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Abstract
The satisfiability of a given branching program is to determine whether there exists a consistent
path from the root to 1-sink. In a syntactic read-k-times branching program, each variable
appears at most k times in any path from the root to a sink. We provide a satisfiability algorithm
for syntactic read-k-times branching programs with n variables and m edges that runs in time
O
(

poly(n,mk2) · 2(1−µ(k))n
)
, where µ(k) = 1

4k+1 . Our algorithm is based on the decomposition
technique shown by Borodin, Razborov and Smolensky [Computational Complexity, 1993].
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1 Introduction

Branching programs (BPs) are well studied computation models in theory and practice. A
BP is a directed acyclic graph with a unique root node and two sink nodes. Each nonsink
node is labeled using a variable, and the edges correspond to a variable’s value of zero or
one. Sink nodes are labeled either 0 or 1 depending on the output value. A BP computes a
Boolean function naturally: it follows the edge corresponding to the input value from the
root node to a sink node.

Given a BP, its satisfiability (BP SAT) involves the determination of whether there exists
a consistent path from the root to 1-sink. Recently, BP SAT has become a significant problem
because of the connection between satisfiability algorithms and lower bounds. Let C be a
class of a circuit. Given a circuit in C, C-SAT is the determination of whether there exists an
assignment to the input variables such that the circuit outputs 1. Williams [26] showed that
to obtain NEXP 6⊆ C, it suffices to develop an O

(
2n−ω(logn)) time algorithm for C-SAT.

Barrignton [3] showed that any function in NC1 can be computed using width-5 BPs of
polynomial length. By combining these results, if we would like to prove NEXP 6⊆ NC1, it
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is sufficient to develop an O
(
2n−ω(logn)) time algorithm for width-5 BP SAT. In addition,

the hardness of BP SAT implies the hardness of the Edit Distance and Longest Common
Sequence problem [1]. Thus, the designing of a fast algorithm for BP SAT is one of the
important tasks in the field of computational complexity.

For the SAT of some restricted BPs, polynomial or moderately exponential time algorithms
are known. An ordered binary decision diagram (OBDD) is a BP that has the same order
of variables in all paths from the root to any sink. By checking the reachability from the
root to 1-sink, the OBDD SAT can be solved in polynomial time. A k-OBDD is a natural
extension of an OBDD with k layers; all layers are OBDDs with the same order of variables.
Bollig, Sauerhoff, Sieling, and Wegener [6] provided a polynomial time algorithm that solves
the k-OBDD SAT for any constant k. A k-indexed binary decision diagram (k-IBDD) is
the same as a k-OBDD, except that an OBDD in each layer may have a different order of
variables. A k-IBDD SAT is known to be NP-complete when k ≥ 2 [6]. Nagao, Seto, and
Teruyama [18] proposed a satisfiability algorithm for any instances of k-IBDD SAT with
cn edges, and its running time is O

(
2(1−µk(c))n), where µk(c) = Ω

(
1

(log c)2k−1−1

)
. Chen,

Kabanets, Kolokolova, Shaltiel, and Zuckerman [10] showed that general BP SAT with o(n2)
nodes can be determined in time O

(
2n−ω(logn)). However, there are not so much researches

on BP SAT.
In this paper, we focus on syntactic read-k-times BPs. There exist two models of read-k-

times BPs: semantic and syntactic. A read-k-times BP is syntactic if each variable appears
at most k times in any path. It is semantic if each variable appears at most k times in
any “computational” path. The semantic model is substantially stronger than the syntactic
model. Beame, Saks, and Thathachar [5] showed that polynomial-size semantic read-twice
BP can compute functions requiring exponential size on any syntactic read-k-times BP. To
the best of our knowledge, non-trivial lower bounds on semantic read-twice BP are not known;
however, the syntactic model is well-studied. Borodin, Razborov, and Smolensky [7] exhibited
an explicit function of the lower bound of exp

(
Ω
(

n
k34k

))
. Jukna [17] provided an explicit

function f such that nondeterministic read-once BPs of polynomial size can compute ¬f
(i.e., the negation of f); however, to compute f , nondeterministic read-k-times BPs require
a size of exp

(
Ω
(√

n
k2k

))
. Thathachar [25] showed that for any k, the computational power

of read-(k + 1)-times BPs is strictly stronger than that of read-k-times BPs. Sauerhoff [21]
proved the exponential lower bound for randomized read-k-times BPs with a two-sided error.

