2,197 research outputs found

    A New Algorithm for Boolean Operations on General Polygons

    Get PDF
    International audienceA new algorithm for Boolean operations on general planar polygons is presented. It is available for general planar polygons (manifold or non-manifold, with or without holes). Edges of the two general polygons are subdivided at the intersection points and touching points. Thus, the boundaryof the Boolean operation resultant polygon is made of some whole edges of the polygons after the subdivision process. We use the simplex theory to build the basic mathematical model of the new algorithm. The subordination problem between an edge and a polygon is reduced to a problem of determining whether a point is on some edges of some simplices or inside the simplices, and the associated simplicial chain of the resultant polygon is just an assembly of some simplices and their coefficients of the two polygons after the subdivision process. Examples show that the running time required bythe new algorithm is less than one-third of that bythe Rivero and Feito algorithm

    Efficient algorithm for general polygon clipping

    Get PDF
    International audienceWe present an efficient algorithm to determine the intersection of two planar general polygons. A new method based on rotation angle is proposed to obtain the classification of an edge with respect to a polygon. The edge candidates can be determined efficiently by a 1-dimensional range searching approach based on an AVL tree (a balanced binary search tree). The simplicial chain is used to represent the general polygons, and to determine the classification of polygon edges. Examples are given to illustrate the algorithm

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    Computational Geometry Applications

    Get PDF
    Computational geometry is an integral part of mathematics and computer science deals with the algorithmic solution of geometry problems. From the beginning to today, computer geometry links different areas of science and techniques, such as the theory of algorithms, combinatorial and Euclidean geometry, but including data structures and optimization. Today, computational geometry has a great deal of application in computer graphics, geometric modeling, computer vision, and geodesic path, motion planning and parallel computing. The complex calculations and theories in the field of geometry are long time studied and developed, but from the aspect of application in modern information technologies they still are in the beginning. In this research is given the applications of computational geometry in polygon triangulation, manufacturing of objects with molds, point location, and robot motion planning

    Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains

    Get PDF
    We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [Haller & Beron-Vera, 2013], objective Eulerian Coherent Structures (OECSs) [Serra & Haller, 2016], material barriers to diffusive transport [Haller et al., 2018, Haller et al., 2019], and constrained diffusion barriers [Haller et al., 2019]. The method builds on ideas developed previously in [Karrasch et al., 2015], but our implementation alleviates a number of shortcomings and allows for the fully automated detection of such vortices on unprecedentedly challenging real-world flow problems, for which specific human interference is absolutely infeasible. Challenges include very large domains and/or parameter spaces. We demonstrate the efficacy of our method in dealing with such challenges on two test cases: first, a parameter study of a turbulent flow, and second, computing material barriers to diffusive transport in the global ocean.Comment: 25 pages, 10 figures (partially of very low quality due to size constraint by arxiv.org), postprin

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data

    Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment

    Get PDF
    A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An object-based error assessment is performed to determine the accuracy of the presented classification. It results in 94.4% completeness and 88.4% correctness. Once all roof planes are detected in the 3D point cloud, solar potential analysis is performed for each point. Shadowing effects of nearby objects are taken into account by calculating the horizon of each point within the point cloud. Effects of cloud cover are also considered by using data from a nearby meteorological station. As a result the annual sum of the direct and diffuse radiation for each roof plane is derived. The presented method uses the full 3D information for both feature extraction and solar potential analysis, which offers a number of new applications in fields where natural processes are influenced by the incoming solar radiation (e.g., evapotranspiration, distribution of permafrost). The presented method detected fully automatically a subset of 809 out of 1,071 roof planes where the arithmetic mean of the annual incoming solar radiation is more than 700 kWh/m2

    Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics

    Full text link
    Materials science and the study of the electronic properties of solids are a major field of interest in both physics and engineering. The starting point for all such calculations is single-electron, or non-interacting, band structure calculations, and in the limit of strong on-site confinement this can be reduced to graph-like tight-binding models. In this context, both mathematicians and physicists have developed largely independent methods for solving these models. In this paper we will combine and present results from both fields. In particular, we will discuss a class of lattices which can be realized as line graphs of other lattices, both in Euclidean and hyperbolic space. These lattices display highly unusual features including flat bands and localized eigenstates of compact support. We will use the methods of both fields to show how these properties arise and systems for classifying the phenomenology of these lattices, as well as criteria for maximizing the gaps. Furthermore, we will present a particular hardware implementation using superconducting coplanar waveguide resonators that can realize a wide variety of these lattices in both non-interacting and interacting form
    corecore