3,748 research outputs found

    Bounded Coordinate-Descent for Biological Sequence Classification in High Dimensional Predictor Space

    Full text link
    We present a framework for discriminative sequence classification where the learner works directly in the high dimensional predictor space of all subsequences in the training set. This is possible by employing a new coordinate-descent algorithm coupled with bounding the magnitude of the gradient for selecting discriminative subsequences fast. We characterize the loss functions for which our generic learning algorithm can be applied and present concrete implementations for logistic regression (binomial log-likelihood loss) and support vector machines (squared hinge loss). Application of our algorithm to protein remote homology detection and remote fold recognition results in performance comparable to that of state-of-the-art methods (e.g., kernel support vector machines). Unlike state-of-the-art classifiers, the resulting classification models are simply lists of weighted discriminative subsequences and can thus be interpreted and related to the biological problem

    Embedding Feature Selection for Large-scale Hierarchical Classification

    Full text link
    Large-scale Hierarchical Classification (HC) involves datasets consisting of thousands of classes and millions of training instances with high-dimensional features posing several big data challenges. Feature selection that aims to select the subset of discriminant features is an effective strategy to deal with large-scale HC problem. It speeds up the training process, reduces the prediction time and minimizes the memory requirements by compressing the total size of learned model weight vectors. Majority of the studies have also shown feature selection to be competent and successful in improving the classification accuracy by removing irrelevant features. In this work, we investigate various filter-based feature selection methods for dimensionality reduction to solve the large-scale HC problem. Our experimental evaluation on text and image datasets with varying distribution of features, classes and instances shows upto 3x order of speed-up on massive datasets and upto 45% less memory requirements for storing the weight vectors of learned model without any significant loss (improvement for some datasets) in the classification accuracy. Source Code: https://cs.gmu.edu/~mlbio/featureselection.Comment: IEEE International Conference on Big Data (IEEE BigData 2016

    Comparing SVM and Naive Bayes classifiers for text categorization with Wikitology as knowledge enrichment

    Full text link
    The activity of labeling of documents according to their content is known as text categorization. Many experiments have been carried out to enhance text categorization by adding background knowledge to the document using knowledge repositories like Word Net, Open Project Directory (OPD), Wikipedia and Wikitology. In our previous work, we have carried out intensive experiments by extracting knowledge from Wikitology and evaluating the experiment on Support Vector Machine with 10- fold cross-validations. The results clearly indicate Wikitology is far better than other knowledge bases. In this paper we are comparing Support Vector Machine (SVM) and Na\"ive Bayes (NB) classifiers under text enrichment through Wikitology. We validated results with 10-fold cross validation and shown that NB gives an improvement of +28.78%, on the other hand SVM gives an improvement of +6.36% when compared with baseline results. Na\"ive Bayes classifier is better choice when external enriching is used through any external knowledge base.Comment: 5 page

    Classifying document types to enhance search and recommendations in digital libraries

    Full text link
    In this paper, we address the problem of classifying documents available from the global network of (open access) repositories according to their type. We show that the metadata provided by repositories enabling us to distinguish research papers, thesis and slides are missing in over 60% of cases. While these metadata describing document types are useful in a variety of scenarios ranging from research analytics to improving search and recommender (SR) systems, this problem has not yet been sufficiently addressed in the context of the repositories infrastructure. We have developed a new approach for classifying document types using supervised machine learning based exclusively on text specific features. We achieve 0.96 F1-score using the random forest and Adaboost classifiers, which are the best performing models on our data. By analysing the SR system logs of the CORE [1] digital library aggregator, we show that users are an order of magnitude more likely to click on research papers and thesis than on slides. This suggests that using document types as a feature for ranking/filtering SR results in digital libraries has the potential to improve user experience.Comment: 12 pages, 21st International Conference on Theory and Practise of Digital Libraries (TPDL), 2017, Thessaloniki, Greec

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Towards minimizing the energy of slack variables for binary classification

    Get PDF
    This paper presents a binary classification algorithm that is based on the minimization of the energy of slack variables, called the Mean Squared Slack (MSS). A novel kernel extension is proposed which includes the withholding of just a subset of input patterns that are misclassified during training. The later leads to a time and memory efficient system that converges in a few iterations. Two datasets are exploited for performance evaluation, namely the adult and the vertebral column dataset. Experimental results demonstrate the effectiveness of the proposed algorithm with respect to computation time and scalability. Accuracy is also high. In specific, it equals 84.951% for the adult dataset and 91.935%, for the vertebral column dataset, outperforming state-of-the-art methods. © 2012 EURASIP
    corecore