635 research outputs found

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]∘GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]∘GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]∘GFORMULA[s]\circ \mathcal{G} on more than 1/2+Δ1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k⋅4k⋅R(k)(G)⋅log⁥(n/Δ)⋅log⁥(1/Δ))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]∘PTFk−1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log⁥(s/Δ)⋅log⁥(1/Δ))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that Δ\varepsilon-fools FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]∘LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2⋅s1/4⋅log⁥(n)⋅log⁥(n/Δ))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where Δ≀1/n\varepsilon \leq 1/n. (3) There is a randomized 2n−t2^{n-t}-time #\#SAT algorithm for FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}, where t=Ω(ns⋅log⁥2(s)⋅R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]∘XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/log⁥n)2^{O(n/\log n)}

    Complexity of ITL model checking: some well-behaved fragments of the interval logic HS

    Full text link
    Model checking has been successfully used in many computer science fields, including artificial intelligence, theoretical computer science, and databases. Most of the proposed solutions make use of classical, point-based temporal logics, while little work has been done in the interval temporal logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham's modal logic of time intervals HS over finite Kripke structures (under the homogeneity assumption) and an EXPSPACE model checking procedure for two meaningful fragments of it have been proposed. In this paper, we show that more efficient model checking procedures can be developed for some expressive enough fragments of HS

    Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's

    Get PDF
    We present an algorithm for recovering planted solutions in two well-known models, the stochastic block model and planted constraint satisfaction problems, via a common generalization in terms of random bipartite graphs. Our algorithm matches up to a constant factor the best-known bounds for the number of edges (or constraints) needed for perfect recovery and its running time is linear in the number of edges used. The time complexity is significantly better than both spectral and SDP-based approaches. The main contribution of the algorithm is in the case of unequal sizes in the bipartition (corresponding to odd uniformity in the CSP). Here our algorithm succeeds at a significantly lower density than the spectral approaches, surpassing a barrier based on the spectral norm of a random matrix. Other significant features of the algorithm and analysis include (i) the critical use of power iteration with subsampling, which might be of independent interest; its analysis requires keeping track of multiple norms of an evolving solution (ii) it can be implemented statistically, i.e., with very limited access to the input distribution (iii) the algorithm is extremely simple to implement and runs in linear time, and thus is practical even for very large instances

    Improving Model Finding for Integrated Quantitative-qualitative Spatial Reasoning With First-order Logic Ontologies

    Get PDF
    Many spatial standards are developed to harmonize the semantics and specifications of GIS data and for sophisticated reasoning. All these standards include some types of simple and complex geometric features, and some of them incorporate simple mereotopological relations. But the relations as used in these standards, only allow the extraction of qualitative information from geometric data and lack formal semantics that link geometric representations with mereotopological or other qualitative relations. This impedes integrated reasoning over qualitative data obtained from geometric sources and “native” topological information – for example as provided from textual sources where precise locations or spatial extents are unknown or unknowable. To address this issue, the first contribution in this dissertation is a first-order logical ontology that treats geometric features (e.g. polylines, polygons) and relations between them as specializations of more general types of features (e.g. any kind of 2D or 1D features) and mereotopological relations between them. Key to this endeavor is the use of a multidimensional theory of space wherein, unlike traditional logical theories of mereotopology (like RCC), spatial entities of different dimensions can co-exist and be related. However terminating or tractable reasoning with such an expressive ontology and potentially large amounts of data is a challenging AI problem. Model finding tools used to verify FOL ontologies with data usually employ a SAT solver to determine the satisfiability of the propositional instantiations (SAT problems) of the ontology. These solvers often experience scalability issues with increasing number of objects and size and complexity of the ontology, limiting its use to ontologies with small signatures and building small models with less than 20 objects. To investigate how an ontology influences the size of its SAT translation and consequently the model finder’s performance, we develop a formalization of FOL ontologies with data. We theoretically identify parameters of an ontology that significantly contribute to the dramatic growth in size of the SAT problem. The search space of the SAT problem is exponential in the signature of the ontology (the number of predicates in the axiomatization and any additional predicates from skolemization) and the number of distinct objects in the model. Axiomatizations that contain many definitions lead to large number of SAT propositional clauses. This is from the conversion of biconditionals to clausal form. We therefore postulate that optional definitions are ideal sentences that can be eliminated from an ontology to boost model finder’s performance. We then formalize optional definition elimination (ODE) as an FOL ontology preprocessing step and test the simplification on a set of spatial benchmark problems to generate smaller SAT problems (with fewer clauses and variables) without changing the satisfiability and semantic meaning of the problem. We experimentally demonstrate that the reduction in SAT problem size also leads to improved model finding with state-of-the-art model finders, with speedups of 10-99%. Altogether, this dissertation improves spatial reasoning capabilities using FOL ontologies – in terms of a formal framework for integrated qualitative-geometric reasoning, and specific ontology preprocessing steps that can be built into automated reasoners to achieve better speedups in model finding times, and scalability with moderately-sized datasets