When k = 1, syntactic read-k-times BP SAT can be determined in polynomial time by
solving the reachability from the root to 1-sink. However, even when k = 2, this problem is
known to be NP-complete; to the best our knowledge, there is no algorithm that is faster
than the brute-force search. Therefore, we present a moderately exponential time algorithm
for any constant k ≥ 2. Our algorithm is based on the decomposition technique by Borodin,
Razborov, and Smolensky [7].

I Theorem 1. There exists a deterministic and polynomial space algorithm for a non-
deterministic and syntactic read-k-times BP SAT with n variables and m edges that runs in
time O

(
poly(n,mk2) · 2(1−4−k−1)n

)
.

1.1 Our Techniques
Our satisfiability algorithm consists of two steps as follows: [Step 1: Decomposition] Given
a syntactic read-k-times BP B ofm edges, we obtain the representation of a function computed
by B as a disjunction of at most m2k2 decomposed functions by using the decomposition
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algorithm proposed by Borodin, Razborov, and Smolensky [7]. It is sufficient to check the
satisfiability of each decomposed function in the running time of Theorem 1, because if one
of these functions is satisfiable then the input B is also satisfiable. Moreover, the property
of the decomposition algorithm states that each decomposed function is a conjunction of
at most 2k2 functions on small variable sets. Let us represent a conjunction of functions as
a set of functions F = {f1, f2, . . . , f`}, where ` ≤ 2k2. [Step 2: Satisfiability Checking]
To check the satisfiability of F , we find an assignment that all functions fi are satisfied
at the same time. Let (F1,F2) be a partition of F . In addition, let X1 and X2 be sets of
input variables appearing in only F1 and F2 respectively and X3 be a set of input variables
appearing in both F1 and F2. If X3 is an empty set, we can check the satisfiability of F1
and F2 independently in time O(2|X1| + 2|X2|) by exhaustive search on each set X1 and
X2. If both F1 and F2 are satisfiable, we know that F is also satisfiable. Our algorithm
assigns 0/1 value to the variables in X3 and then performs the exhaustive search on each
set X1 and X2. Assuming that |X1|+ |X2|+ |X3| = n, we obtain the satisfiability of F in
time O(2|X3|(2|X1| + 2|X2|)) = O(2n−min{|X1|,|X2|}). Further, using probabilistic method, we
show that the existence of a partition (F1,F2) of F such that the value min{|X1|, |X2|} is
adequately large to imply the running time in Theorem 1. Thus, we can save the running
time of our satisfiability algorithm.

1.2 Related Work

A circuit satisfiability problem is, given a Boolean circuit, to find an assignment to the inputs of
the circuit such that the circuit outputs 1. Recently, this problem has been studied extensively,
and excellent algorithms that can outperform a brute-force search have been known for
some restricted circuit classes such as conjunctive normal forms [2, 8, 12, 13, 14, 19, 22],
AC0 [4, 9, 15], ACC0 [27], depth-2 threshold circuits [16], De Morgan formulas [11, 20, 24],
and formulas over the full binary basis [23].

Paper Organization

The remainder of this paper is organized as follows. In Section 2, we provide the notation and
definitions. In Section 3, we provide two algorithms. One is a decomposition algorithm based
on the technique in [7]. The other is a satisfiability algorithm for a specific class of Boolean
functions. In Section 4, we propose our satisfiability algorithm for syntactic read-k-times
BPs.

2 Preliminaries

A set of integers {1, 2, . . . , n} is denoted by [n]. For a set S, |S| denotes the cardinality of S.
Let X = {x1, . . . , xn} be a set of Boolean variables, and for x ∈ X, x denotes the negation of
x. A branching program (BP), denoted by B = (V,E), is a rooted directed acyclic multigraph.
A BP has a unique root node r and two sink nodes (0-sink and 1-sink); 0-sink and 1-sink
are nodes labeled by 0 and 1, respectively. Each node except for the sink nodes is labeled
from X. Each edge e ∈ E has a label 0 (0-edge) or 1 (1-edge). We call node v an xi-node
when v’s label is xi. A BP B is deterministic if any nodes except the two sink nodes in B
have exactly two outgoing edges: one is a 0-edge, and the other is a 1-edge. Otherwise, B
is nondeterministic. For an edge e = (u, v) ∈ E, u is a parent of v and the head of e. The
in-degree of v is defined as the number of parents of v.

