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ABSTRACT: We present an efficient algorithm to determine 
the intersection of two planar general polygons. A new method 
based on rotation angle is proposed to obtain the classification 
of an edge with respect to a polygon. The edge candidates can 
be determined efficiently by a 1-dimensional range searching 
approach based on an AVL tree (a balanced binary search tree). 
The simplicial chain is used to represent the general polygons, 
and to determine the classification of polygon edges. Examples 
are given to illustrate the algorithm.  

KEYWORDS: Computational geometry, Geometric 
modeling, Polygon intersection, Polygon Clipping, AVL tree. 

1. INTRODUCTION 

Polygon clipping with applications in various 
areas of computer graphics [7, 15] and CAD 
(Computer Aided Design) [4, 9] is one of the 
fundamental problems of the computational geometry 
[1, 10, 12]. In literature lots of approaches for polygon 
clipping are presented [5, 6, 8, 11, 13-16]. Peng et al 
[8] have made a good summarization of the latest 
research directions on this problem, and proposed a 
simpler, more efficient and more robust algorithm to 
determine the intersection of two general polygons 
with respect to the algorithm by Rivero and Feito [11]. 
The algorithm uses a process of double-nested loop to 
determine all edges of a polygon that are contained 
within the simplices of other polygon, which would 
spend time on some useless calculation. 

A more efficient algorithm is presented in this 
paper. As with the algorithm by Peng et al [8], we 
adopt the simplex theory to handle general polygons. 
In Peng et al algorithm, each inclusion test between an 
edge midpoint of one polygon and a simplex of the 
other is performed. Practically, however, an edge 
midpoint of one polygon is contained within no or 
only a few simplices of the other. In the new algorithm, 
the process of double-nested loop is reduced to a 1D 
range searching using an AVL tree. The new algorithm 
is more efficient, as it requires half as much running 
time as the algorithm presented by Peng et al does. 

2. PRELIMINARIES 

We begin by briefly reviewing some definitions 

and properties about simplicial chain by Feito et al [3] 
and Peng el al [8]. (Refer to [2, 3, 8] for more details). 

A general planar polygon is a single polygon or a 
polygon consisting of a set of non-intersecting single 
polygons. The boundary of a single polygon consists 
of an outer contour and several non-intersecting inner 
contours. Each contour is represented by several 
directed edges and may be convex or concave. The 
outer contour is oriented in counterclockwise and the 
inner contours in clockwise. Thus, the interior of the 
polygon is on the left side of each directed edges. 

A simplex S is an ordered triangle, and the 
coefficient of S equals sign(Area_sign(S)), where sign 
is the sign function and Area_sign is the signed area of 
the ordered triangle. In the remaining part of this 
paper, the simplex is referred to an original simplex, 
where a vertex of the simplex lies on the origin. The 
directed edge, an endpoint of which lies on the origin, 
is called an original edge (otherwise called a 
non-original edge). A simplicial chain is a collection 
of the sequence of the simplices {Si} and the sequence 
of the coefficients {αi}, and it is denoted by λ=∑αi·Si, 
where i=1, 2, ..., n. 
Definition 1. Given a simplicial chain λ=∑αi·Si, for 
any point Q∈R2, a characteristic function fλ is defined 
by 
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The closed set of the point set given by Pλ={Q | 
fλ(Q)=1, Q∈R2} is a polygon, and λ is called the 
simplicial chain associated with the polygon. Given a 
general polygon, we could find its associated 
simplicial chain. 
Lemma 1. Let P be a polygon determined by n edges 
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e1, e2,..., en. Let Si be the original simplex determined 
by the origin and ei, and let αi be the coefficient of Si, 
where i=1, 2, ..., n. Then λ=∑αi·Si is the simplicial 
chain associated with polygon P. 
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Figure 1. associated simplicial chain of given triangle 
Figure 1 gives an example of an associated 

simplicial chain of a triangle. This paper assumes that 
the general polygons are in the first quadrant. A 
translation is enough to move any general polygons 
into the first quadrant if it is necessary to do so. Given 
two general polygons, the subdivision process is as 
follows. First, calculate intersection points and 
touching points (some edges’ endpoints lying on other 
edges) of two general polygons. Then subdivide the 
directed edges of two polygons into smaller directed 
edges at the intersection points and the touching 
points. Finally, establish the new general polygons 
from the subdivided directed edges. 
Theorem 1. Let P1 and P2 be two general polygons 
after the subdivision process, and ev  be a directed 
edge of P1. Assume that neither  nor -ev ev  is a 
directed edge of P2. Then, ev  is inside P2 if and only 
if the midpoint of ev  is in P2. 

Definition 2. Let P1 and P2 be two given general 
polygons after the subdivision process. Let λ be the 
simplicial chain of P2. For any directed edge ev  of P1, 
the characteristic function f of  on P2 is given by ev
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where Q is the midpoint of e , and fλ(Q) is 
defined by Eqn. (1). 

v

Corollary 1. Let ev  be a directed edge of P1. Then, 
ev is contained within P2 if and only if f( ev )=1, where 
f( e ) is defined by Eqn. (3).  v

The following theorem uses the simplex theory to 
obtain the clipped polygon of two given polygons. 
Theorem 2. Given two general polygons P1 and P2 
after the subdivision process. Then, the associated 
simplicial chain of the clipped polygon P3=P1∩P2 is 
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where i =1, 2, ..., n, j=1, 2, ..., n', k=1, 2, ..., l, {Si} 
and {S'

j} are two subsets consisting of the simplices of 
P1, respectively. The non-original edge of each Si is 

inside P2, and the non-original edge of each S'
j is 

equivalent to some directed edge of P2. {Uk} is a 
subset consisting of the simplices of P2. The 
non-original edge of each Uk is inside P1. {ai}, {a'

j} 
and {bk} are the coefficient sets of simplices of {Si}, 
{S'

j} and {Uk}, respectively. 

