
Efficient algorithm for general polygon clipping

Yu Peng, Junhai Yong, Hui Zhang, Jiaguang Sun

To cite this version:

Yu Peng, Junhai Yong, Hui Zhang, Jiaguang Sun. Efficient algorithm for general polygon clip-
ping. Proceedings of The 6th International Conference on Computer-Aided Industrial Design
and Conceptual Design 2005, May 2005, Delft, Netherlands. 2005. <inria-00517687>

HAL Id: inria-00517687

https://hal.inria.fr/inria-00517687

Submitted on 15 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52631246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00517687

EFFICIENT ALGORITHM FOR GENERAL POLYGON CLIPPING

Yu Peng1,2 Junhai Yong1 Hui Zhang1 Jiaguang Sun1,2
1School of Software, Tsinghua University, Email: pengyu00@mails.tsinghua.edu.cn

2Department of Computer Science and Technology, Tsinghua University

ABSTRACT: We present an efficient algorithm to determine
the intersection of two planar general polygons. A new method
based on rotation angle is proposed to obtain the classification
of an edge with respect to a polygon. The edge candidates can
be determined efficiently by a 1-dimensional range searching
approach based on an AVL tree (a balanced binary search tree).
The simplicial chain is used to represent the general polygons,
and to determine the classification of polygon edges. Examples
are given to illustrate the algorithm.

KEYWORDS: Computational geometry, Geometric
modeling, Polygon intersection, Polygon Clipping, AVL tree.

1. INTRODUCTION

Polygon clipping with applications in various
areas of computer graphics [7, 15] and CAD
(Computer Aided Design) [4, 9] is one of the
fundamental problems of the computational geometry
[1, 10, 12]. In literature lots of approaches for polygon
clipping are presented [5, 6, 8, 11, 13-16]. Peng et al
[8] have made a good summarization of the latest
research directions on this problem, and proposed a
simpler, more efficient and more robust algorithm to
determine the intersection of two general polygons
with respect to the algorithm by Rivero and Feito [11].
The algorithm uses a process of double-nested loop to
determine all edges of a polygon that are contained
within the simplices of other polygon, which would
spend time on some useless calculation.

A more efficient algorithm is presented in this
paper. As with the algorithm by Peng et al [8], we
adopt the simplex theory to handle general polygons.
In Peng et al algorithm, each inclusion test between an
edge midpoint of one polygon and a simplex of the
other is performed. Practically, however, an edge
midpoint of one polygon is contained within no or
only a few simplices of the other. In the new algorithm,
the process of double-nested loop is reduced to a 1D
range searching using an AVL tree. The new algorithm
is more efficient, as it requires half as much running
time as the algorithm presented by Peng et al does.

2. PRELIMINARIES

We begin by briefly reviewing some definitions

and properties about simplicial chain by Feito et al [3]
and Peng el al [8]. (Refer to [2, 3, 8] for more details).

A general planar polygon is a single polygon or a
polygon consisting of a set of non-intersecting single
polygons. The boundary of a single polygon consists
of an outer contour and several non-intersecting inner
contours. Each contour is represented by several
directed edges and may be convex or concave. The
outer contour is oriented in counterclockwise and the
inner contours in clockwise. Thus, the interior of the
polygon is on the left side of each directed edges.

A simplex S is an ordered triangle, and the
coefficient of S equals sign(Area_sign(S)), where sign
is the sign function and Area_sign is the signed area of
the ordered triangle. In the remaining part of this
paper, the simplex is referred to an original simplex,
where a vertex of the simplex lies on the origin. The
directed edge, an endpoint of which lies on the origin,
is called an original edge (otherwise called a
non-original edge). A simplicial chain is a collection
of the sequence of the simplices {Si} and the sequence
of the coefficients {αi}, and it is denoted by λ=∑αi·Si,
where i=1, 2, ..., n.
Definition 1. Given a simplicial chain λ=∑αi·Si, for
any point Q∈R2, a characteristic function fλ is defined
by

⎪⎩

⎪
⎨
⎧

= ∑
=

n

i
i

i-
f

1
otherwise. ,

 of edge originalnon on the is , 1
)(βλ

SQ
Q (1)

where

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
.