ISAAC 2017
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Figure 1 Syntactic read-twice branching program.

For a BP B on X, each input α = (α1, . . . , αn) ∈ {0, 1}n activates all αi-edges leaving the
xi-nodes in B, where 1 ≤ i ≤ n. A computation path is a path from r to a 0-sink or from r to
a 1-sink using only activated edges. A BP B outputs 0 if there is no computation path from
the root r to a 1-sink; otherwise, B outputs 1. Let f : {0, 1}n → {0, 1} be a Boolean function.
A BP B represents f if f(α) is equal to the output of B for any assignment α ∈ {0, 1}n.
Two BPs B1 and B2 are equivalent if B1 and B2 represent the same function. The size of
B, denoted by |B|, is defined as the number of edges in B. A BP is syntactic read-k-times
if each variable appears at most k times in each path. Figure 1 is an example of syntactic
read-twice BPs (k = 2). A BP is semantic read-k-times if each variable appears at most
k times in each computation path. In this paper, we use only the syntactic model and for
simplicity we call it read-k-times BP.

For a BP B and two nodes v, w, a subbranching program 〈B, v, w〉 is a BP that contains
v as the root node, w as the sink node, and every nodes and edges in all v-w paths in B.
Given a BP B and nodes v, w ∈ V , 〈B, v, w〉 is constructed as follows:
1. Let V ′ be the subset of V such that u ∈ V ′ is reachable from v and to w.
2. Output the subgraph of B induced by V ′.
Note that, for any pair of nodes v and w, we can construct 〈B, v, w〉 in O(|B|).

A partial assignment to x = (x1, . . . , xn) is α = (α1, . . . , αn) ∈ {0, 1, ∗}n such that xi is
unset when αi = ∗; otherwise xi is assigned to αi. For any partial assignment α ∈ {0, 1, ∗}n,
a support of α is defined as S(α) := {xi | αi 6= ∗}. For partial assignments α and α′ such
that S(α) and S(α′) are disjoint, α ◦α′ denotes the composition of α and α′: α ◦α′(i) = α(i)
if xi ∈ S(α), α ◦ α′(i) = α′(i) if xi ∈ S(α′), and α ◦ α′(i) = ∗ otherwise. For instance, when
α = (1, ∗, ∗) and α′ = (∗, ∗, 0), α ◦ α′ = (1, ∗, 0).

3 Key Lemmas

In this section, we provide two key lemmas for our algorithm. First, we introduce the decom-
position algorithm developed by Borodin, Razborov, and Smolensky [7]. Their algorithm
decomposes a (nondeterministic) read-k-times BP into a set of BPs with a small number of
variables. Next, we provide a satisfiability algorithm for a specific class of Boolean functions
that have three properties with parameters a and k: (1) Each function is composed of a
disjunction of ka subfunctions. (2) Each variable belongs to at most k subfunctions. (3)
Each subfunction has at most n/a variables. Our algorithm that checks the satisfiability of
such a function is exponentially faster than a brute-force search.
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Now, we analyze the running time of a decomposition algorithm by Borodin, Razborov,
and Smolensky [7]. We will use this algorithm as a module to solve the syntactic read-k-times
BP SAT in Section 4.1.

I Lemma 2 (Theorem 1 in [7]). Let B be a (nondeterministic) syntactic read-k-times BP
with n variables and size m and represent a Boolean function f : {0, 1}n → {0, 1}, and let a
be a positive integer. There is an algorithm that constructs kamka BPs {Bi,j} from B, where
i ∈ [mka] and j ∈ [ka], such that the following properties hold:
1. Let fi,j be the Boolean function represented by Bi,j. Then,

f =
∨

i∈[mka]

∧
j∈[ka]

fi,j .

2. Let Xi,j be the set of variables that appear in Bi,j. For each i and j, |Xi,j | is at most
dn/ae. For each i, each variable x belongs to at most k sets of {Xi,j}j=1,...,ka.

I Lemma 3. Given a (nondeterministic) syntactic read-k-times BP B with n variables and
size m, the running time of algorithm in Lemma 2 is at most O(kamka+1).