    Satisfiability Algorithm for Syntactic Read-kk-times Branching Programs

    Get PDF
    The satisfiability of a given branching program is to determine whether there exists a consistent path from the root to 1-sink. In a syntactic read-k-times branching program, each variable appears at most k times in any path from the root to a sink. We provide a satisfiability algorithm for syntactic read-k-times branching programs with n variables and m edges that runs in time Oleft(poly(n, m^{k^2})cdot 2^{(1-mu(k))n}right), where mu(k) = frac{1}{4^{k+1}}. Our algorithm is based on the decomposition technique shown by Borodin, Razborov and Smolensky [Computational Complexity, 1993]

    Tighter Connections Between Formula-SAT and Shaving Logs

    Get PDF
    A noticeable fraction of Algorithms papers in the last few decades improve the running time of well-known algorithms for fundamental problems by logarithmic factors. For example, the O(n2)O(n^2) dynamic programming solution to the Longest Common Subsequence problem (LCS) was improved to O(n2/log⁥2n)O(n^2/\log^2 n) in several ways and using a variety of ingenious tricks. This line of research, also known as "the art of shaving log factors", lacks a tool for proving negative results. Specifically, how can we show that it is unlikely that LCS can be solved in time O(n2/log⁥3n)O(n^2/\log^3 n)? Perhaps the only approach for such results was suggested in a recent paper of Abboud, Hansen, Vassilevska W. and Williams (STOC'16). The authors blame the hardness of shaving logs on the hardness of solving satisfiability on Boolean formulas (Formula-SAT) faster than exhaustive search. They show that an O(n2/log⁥1000n)O(n^2/\log^{1000} n) algorithm for LCS would imply a major advance in circuit lower bounds. Whether this approach can lead to tighter barriers was unclear. In this paper, we push this approach to its limit and, in particular, prove that a well-known barrier from complexity theory stands in the way for shaving five additional log factors for fundamental combinatorial problems. For LCS, regular expression pattern matching, as well as the Fr\'echet distance problem from Computational Geometry, we show that an O(n2/log⁥7+Δn)O(n^2/\log^{7+\varepsilon} n) runtime would imply new Formula-SAT algorithms. Our main result is a reduction from SAT on formulas of size ss over nn variables to LCS on sequences of length N=2n/2⋅s1+o(1)N=2^{n/2} \cdot s^{1+o(1)}. Our reduction is essentially as efficient as possible, and it greatly improves the previously known reduction for LCS with N=2n/2⋅scN=2^{n/2} \cdot s^c, for some c≄100c \geq 100

    Circuit Size Lower Bounds and #SAT Upper Bounds Through a General Framework

    Get PDF
    Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the known case analyses can also be used to prove average case circuit lower bounds, that is, lower bounds on the size of approximations of an explicit function. In this paper, we provide a general framework for proving worst/average case lower bounds for circuits and upper bounds for #SAT that is built on ideas of Chen and Kabanets. A proof in such a framework goes as follows. One starts by fixing three parameters: a class of circuits, a circuit complexity measure, and a set of allowed substitutions. The main ingredient of a proof goes as follows: by going through a number of cases, one shows that for any circuit from the given class, one can find an allowed substitution such that the given measure of the circuit reduces by a sufficient amount. This case analysis immediately implies an upper bound for #SAT. To~obtain worst/average case circuit complexity lower bounds one needs to present an explicit construction of a function that is a disperser/extractor for the class of sources defined by the set of substitutions under consideration. We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT) fall into this framework. Using this framework, we prove the following new bounds: average case lower bounds of 3.24n and 2.59n for circuits over U_2 and B_2, respectively (though the lower bound for the basis B_2 is given for a quadratic disperser whose explicit construction is not currently known), and faster than 2^n #SAT-algorithms for circuits over U_2 and B_2 of size at most 3.24n and 2.99n, respectively. Here by B_2 we mean the set of all bivariate Boolean functions, and by U_2 the set of all bivariate Boolean functions except for parity and its complement
    • 

    corecore