The activity of labeling of documents according to their content is known as
text categorization. Many experiments have been carried out to enhance text
categorization by adding background knowledge to the document using knowledge
repositories like Word Net, Open Project Directory (OPD), Wikipedia and
Wikitology. In our previous work, we have carried out intensive experiments by
extracting knowledge from Wikitology and evaluating the experiment on Support
Vector Machine with 10- fold cross-validations. The results clearly indicate
Wikitology is far better than other knowledge bases. In this paper we are
comparing Support Vector Machine (SVM) and Na\"ive Bayes (NB) classifiers under
text enrichment through Wikitology. We validated results with 10-fold cross
validation and shown that NB gives an improvement of +28.78%, on the other hand
SVM gives an improvement of +6.36% when compared with baseline results. Na\"ive
Bayes classifier is better choice when external enriching is used through any
external knowledge base.Comment: 5 page