S
S

otherwise
, of edge original someon is if
, ofregion open theinside is if

,0

,
2
1

,

i

i

i

i

i a

a

Q
Q

β (2)

The closed set of the point set given by Pλ={Q |
fλ(Q)=1, Q∈R2} is a polygon, and λ is called the
simplicial chain associated with the polygon. Given a
general polygon, we could find its associated
simplicial chain.
Lemma 1. Let P be a polygon determined by n edges

mailto:pengy@cg.cs.tsinghua.edu.cnzju.edu.cn

e1, e2,..., en. Let Si be the original simplex determined
by the origin and ei, and let αi be the coefficient of Si,
where i=1, 2, ..., n. Then λ=∑αi·Si is the simplicial
chain associated with polygon P.

O

e1

e2

e3 S3

(a) O (d)

S1

(b)

S2

O (c)O

0)(=Qλf 1)(=Qλf -1)(=Qλf

21 SS −−=λ1S−=λ 321 SSS +−−=λ

Figure 1. associated simplicial chain of given triangle
Figure 1 gives an example of an associated

simplicial chain of a triangle. This paper assumes that
the general polygons are in the first quadrant. A
translation is enough to move any general polygons
into the first quadrant if it is necessary to do so. Given
two general polygons, the subdivision process is as
follows. First, calculate intersection points and
touching points (some edges’ endpoints lying on other
edges) of two general polygons. Then subdivide the
directed edges of two polygons into smaller directed
edges at the intersection points and the touching
points. Finally, establish the new general polygons
from the subdivided directed edges.
Theorem 1. Let P1 and P2 be two general polygons
after the subdivision process, and ev be a directed
edge of P1. Assume that neither nor -ev ev is a
directed edge of P2. Then, ev is inside P2 if and only
if the midpoint of ev is in P2.

Definition 2. Let P1 and P2 be two given general
polygons after the subdivision process. Let λ be the
simplicial chain of P2. For any directed edge ev of P1,
the characteristic function f of on P2 is given by ev

⎪
⎩

⎪
⎨

⎧
=

otherwise.
,of edge directed a is - if

, of edge directed a is if

),(
, 0
, 1

)(2

2

P
P

Q
 e

e

f
ef v

v

v

λ

 (3)

where Q is the midpoint of e , and fλ(Q) is
defined by Eqn. (1).

v

Corollary 1. Let ev be a directed edge of P1. Then,
ev is contained within P2 if and only if f(ev)=1, where
f(e) is defined by Eqn. (3). v

The following theorem uses the simplex theory to
obtain the clipped polygon of two given polygons.
Theorem 2. Given two general polygons P1 and P2
after the subdivision process. Then, the associated
simplicial chain of the clipped polygon P3=P1∩P2 is

∑∑∑ ⋅+′⋅′+⋅= kkjjii baa USS
3Pλ (4)

where i =1, 2, ..., n, j=1, 2, ..., n', k=1, 2, ..., l, {Si}
and {S'

j} are two subsets consisting of the simplices of
P1, respectively. The non-original edge of each Si is

inside P2, and the non-original edge of each S'
j is

equivalent to some directed edge of P2. {Uk} is a
subset consisting of the simplices of P2. The
non-original edge of each Uk is inside P1. {ai}, {a'

j}
and {bk} are the coefficient sets of simplices of {Si},
{S'

j} and {Uk}, respectively.

3. ROTATION ANGLE

In order to obtain an efficient algorithm, we need
some new definitions and terminology.
Definition 3. Given a point, the rotation angle of the
point is given by the counterclockwise angle that the
positive x-axis makes with the segment from the
origin to the point.

As shown in Figure 2, α, β and γ are the rotation
angles of the points p1 , p2 and p3, respectively. From
the feature of the rotation angle of a point, we could
have the following theorem.

