In this paper, we address the problem of classifying documents available from
the global network of (open access) repositories according to their type. We
show that the metadata provided by repositories enabling us to distinguish
research papers, thesis and slides are missing in over 60% of cases. While
these metadata describing document types are useful in a variety of scenarios
ranging from research analytics to improving search and recommender (SR)
systems, this problem has not yet been sufficiently addressed in the context of
the repositories infrastructure. We have developed a new approach for
classifying document types using supervised machine learning based exclusively
on text specific features. We achieve 0.96 F1-score using the random forest and
Adaboost classifiers, which are the best performing models on our data. By
analysing the SR system logs of the CORE [1] digital library aggregator, we
show that users are an order of magnitude more likely to click on research
papers and thesis than on slides. This suggests that using document types as a
feature for ranking/filtering SR results in digital libraries has the potential
to improve user experience.Comment: 12 pages, 21st International Conference on Theory and Practise of
Digital Libraries (TPDL), 2017, Thessaloniki, Greec