Proof. Let us observe the construction given in the proof of Theorem 1 in [7]. Let B be a
nondeterministic and syntactic read-k-times BP with n variables and size m. For each pair
of nodes (v, w) ∈ V 2, X(v, w) denotes the set of all variables that appear in the labels on all
possible paths from v to w except for the label of w.

We call a sequence e1 := (w1, v2), e2 := (w2, v3), . . . , e` := (w`, v`+1) of edges a trace if
and only if the following properties hold:
(a) For each j with 1 ≤ j ≤ `+ 1, we have |X(vj , wj)| < n/a.
(b) For each j with 1 ≤ j ≤ `, we have |X(vj , vj+1)| ≥ n/a,
where we set v1 as the root and w`+1 as the 1-sink.

Note that any path from r to the 1-sink contains a unique trace. Let T be the set of all
traces. For each trace T = (e1 = (w1, v2), . . . , e` = (w`, v`+1)) ∈ T and 1 ≤ j ≤ `, let BT,j
be a BP constructed as follows:
1. Prepare the subbranching program 〈B, vj , wj〉, 0-sink, and 1-sink.
2. Create an edge from wj to the 1-sink with the same label of (wj , vj+1).
3. If some node v does not have a 0-edge (resp. 1-edge) as an outgoing edge, create a 0-edge

(resp. 1-edge) from v to the 0-sink.
Intuitively, BT,j contains all paths from vj to vj+1 through wj . Note that the index i of the
statement corresponds to each trace T . Let gT,j be the function represented by BT,j . Then,
we have f =

∨
T∈T

∧`+1
j=1 gT,j . Each function gT,j depends on at most dn/ae variables by

property (a). Because B is a syntactic read-k-times BP, for each trace T and each variable
x, at most k functions gT,j depend on x. By property (b), we have

∑̀
j=1
|X(vj , vj+1)|+ |X(v`+1, w`+1)| ≥ n`

a
+ |X(v`+1, w`+1)|,

where w`+1 is the 1-sink. Since each variable belongs to at most k subbranching programs,
the left-hand side can be bounded above by kn. Then, ` ≤ ka holds. Moreover, ` = ka holds
only if |X(v`+1, w`+1)| = 0, in which case gT,`+1 is a constant function. If this constant is
0, then

∧`+1
j=1 gT,j is equal to 0 and we can drop whole terms. If it is 1, we can drop gT,`+1.

Therefore, each conjunction part consists of at most ka terms. The number of traces |T | is
at most mka because ` ≤ ka holds.

The rest of the proof is to analyze the running time of the above construction. First,
we find X(v, w) by dynamic programming in O(m) time for each pair of nodes v, w ∈

ISAAC 2017
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V . Then, the running time for enumerating all X(v, w) is at most O(m3). Using the
database of X(v, w), we enumerate all traces by a DFS-like search. The running time for
enumerating all traces is at most O(mka · |T |). For each trace T ∈ T , we construct at
most ka branching programs Bt,j in O(mka) time. Then, the total running time is at most
O(m3) +O(mka · |T |) = O(kamka+1). J

Next, we prove the following lemma for the satisfiability algorithm for a specific class of
Boolean functions.

I Lemma 4. Let a and k be positive integers with a ≤ n. Suppose that we are given a set of
ka functions fi that satisfy the following properties:
1. Each fi depends on only at most dn/ae variables Xi ⊂ X, i.e., |Xi| ≤ dn/ae.
2. Each variable x belongs to at most k sets Xi.
3. Each function fi can be computed in a time of at most t and a space of at most s.

Then, there exists a deterministic algorithm for counting the satisfiable assignments of
the function f =

∧
i fi that runs in time O

(
2kakan

)
+O(kat) · 2(1− 2

4k+1 (1− k
a ))n and space

O(s+ kan).

Proof. Suppose that n is even. (In the case when n is odd, we also obtain the same result in
a similar way.) We can also assume that each variable x belongs to at least one set Xi. If all
sets Xi do not contain a variable x, then

∑
i |Xi| ≤ k(n− 1). This implies that there exists

a set Xi such that |Xi| ≤ (n− 1)/a < dn/ae. Then, we can put the variable x into the set
Xi while preserving the properties.