S

O

y

x

p2

1θ 2θα

p1 p3

β γ
A

B

Figure 2. Rotation angle of points
Theorem 3. Given an original simplex and a point in
the first quadrant. The point is inside the simplex, if
and only if the following two conditions are both
satisfied:

 The rotation angle of the point is in the range [x:x'].
 Both the origin and the point are on the same side

of the non-original edge of the original simplex.
Where x and x' are the rotation angles of two

endpoints of the non-original edge of the original
simplex, respectively.

As shown in Figure 2, p2 is inside the simplex S.
The rotation angle β of p2 is in the range [θ1:θ2], and
both the origin and p2 are on the same side of the edge
AB , where θ1 and θ2 are the rotation angles of B and
A, respectively. The situation of neither p1 nor p3
satisfies the above two conditions simultaneously,
where the rotation angle of p1 is greater than θ1, and
the origin and p3 are not on the same side of AB).
Hence, neither p1 nor p3 is inside S.
Definition 4. Given a general polygon and an original
simplex in the first quadrant, an edge of the polygon is
called an edge candidate with respect to the simplex if
and only if the rotation angle of the edge midpoint is
in the range [x:x'], where x and x' are the rotation
angles of two endpoints of the non-original edge of
the original simplex, respectively.

4. CLIPPING ALGORITHM

The new algorithm is based on the simplex theory
mentioned in Section 2. The pseudo code for the
algorithm is illustrated in Figure 3.
Algorithm CLIPPING (P1,P2,P3)
Input. two general polygon P1 and P2.
Output. the clipped polygon P3= P1∩P2.
/* P1

* and P2
* are the polygons after subdivision. */

1. SUBDIVISIONPROCESS (P1,P2,P1
*,P2

*);
/* λ1

* is the associated simplicial chain of P1
*. */

2. BUILDSIMPLICIALCHAIN (P1
*,λ1

*);
/* λ2

* is the associated simplicial chain of P2
*. */

3. BUILDSIMPLICIALCHAIN (P2
*,λ2

*);
/* si

* is the non-original edges of the simplices Si
* from λ1

*; f(si
*) is the

characteristic function of si
* on P2 according to Definition 2; SUBJECT

means that P1
* is the subject polygon.*/

4. CALEDGECHARACTER (P1
*,P2,λ1

*,λ2,f(si
*),SUBJECT);

/* uj
* is the non-original edges of the simplices Uj

* from λ2
*; f(uj

*) is the
characteristic function of uj

* on P1; CLIP means that P2
* is the clip

polygon.*/
5. CALEDGECHARACTER (P2

*,P1,λ2
*,λ1,f(uj

*),CLIP);
/* Calculate the resultant simplicial chain λ3 through λ1

* and λ2
* using

Theorem 2. */
6. CALRESULTCHAIN (λ1

*,f(si
*),λ3);

7. CALRESULTCHAIN (λ2
*,f(uj

*),λ3);

Figure 3. Pseudo code for clipping algorithm
At first, the subdivision process is performed on

the given general polygons. Then, build the simplicial
chains for both polygons according to Lemma 1, and
calculate the value of the characteristic function for
each edge of one polygon on the other’s original
polygon (the polygon before the subdivision process)
through Corollary 1. At last, the simplicial chain of the
clipped polygon P3 is obtained through a subroutine
CALRESULTCHAIN shown in Figure 4, and we have
the polygon P3 from the simplicial chain.
CALRESULTCHAIN (λ,f(si),λ3)
Input. The simplicial chain λ and the characteristic function f(si)
Output. The resultant simplicial chain λ3.
1. for each simplex Si of λ do
2. if f(si)=1 then /* si is the non-original edge of Si. */
3. Add the simplex Si and its coefficient to λ3;

Figure 4. Pseudo code for calculating the resultant
simplicial chain

The subdivision process is already described in
Section 2. How to build a simplicial chain of a general
polygon is introduced in Lemma 1. According to
Definition 2 and Corollary 1, we could obtain the
value of an edge characteristic function of a polygon
by calculating the classification between the edge
midpoint and each simplex of the other. Practically,
however, an edge midpoint of one polygon is
contained within no or only a few simplices of the
other.

