listed fea-
tures). Using features which could be specific to the
experiment does not improve performance further.
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Figure 4: The more samples we use for training
the interaction detection models, the better they
perform in test, but after a certain thresholds, the
gains are negligible. The performance of the Gra-
dient Boosted Classifier saturates at a higher level,
but the time it takes to train the classifier is longer
than it is the case with the Random Forest Classi-
fier. Each of the model is trained 20 times for each
number of samples, the shaded areas correspond to
25-75 percentiles and the solid lines to medians of
the results for each training set size.
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Figure 5: Gradient Boosted Classifier reports the
relative importance of each feature (the decrease in
node impurity it provides). After 30 training rounds
we see that Jaccard is the most important feature,
followed by overlap among the strongest routers (top
AP±6dB), Adamic-Adar, and Pearson correlation
between the signal strengths.

of the training data, each with 100 000 samples. We find
that Jaccard similarity is the most important, followed by
the overlap among the strongest routers, Pearson’s correla-
tion of signal strengths, and Adamic-Adar (which exploits
the overlap and the popularity of routers).

4.6 Validity of the model in different scenar-
ios

Figure 6 shows the performance of the gradient boosting
classifier in different contexts and across time.

Number of routers. As described before, the number of
routers in an environment is positively correlated with the
population density. We divide the test data in three equally-
sized subsets, depending on the size of the union of routers
seen by two people. Figure 6A shows that the performance
of the model is best in the low and mid sets (AUC > 0.9) and
observably lower (AUC ≈ 0.85) for environments with the
highest number of routers. Thus, we show that the model
performs well in typical environments.

Location. Because our the data was collected by students
of one university, with the majority of interactions happen-
ing on campus, there is a risk that the model would overfit
towards such situation. This is, in fact not the case. Fig-
ure 6B shows that while the performance of the model is
high on campus, it becomes even better for the meetings
outside.

Timing. As shown in Figure 6C the performance of
the model does not drop significantly during special peri-
ods, such as Christmas of summer vacation (gray areas in
the plot correspond to periods with no university classes).
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Figure 6: Our model for detecting person-to-person
proximity events performs well regardless of the
number of available routers (A) and location (B). Its
performance does not drop during holidays (marked
with gray areas in C). The situation in which the
performance is the worst is the Friday evenings and
nights (F), but even then, the AUC ROC is high.

Instead, it remains stable throughout the experiment.
The performance does vary with the hour of week, as

shown in Figure 6D-F. When we compare it to Figure 2K,
we see that the model performs better in situations where
the prior probability of meeting is lower (for example during
week nights). Nevertheless, it retains high performance of
AUC > 0.8 throughout the week.

5. RELATED WORK
In this section we discuss related work that explores the

application of mobile data to deepen our understanding of
aspects relevant to this paper.

Location and mobility. CDR data has been used as
a proxy for human mobility at large, societal scale. It has
been shown that our movements are regular [16], stable [28],



and predictable [43]. Several works argue that many unpre-
dictable travels observed in real data can be attributed to
individuals seeking interaction with their social contacts [17,
49, 8]. It yet remains to be verified whether these findings
hold fully if the analysis were to be performed on data with
higher spatial and temporal resolution (such as WiFi data).
At smaller scales, the scientific community investigated the
potential of WiFi routers in applications of indoor [4, 18,
36] and outdoor [7, 31, 13, 20] localization. Our recent work
investigates how large companies can crowd source the cre-
ation of databases with router locations [38, 31, 13] and how
people’s mobility on societal scale can be described using
only a small subset of available routers [39]. WiFi signals
can also be analyzed to discover places of interest and stop
locations in an unsupervised manner, i.e. without explicit
location information as reference [22, 51].

It is important to stress that the work presented in this
article does not rely on location estimation (in terms of ge-
ographical coordinates) but instead on relative comparison
between the environments sensed by two parties.

Interactions. Complementary to mobility, the question
of social interactions has been recently considered in vari-
ous contexts, with the results indicating that collection of
high-resolution behavioral traces is instrumental for under-
standing of complex processes in society [11, 42, 47, 45].
However, from a technical point of view, collection of such
data remains a challenge.

The most popular methods for quantitative and scalable
collection of close-proximity interactions include using spe-
cialized hardware (e.g., sociometric badges) [32, 37] or Blue-
tooth enabled smartphones [11, 3, 48]. In case of badges, in-
teractions are usually inferred using radio-frequency identi-
fication (RFID) transmissions or infrared. This way, badges
worn around participants’ necks can usually sense not just
proximity but also whether individuals are facing each other,
resulting in recordings of face-to-face interactions. Sens-
ing performed using Bluetooth-enabled mobile phones is less
granular. The proximity can be detected in a binary fash-
ion or further refined using the received signal strength as
a proxy for distance [41]. However, the orientation of the
individuals can not be sensed. The subjects’ devices must
remain in Bluetooth-discoverable state, which raises a num-
ber of security and privacy concerns, as described in the
Introduction. There has been some developments in substi-
tuting Bluetooth with WiFi, an approach in which one of
the phones acts as a hotspot and is sensed by others [6].
In controlled test environments this approach appears to of-
fer a distance estimation resolution of 0.5m [33], providing
a better understanding of the nature of the contacts [19].
However, the claim has not been tested in the wild and the
method potentially introduces even more privacy and secu-
rity problems than Bluetooth.