Let F be the family of all subsets of [ka]. The size of F , i.e., |F| is 2ka. For F ∈ F , F̄ is
defined as [ka] \ F . We define the set of variables VF :=

(⋃
i∈F Xi

)
\
(⋃

i∈F̄ Xi

)
. The set VF

contains all variables that belong to only
⋃
i∈F Xi. By definition, for any F ∈ F , VF and VF̄

are disjoint.
Find the set F ∈ F that maximizes min{|VF |, |VF̄ |} in |F| · O(kan) = O(2kakan) time

by an exhaustive search for F . Let Y := {x1, . . . , xn} \ (VF ∪ VF̄ ). Apply some partial
assignment α whose support is Y . Then, all fi|α for i ∈ F (resp. i ∈ F̄ ) depend on only the
variables in VF (resp. VF̄ ). Let AF be a set of partial assignments αF such that S(αF ) = VF ,
and fi|α(αF ) = 1 holds for all i ∈ F . Similarly, let AF̄ be a set of partial assignments αF̄
such that S(αF̄ ) = VF̄ , and fi|α(αF̄ ) = 1 holds for all i ∈ F̄ . By an exhaustive search for all
partial assignments whose support is VF (resp. VF̄ ), we count the number of elements of AF
(resp. AF̄ ). Since f =

∧ka
i=1 fi, for αF ∈ AF and αF̄ ∈ AF̄ , f(α ◦ αF ◦ αF̄ ) = 1 holds. Then,

the number of assignments that satisfy f and contain a partial assignment α is |AF | · |AF̄ |.
We can count the satisfiable assignments of f by the above operations for all partial

assignments α where S(α) = Y . For each i, the number of times for computing the function
fi is at most 2|Y | ·2max{|VF |,|VF̄ |}. Using |Y |+ |VF |+ |VF̄ | = n, we have 2|Y | ·2max{|VF |,|VF̄ |} =
2n−min{|VF |,|VF̄ |}. Thus, the running time is at most

O(2kakan) + kat · 2n−min{|VF |,|VF̄ |}.

Now, we show that maxF∈F min{|VF |, |VF̄ |} is at least 2
4k+1

(
1− k

a

)
n− 1

2 . It follows that
the running time of our algorithm is

O(2kakan) + kat · 2n−min{|VF |,|VF̄ |} ≤ O
(
2kakan

)
+ kat · 2n−

2
4k+1 (1− k

a )n+ 1
2

= O
(
2kakan

)
+
√

2kat · 2(1− 2
4k+1 (1− k

a ))n.

Let S be the set of variables {x1, . . . , xn/2} and L be the set of variables {x(n/2)+1, . . . , xn}.
Now, we define good/bad pairs of variables. This notation is used in the proof of Theorem 6
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in [7]. A pair (x, x′) ∈ S × L is good iff there is no i ∈ [ka] such that x ∈ Xi and x′ ∈ Xi

and bad otherwise. For each i, the number of bad pairs for Xi is |S ∩Xi| · |L ∩Xi|. Since
|S ∩Xi|+ |L ∩Xi| = |Xi| ≤

⌈
n
a

⌉
hold, we have

|S ∩Xi| · |L ∩Xi| ≤
1
4 ·
⌈n
a

⌉2
.

By summing the number of bad pairs for all Xi, the total number of bad pairs is at most
ka
4 ·
⌈
n
a

⌉2. Then, using ⌈na ⌉ < n
a + 1 and a ≤ n, the number of good pairs is at least

n2

4 −
ka

4 ·
⌈n
a

⌉2
>

1
4

(
1− k

a

)
n2 − 3k

4 n.

Let us consider that the set F ∈ F is chosen uniformly at random. For each good pair
(x, x′) ∈ S × L, Pr[x ∈ VF , x′ ∈ VF̄ ] ≥ 4−k. Hence,

E
F∈F

[
|{(x, x′) | x ∈ S ∩ VF , x′ ∈ L ∩ VF̄ }|

]
≥ 1

4k

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
holds. This implies that there exists a set F such that

|VF | · |VF̄ | ≥ |S ∩ VF | · |L ∩ VF̄ | ≥
1
4k

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
.

For such a set F ∈ F , if |S ∩ VF | · |L ∩ VF̄ | ≥M for some value M , then we have

min{|S ∩ VF |, |L ∩ VF̄ |} ≥
M

max{|S ∩ VF |, |L ∩ VF̄ |}
≥ 2M

n
.