In order to accelerate the calculation of value of
the edge characteristic function, we extend the
1-dimensional range searching approach [1] with the

principles described in Section 3. The edge candidates
can be determined by this approach efficiently. The
pseudo code for calculating values of edge
characteristic functions is illustrated in Figure 5.
CALEDGECHARACTER (P1,P2,λ1,λ2,f(si),t)
Input. Two polygons P1 and P2 and their respective simplicial
chains λ1 and λ2, t denotes the type of P1.
Output. The characteristic function f(si) of si on P2.
/* Initiate the function f(si); si is the non-original edge of Si.*/
1. for each simplex Si of λ1 do
2. f(si)←0;
/* Build the 1D range searching tree; T is the AVL tree */
3. BUILD1DRANGETREE (λ1,f(si),P2,T,t);
4. for each simplex Uj of λ2 do
/* uj is the non-original edge of Uj. */
5. x ← the minor rotation angle of endpoints of uj;
6. x' ← the major rotation angle of endpoints of uj;
/* vs is the split node; [x:x'] is the 1D query range with x ≤ x'. */
7. vs ← FINDSPLITNODE (T,[x:x']);
8. if vs≠ NULL then
/* ra(vs) denotes the rotation angle stored at vs. */
9. if ra(vs) is in [x:x'] then
/* Calculate f(s(vs)); s(vs) denotes the directed edge stored at vs. */
10. CALVAL (f(s(vs)),Uj);
11. if vs is not a leaf then
/* Follow the path to x and calculate the characteristic functions of the edge
candidates; lc(vs) denotes the left child of vs. */
12. v ← lc(vs);
13. while v ≠ NULL do
14. if ra(v) ≥ x then
15. CALVAL (f(s(v)),Uj);
/* Traverse the subtree rooted at rc(v); rc(v) denotes the right child of v. */
16. CALSUBTREEVAL (rc(v),f(s(rc(v))),Uj);
17. v ← lc(v);
18. else v ← rc(v);
19. Follow the path to x', calculate the characteristic
 functions of the edge candidates, which is similar
 to lines 12-18.

Figure 5. Pseudo code for calculating the values of
edge the characteristic functions

Now we describe CALEDGECHARACTER in more
details. First initiate the edge characteristic functions
in line 1 and line 2. Then build the AVL tree T in line
3. Each node of T stores a directed edge of one
polygon and the rotation angle of the edge midpoint.
We assume that the left subtree of a node v contains
all the rotation angles smaller than or equal to ra(v)
and that the right subtree contains all the rotation
angles strictly greater than ra(v). In lines 4-19, we
traverse each simplex of the other polygon. For each
simplex, we adopt the 1-dimensional range searching
approach to determine the nodes, where the rotation
angles stored at the nodes are in the range [x:x']. To
find these nodes we first search for the node vs in line
7, where the paths to x and x' split shown in Figure 6.
FINDSPLITNODE (T,[x:x'])
Input. An AVL tree T and the query range [x:x'] with x ≤ x'.
Output. The node v where the paths to x and x' split.
1. v ← the root of T;
/* ra(v) denotes the rotation angle stored at v; lc(v) and rc(v) denote the left

child and right child of v, respectively. */
2. while v ≠ NULL and (ra(v) < x or ra(v) ≥ x') do
3. if (ra(v) ≥ x') then
4. v ← lc(v);
5. else v ← rc(v);
6. return v;