An alternative way of sensing interactions between two
persons with smartphones relies on comparing the two de-
vices’ radio frequency perceptions of the environment. If
a similarity is above a certain threshold, the two devices
are assumed to be in physical proximity. The idea of com-
paring WiFi signals to measure proximity was initially ex-
plored more than a decade ago. Initially, researchers relied
on single-feature measures of similarity, such as Manhattan
distance [30] or overlap [29]. NearMe project [24] introduced
more features, such as rank correlation between the lists of

overlapping routers sorted by signal strength, Euclidean dis-
tance, and the number of non-overlapping APs. The authors
explored combining the features into a regression model, but
this approach did not outperform single features. Moreover,
their model would overfit for the rooms where it was trained
and thus under-perform in previously unseen environments.
In fact, Kjærgaard and Nurmi name differences in environ-
ments where the sensing takes place among the most impor-
tant obstacles in using WiFi for social sensing [23]. Carlotto
et al.combine a number of previously suggested features us-
ing a Gaussian Mixture Model and claim that their model is
not environment-dependent (performs equally well in both
buildings where it was tested) [5].

We note that the differences in environments can actually
be used to increase the performance of the model. We can
exploit the characteristics of human interactions: from a
technical standpoint, environments with a smaller number of
routers offer lower accuracy of distance estimation; however,
two people in an environment with fewer access points are
more likely to be actually interacting (see Figure 2).

6. DISCUSSION
In this paper we evaluated the applicability of WiFi based

social sensing. The idea of exploiting WiFi signals for this
purpose is not new. However, to our best knowledge, re-
searchers have not yet tested this approach in practice, over
a long period, and in a large population that interacts in var-
ious environments. The growing popularity of WiFi access
points and the phones’ inability to remain Bluetooth discov-
erable are two trends that make it feasible and important to
begin using WiFi signals for social sensing.

6.1 Privacy implications
There are two main privacy implications of this work.
First, the ability to track face-to-face interactions using

WiFi can help us move away from relying on Bluetooth. By
not requiring the participants’ phones to remain Bluetooth
discoverable we protect the privacy and security of the sub-
jects. While currently most phones advertise their presence
and identity by scanning for WiFi, this problem is being
addressed. Both Android and iOS randomize the MAC ad-
dress of the device every time it sends WiFi probe requests
making it more difficult to identify the user.†

Second, our results indicate a potential erosion of pri-
vacy of Android users. As we have previously shown, WiFi
can be efficiently used for high-resolution mobility tracking
of entire populations [38, 39, 51]. Here we go a step further
and infer who people interact with, not only where they are.
Thus, results of WiFi scans—collected by major manufac-
turers of mobile devices and available to majority of mobile
application developers—constitute very sensitive datasets.
For example, a vast majority of the applications available in
Google Play Store has access to WiFi information, including
all the scan results requested by the system as often as ev-
ery 15 seconds [39]. This problem is addressed since Android
6.0—in the latest versions of the system an application has
to hold a location permission to listen to WiFi scan results.
However, the vast majority of handsets currently in use will
not receive these crucial updates. Thus, WiFi signals remain

†The randomization can only happen when the device is not
connected to any WiFi network. When it is, it announces
its real MAC address in each probe request.



a major privacy risk for years to come.

6.2 Limitations of the WiFi-based social infer-
ence

While our approach to inference of social interactions us-
ing WiFi signals offers an important new method in compu-
tational social science, we want to recognize its limitations.
The inference in the approach presented here depends on
the WiFi routers being present in the environment. While
today WiFi networks are omnipresent, especially in densely-
populated areas [39], we find that in our longitudinal and
diverse dataset approximately 5% of the WiFi scans did not
report any nearby networks, preventing inference of physical
proximity.

In this study, all phones collecting data were of the same
make and model. When considering a broader application
of the method, differences in WiFi hardware transmitters
and firmware and software of the phones may result in less
consistent scan data, making it more difficult to devise a
robust model as the one presented here.

Furthermore, due to the lack of ground truth data, we
cannot prove that our model accurately estimates the dis-
tance between users. We show, that our model is more likely
to recognize interactions with a higher Bluetooth RSSI, but
this property does not trivially translate to distance estima-
tion.

Finally, we should note that it is not our argument that
the values of all model features for discovering particular in-
teractions and reconstructing the overall social network are
generally applicable to different populations. Depending on
the specific population and social context under consider-
ation, the weights in the model might be different or even
entirely new features might be useful. Our results indicate,
however, that physical proximity can be inferred in a fea-
sible fashion using WiFi signals collected by smartphones,
even in very densely-connected populations.

7. CONCLUSION
In this work we showed how WiFi scan results can reveal

a great deal about our daily interactions with others and
our social ties. By using behavioral traces, placed in con-
text through meta information and our basic understanding
of the inner working of social systems, we can transform a
noisy data source to a strong social signal. Our findings have
important privacy implications, especially given our previ-
ous work which shows that it is possible to use WiFi signals
for tracking human mobility. On the other hand, WiFi scans
also constitute a great opportunity for companies with ac-
cess to such data on a global scale, to contribute e.g., better
epidemic models built on proximity data of billions of peo-
ple. Finally, we hope that this method of social sensing will
substitute Bluetooth sensing in future Computational Social
Science deployments.
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