We used the fact that |S∩VF |, |L∩VF̄ | ≤ n
2 . Since min{|VF |, |VF̄ |} ≥ min{|S∩VF |, |L∩VF̄ |}

holds and n and k are nonnegative integers, we have

min{|VF |, |VF̄ |} ≥
2

4kn

[
1
4

(
1− k

a

)
n2 − 3kn

4

]
= 2

4k+1

(
1− k

a

)
n− 6k

4k+1

>
2

4k+1

(
1− k

a

)
n− 1

2 .

The last inequality is by the fact that for any k ≥ 1, 6k
4k+1 <

1
2 holds.

We need the computational space O(kan) for finding the set F ∈ F that maximizes
min{|VF |, |VF̄ |}, and O(s) for computing functions fi. J

4 Satisfiability Algorithms for Syntactic Read-k-times BPs

4.1 Satisfiability Algorithm
In this section, we detail our satisfiability algorithm for syntactic read-k-times BPs and
analyze its running time. We describe the outline of our algorithm. Our algorithm consists
of two steps.

First, applying the decomposition algorithm in Lemma 2 with a = 2k, we decompose
the input syntactic read-k-times BP B into a disjunction of at most m2k2 BPs. Then,
B is satisfiable iff at least one of these decomposed BPs is satisfiable. In addition, each
decomposed BP consists of a conjunction of at most 2k2 BPs.

Second, we determine the satisfiability of each decomposed BP by checking whether there
exists an assignment that satisfies all BPs. Let a decomposed BP be a conjunction of BPs

ISAAC 2017
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{B1, . . . , B`}, where ` ≤ 2k2. Applying Lemma 4 with a = 2k, we count the number of
satisfiable assignments that satisfy all BPs.

Repeating the above operations for all decomposed BPs, we can determine the satisfiability
of the input B.

I Theorem 5 (Restatement of Theorem 1). There exists a deterministic and polynomial
space algorithm for a nondeterministic and syntactic read-k-times BP SAT with n variables
and m edges that runs in time O

(
poly(n,mk2) · 2(1−4−k−1)n

)
.

Proof. Our algorithm consists of the following two steps: (1) decomposition and (2) satis-
fiability checking.

[Step 1: Decomposition]
Setting a = 2k in Lemma 2, construct the set of BPs {Bi,j} from the input B. Let f and
fi,j be Boolean functions represented by B and Bi,j , respectively. Let Xi,j be the set of
variables that appear in Bi,j . Then, the following properties hold:
1. f =

∨
i∈[m2k2 ]

∧
j∈[2k2] fi,j .

2. For each i and j, |Xi,j | is at most
⌈
n
2k
⌉
. For each i, each variable x belongs to at most k

sets of {Xi,j}j=1,...,2k2 .
The computational time required in Step 1 is at most O

(
2k2m2k2+1

)
.

[Step 2: Satisfiability Checking]
In order to check the satisfiability of B, we check whether there exists an assignment that
satisfies all branching programs Bi,1, . . . , Bi,2k2 for each i ∈ [m2k2 ]. Let us consider a fixed
i. We denote Bi,j , fi,j , and Xi,j simply by Bj , fj , and Xj , respectively. Note that each
function fj can be computed in O(m) time and O(m) space by simulating the computation
of Bj .

Our goal in this step is to determine whether there is an assignment that satisfies all fj
for j ∈ [2k2]. By applying Lemma 4 and setting a = 2k, t = O(m), and s = O(m), we count
the satisfiable assignments that satisfy all fj in a time of at most

O
(

22k2
k2n

)
+O(k2m) · 2(1− 1

4k+1 )n.

Therefore, the running time of Step 2 is at most

m2k2
·
{
O
(

22k2
k2n

)
+O(k2m) · 2(1− 1

4k+1 )n
}

= poly
(
n,mk2

)
· 2(1− 1

4k+1 )n.

Combining the analyses of Step 1 and Step 2, the running time of our algorithm is at
most

O
(

2k2m2k2+1
)

+ poly
(
n,mk2

)
· 2(1− 1

4k+1 )n = poly
(
n,mk2

)
· 2(1− 1

4k+1 )n.

Note that if a given B is a deterministic and syntactic read-k-times BP, then any satisfiable
assignment of B satisfies only one conjunction part of the decomposed BPs. Then, the
number of satisfiable assignments of B is equal to the sum of the results of Step 2. J
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