Figure 6. Pseudo code for finding the split node

Starting from vs we then follow search path of x.
At each node where the path goes left, we first
calculate the characteristic function of the edge stored
at it through a subroutine CALVAL, and then do the
same calculation on each node in the right subtree,
since this subtree is between the two search paths, i.e.,
the edges stored at the nodes in the subtree are the
edge candidates. CALSUBTREEVAL is recursive and it
is used to calculate the characteristic functions of all
nodes in the subtree (The subroutine is illustrated in
Figure 7). Similarly, follow the path of x' and calculate
the characteristic functions of the edge candidates.
CALSUBTREEVAL (v,f(s),U)
Input. A node v in the AVL tree and a simplex U.
Output. The edge characteristic function f(s).
/* s(v) denotes the directed edge stored at v; lc(v) denotes the left child of v;
rc(v) denotes the right child of v.*/
1. if v ≠ NULL then
2. CALVAL (f(s(v)),U);
3. CALSUBTREEVAL (lc(v),f(s(lc(v))),U);
4. CALSUBTREEVAL (rc(v),f(s(rc(v))),U);

Figure 7. Pseudo code for calculating the values of
the edges stored at the subtree

The pseudo code for building AVL tree is shown
in Figure 8. According to Definition 2, when a
directed edge is shared by two polygons both values
of the characteristic functions of this edge on
respective polygons are 1. And according to Eqn. (4),
only one corresponding simplex of this edge is added
to the resultant simplicial chain. Hence, we force
f(si)=1 in line 6 of BUILD1DRANGETREE, where si is
from the subject polygon and it is shared by both
polygons.
BUILD1DRANGETREE (λ,f(si),P2,T,t)
Input. The simplicial chains λ and the type t of the polygon
associated with λ.
Output. An AVL tree T and the characteristic function f(si) on
polygon P2.
1. for each simplex Si of λ do
/* si is the non-original edge of Si; */
2. if si does not overlap any edges of P2 then
3. p ← the rotation angle of the midpoint of si;
4. Insert node (si,p) into T;
/* It is performed according to Definition 2; */
5. else if t = SUBJECT and si is a directed edge of P2 then
6. f(si) ← 1;

Figure 8. Pseudo code for building 1D range tree

The subroutine CALVAL is illustrated in Figure 9.
It uses Theorem 3 to determine the classification of

the edge midpoint in line 1, and the characteristic
function of the edge s is calculated in line 3 and line 4
according to Definition 1 and Definition 2.
CALVAL (f(s), U)
Input. A directed edge s and a simplex U.
Output. The edge characteristic function f(s).
/* Obtain the classification by Theorem 3; u is the non-original edge of U. */
1. if Both the midpoint of s and the origin are on the same
side of u then
/* a(s) denotes the rotation angle of the midpoint of s; mina(u) denotes the
minor rotation angle of vertices of u; maxa(u) denotes the major rotation
angle of vertices of u; c(U) denotes the coefficient of U. */
2. if a(s) = mina(u) or a(s) = maxa(u) then
3. f(s) ← f(s)+ c(U)/2;
4. else f(s) ← f(s)+c(U);

Figure 9. Pseudo code for calculating the value of an
edge to a simplex

5. EVALUTION

5.1 Time Complexity

Let n and m be the numbers of edges of the two
polygons P1 and P2, respectively, and k be the number
of the intersection points and the touching points of P1
and P2. For the subdivision process, we adopt the
plane sweep algorithm introduced in References [1, 10,
12] to calculate the intersection points and touching
points. Therefore, the running time required by the
subdivision process is O((n+m)log(n+m)+k). The
subroutine BUILDSIMPLICIALCHAIN takes an amount
of time that is linear in the number of edges of the
polygon. CALEDGECHARACTER with respect to the
subject polygon uses a loop, which includes the 1D
range searching process. The AVL tree can be built in
O((n+k)log(n+k)) time. FINDSPLITNODE takes
O(log(n+k)) time. The time spent in a call to
CALSUBTREEVAL is linear in ti, where ti is the number
of the edge canditates of subject polygon with respect
to the ith simplex of clip polygon. Hence, the total
time spent in such call s is O(ti). The remaining nodes
storing the edge candidates are the nodes on the search
path of x or x'. Because T is balanced, these paths
have length O(log(n+k)), so the total time spent in
these nodes is O(log(n+k)). Hence, the time of 1D
range searching process is O((log(n+k))+ti). Since the
1D range searching process runs m times in the loop,
the subroutine CALEDGECHARACTER with respect to
subject polygon gives a running time of
O(mlog(n+k)+T1)), where T1=∑ti. Similarly,
CALEDGECHARACTER with respect to clip polygon
gives a running time of O(nlog(m+k)+T2), where
T2=∑sj and sj is the number of the edge canditates of
clip polygon with respect to the jth simplex of subject
polygon. The subroutine CALRESULTCHAIN gives a
time of O(n+m+k).

5.2 Example

Next we show an example in which two polygons
have some edges in common. Figure 10(a) shows the
subject polygons P1 and the clip polygon P2.

S1

S2

O
x

y

(a)

U1
S1

*

S5
*

S4
*S3

*S2
*

S7
*

S6
*

O
x

y

(b)

S8
*

S4

S5

S6

S3

U2

U3
U4

U5

U6

U1
*

S11
*

S12
*

U8
*

U9
*

U5
*

U4
*
U3

*

U7
*

U2
*

U6
*S10

*
S9

*

P1 P2 P1* P2*

Figure 10. Example: (a) two polygons with their
associated simplicial chains, (b) the clipped polygon
(in deep gray)

The simplical chains of P1 and P2 are
λ1=S1-S2+S3-S4+S5-S6 and λ2=-U1-U2+U3-U4-U5+U6,
respectively. The new algorithm first performs the
subdivision process on the two general polygons
according to not only the intersection points but also
the touching points. After the subdivision process, the
simplical chains of P1

* and P2
* are λ1

* = S1
* - S2

* - S3
* -

S4
*+S5

*+S6
*+S7

*-S8
*-S9

*+S10
*+S11

*-S12
* and λ2

* = -U1
*

-U2
*-U3

*-U4
*-U5

*+U6
*-U7

*-U8
*+U9

*, respectively. The
simplex S3

* is equivalent to the simplex U5
*, and the

non-orginal edge of S5
* has the opposite orientation as

the non-original edge of U7
*.

Table 1 shows the procedure for calculating the
values of the edge characteristic functions of P1

* on P2.
The simplices of P1

* and P2 and their coefficients are
shown in the first row and the first column of Table 1,
respectively. The second row lists the query range of
each simplex of P2. The second column lists the
rotation angle of the midpoint of each edge of P1

*.
Note that the value of the charactristic functions of the
edges, which overlap some edges of P2

*, can be
determined directly through the edge directions.
Hence, fill the corresponding bracket with ‘+’ where
the corresponding Si

* and Uj have the non-original
edges in common that have the same orientation, and
fill the bracket with ‘−’ where the corresponding Si

*
and Uj have the non-original edges in common that
have the opposite orientations. Assume that the
midpoint of the non-original edge of Si

* and the
simplex Uj are the point and the simplex in the
assumed conditions of Theorem 3, respectively. In the
interior of Table 1, the corresponding table cell leaves
with blank where the first condition of Theorem 3 is
not satisfied. The cell is filled with ‘ ’ where only the
first condition of Theorem 3 is satisfied. The cell is
filled with ‘ ’ where both of the two conditions of
Theorem 3 are satisfied. The last column lists the
value of the characteristic function of non-original
edge of respective Si

* according to Definition 2.

Table 1. Procedure for calculating the value of edge
characteristic functions of P1

*
 P2→ U1(-1) U2(-1) U3(1) U4(-1) U5(-1) U6(1) f(si

*)
range→P1

*↓ angle↓
[33.7:38.7] [26.6:33.7] [26.6:29.1] [21.8:29.1] [15.9:21.8] [15.9:38.7]

S1
*(1) (56.3) 0

S2
*(-1) (45.0) 0

S3
*(-1) (+) 1

S4
*(-1) (24.0) -1+1=0

S5
*(1) (−) 0

S6
*(1) (32.9) 1

S7
*(1) (45.0) 0

S8
*(-1) (42.1) 0

S9
*(-1) (33.2) 1

S10
*(1) (32.6) 1

S11
*(1) (41.3) 0

S12
*(-1) (48.7) 0

Similarly, Table 2 shows the procedure for

calculating the values of the edge characteristic
functions of P2

* on P1. The value of last column of
Table 2 is zero where the corresponding bracket of the
second column is filled with ‘+’ or ‘−’. The simplices,
whose corresponding numbers in the last columns of
Table 1 and Table 2 are 1, are selected to build the
resultant simplicial chain of clipped polygon. Hence,
the resultant simplicial chain is λ3 = S3

*+ S6
*- S9

*+
S10

*- U2
*-U4

*+U6
*. The clipped polygon is indicated in

deep gray shown in Figure 10(b).

Table 2. Procedure for calculating the value of edge
characteristic functions of P2

*

5.3 Experimental results

Performance data of the Vatti algorithm, the
Rivero and Feito algorithm, the Peng et al algorithm
and the new algorithm are shown in Table 3 and
Figure 11. All algorithms were implemented in a
personal computer with 1.7GHZ Intel Pentium IV
CPU and 256MB RAM, and the source code of all
four algorithms are complied with the Microsoft
Visual C++ 6.0 compiler using the same byte
alignment (8 bytes) and optimization options. In Table
3, the numbers of edges in both general polygons are
listed in the first column, i.e., both general polygons
have the same number of edges. The numbers below
tV, tR, tP and tN are the running times (in milliseconds)
respectively used to calculate the intersection results
for the Vatti algorithm, the Rivero and Feito algorithm,

 P1→ S1(1) S2(-1) S3(1) S4(-1) S5(1) S6(-1) f(uj
*)

range→P2
*↓

angle↓
[53.1:63.4] [21.8:63.4] [21.8:53.1] [30.4:48.2] [30.4:49.6] [48.2:49.6]

U1
*(-1) (37.9) 0

U2
*(-1) (36.5) 1

U3
*(-1) (35.6) 1-1=0

U4
*(-1) (34.4) 1-1+1=1

U5
*(-1) (+) 0

U6
*(1) (27.9) 1

U7
*(-1) (−) 0

U8
*(-1) (18.4) 0

U9
*(1) (26.6) 0

the Peng et al algorithm and the new algorithm. We
used a very large number of examples to test the four
algorithms. The running time was obtained by
averaging. The improvement factors of the new
algorithm over other algorithms are also listed in
Table 3 (from the 6th column to the 8th column). In
Figure 11 we can see graphically the evolution of the
running time of polygon clipping versus the number
of polygon edges used for our algorithm and the other
algorithms. As we can see in the results, the new
algorithm is more efficient. The running time required
by the new algorithm is less than one third of that by
the Rivero and Feito algorithm and half as much as
that by the Peng et al algorithm.
Table 3. Performance results using: the Vatti
algorithm, the Rivero and Feito algorithm, the Peng et
al algorithm and the new algorithm

n tV(ms) tR(ms) tP(ms) tN(ms) tV/tN tR/tN tP/tN

5 0.0725 0.1324 0.0393 0.0408 1.777 3.245 0.963

10 0.1129 0.2736 0.0781 0.0721 1.567 3.795 1.083

20 0.2592 0.9029 0.2475 0.1536 1.688 5.878 1.611

30 0.4336 1.7274 0.4623 0.2568 1.688 6.727 1,800

40 0.6059 2.9713 0.7752 0.3517 1.723 8.448 2.204

45 0.6847 3.9599 1.0117 0.4606 1.487 8.597 2.196

50 0.8828 5.0754 1.2371 0.5130 1.721 9.894 2.412

0

1

2

3

4

5

6

5 10 20 30 40 45 50

Number of edges

Ti
m

e(
in

 m
s)

The Vatti algorithm
The Rivero and Feito algorithm
The Peng et al algorithm
The new algorithm

Figure 11. Performance chart using: the Vatti
algorithm, the Rivero and Feito algorithm, the Peng et
al algorithm and the new algorithm

6. CONCLUSIONS

In this paper, a new polygon clipping algorithm is
presented. A new method based on the rotation angle
of the edge midpoint is used to determine the
classification of the edges of a polygon with respect to
another polygon. Also the edge candidate is defined
by the rotation angle and a 1-dimensional range
searching approach is proposed to obtain the edge
candidates for accelerating the edge classification. The
algorithm is efficient, as it requires half as much
running time as the algorithm by Peng et al does.

ACKNOWLEDGMENTS
The research was supported by the National Science

Foundation of China (60403047) and the Chinese 973
Program (2004CB719400). The second author was
supported by a Foundation for the Author of National
Excellent Doctoral Dissertation of PR China (200342)
and a project sponsored by SRF for ROCS, SEM.

REFERENCE

[1] de Berg, M., van Krefeld, M., Overmars, M.,
Schwarzkopf, O., Computational Geometry: Algorithms
and Applications, Springer-Verlag, 1997.

[2] Feito, F.R., Torres, J.C., Ureña, A., Orientation, simplicity
and inclusion test for planar polygons, Computers &
Graphics 1995; 19(14): 595-600.

[3] Feito, F.R., Rivero, M.L., Geometric Modelling based on
simplicial chains, Computers & Graphics 1998; 22(5):
611-619.

[4] Hoffmann, C.M., Hopcroft, J.E., Karasick, M.J., Robust
set operations on polyhedral solids, IEEE Computer
Graphics and Applications, Vol. 9, No. 6, 1989, pp 50-59.

[5] Greiner, G., Hormann, K., Efficient clipping of arbitrary
polygons, ACM Transactions on Graphics 1998; 17(2):
71-83.

[6] Liang, Y.-D., Barsky, B.A., An analysis and algorithm for
polygon clipping, Communications of the ACM 1983;
26(11): 868-877.

[7] Loutrel, P.P., A solution to the hidden-line problem for
computer-drawn polyhedra, IEEE Transactions on
Computers 1970; 19(3): 205-213.

[8] Peng, Y., Yong, J.-H., Sun, J.-G., A new algorithm for
Boolean operation on general polygons, Computers &
Graphics 2005; 29(1): to appear.

[9] Persion, H., NC machining of arbitrarily shaped pockets,
Computer-Aided Design 1978; 10(3): 169-174.

[10] Preparata, F.P., Shamos, M.I., Computational geometry:
an introduction, Berlin: Springer-Verlag, 1985.

[11] Rivero, M.L., Feito, F.R., Boolean operations on general
planar polygons, Computers & Graphics 2000; 24(6):
881-896.

[12] O’Rourke, J., Computational geometry in C, Cambridge:
Cambridge University Press, 1985.

[13] Schutte, K., An edge labeling approach to concave
polygon clipping, Manuscript, 1995; 1-10.

[14] Sutherland, I.E., Hodgeman, G.W., Reentrant polygon
clipping, Communications of the ACM 1974; 17(1):
32-42.

[15] Weiler, K., Atherton, P., Hidden surface removal using
polygon area sorting, Proceedings of the SIGGRAPH
1977; 214-222.

[16] Vatti, B.R., A generic solution to polygon clipping,
Communications of the ACM 1992; 35(7): 56-63.

	ABSTRACT: We present an efficient algorithm to determine the intersection of two planar general polygons. A new method based on rotation angle is proposed to obtain the classification of an edge with respect to a polygon. The edge candidates can be determined efficiently by a 1-dimensional range searching approach based on an AVL tree (a balanced binary search tree). The simplicial chain is used to represent the general polygons, and to determine the classification of polygon edges. Examples are given to illustrate the algorithm.