3. ROTATION ANGLE 

In order to obtain an efficient algorithm, we need 
some new definitions and terminology. 
Definition 3. Given a point, the rotation angle of the 
point is given by the counterclockwise angle that the 
positive x-axis makes with the segment from the 
origin to the point. 

As shown in Figure 2, α, β and γ are the rotation 
angles of the points p1 , p2 and p3, respectively. From 
the feature of the rotation angle of a point, we could 
have the following theorem. 
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Figure 2. Rotation angle of points 
Theorem 3. Given an original simplex and a point in 
the first quadrant. The point is inside the simplex, if 
and only if the following two conditions are both 
satisfied: 

 The rotation angle of the point is in the range [x:x']. 
 Both the origin and the point are on the same side 

of the non-original edge of the original simplex.  
Where x and x' are the rotation angles of two 

endpoints of the non-original edge of the original 
simplex, respectively. 

As shown in Figure 2, p2 is inside the simplex S. 
The rotation angle β of p2 is in the range [θ1:θ2], and 
both the origin and p2 are on the same side of the edge 
AB , where θ1 and θ2 are the rotation angles of B and 
A, respectively. The situation of neither p1 nor p3 
satisfies the above two conditions simultaneously, 
where the rotation angle of p1 is greater than θ1, and 
the origin and p3 are not on the same side of AB ). 
Hence, neither p1 nor p3 is inside S. 
Definition 4. Given a general polygon and an original 
simplex in the first quadrant, an edge of the polygon is 
called an edge candidate with respect to the simplex if 
and only if the rotation angle of the edge midpoint is 
in the range [x:x'], where x and x' are the rotation 
angles of two endpoints of the non-original edge of 
the original simplex, respectively. 



4. CLIPPING ALGORITHM 

The new algorithm is based on the simplex theory 
mentioned in Section 2. The pseudo code for the 
algorithm is illustrated in Figure 3. 
Algorithm CLIPPING (P1,P2,P3) 
Input. two general polygon P1 and P2. 
Output. the clipped polygon P3= P1∩P2. 
/* P1

* and P2
* are the polygons after subdivision. */ 

1. SUBDIVISIONPROCESS (P1,P2,P1
*,P2

*); 
/* λ1

* is the associated simplicial chain of P1
*. */ 

2. BUILDSIMPLICIALCHAIN (P1
*,λ1

*); 
/* λ2

* is the associated simplicial chain of P2
*. */ 

3. BUILDSIMPLICIALCHAIN (P2
*,λ2

*); 
/* si

* is the non-original edges of the simplices Si
* from λ1

*; f(si
*) is the 

characteristic function of si
* on P2 according to Definition 2; SUBJECT 

means that P1
* is the subject polygon.*/ 

4. CALEDGECHARACTER (P1
*,P2,λ1

*,λ2,f(si
*),SUBJECT); 

/* uj
* is the non-original edges of the simplices Uj

* from λ2
*; f(uj

*) is the 
characteristic function of uj

* on P1; CLIP means that P2
* is the clip 

polygon.*/ 
5. CALEDGECHARACTER (P2

*,P1,λ2
*,λ1,f(uj

*),CLIP); 
/* Calculate the resultant simplicial chain λ3 through λ1

* and λ2
* using 

Theorem 2. */ 
6. CALRESULTCHAIN (λ1

*,f(si
*),λ3); 

7. CALRESULTCHAIN (λ2
*,f(uj

*),λ3); 

Figure 3. Pseudo code for clipping algorithm 
At first, the subdivision process is performed on 

the given general polygons. Then, build the simplicial 
chains for both polygons according to Lemma 1, and 
calculate the value of the characteristic function for 
each edge of one polygon on the other’s original 
polygon (the polygon before the subdivision process) 
through Corollary 1. At last, the simplicial chain of the 
clipped polygon P3 is obtained through a subroutine 
CALRESULTCHAIN shown in Figure 4, and we have 
the polygon P3 from the simplicial chain. 
CALRESULTCHAIN (λ,f(si),λ3) 
Input. The simplicial chain λ and the characteristic function f(si) 
Output. The resultant simplicial chain λ3. 
1.    for each simplex Si of λ do 
2.      if f(si)=1 then  /* si is the non-original edge of Si. */ 
3.        Add the simplex Si and its coefficient to λ3; 

Figure 4. Pseudo code for calculating the resultant 
simplicial chain 

The subdivision process is already described in 
Section 2. How to build a simplicial chain of a general 
polygon is introduced in Lemma 1. According to 
Definition 2 and Corollary 1, we could obtain the 
value of an edge characteristic function of a polygon 
by calculating the classification between the edge 
midpoint and each simplex of the other. Practically, 
however, an edge midpoint of one polygon is 
contained within no or only a few simplices of the 
other. 

In order to accelerate the calculation of value of 
the edge characteristic function, we extend the 
1-dimensional range searching approach [1] with the 

principles described in Section 3. The edge candidates 
can be determined by this approach efficiently. The 
pseudo code for calculating values of edge 
characteristic functions is illustrated in Figure 5. 
CALEDGECHARACTER (P1,P2,λ1,λ2,f(si),t) 
Input. Two polygons P1 and P2 and their respective simplicial 
chains λ1 and λ2, t denotes the type of P1. 
Output. The characteristic function f(si) of si on P2. 
/* Initiate the function f(si); si is the non-original edge of Si.*/ 
1. for each simplex Si of λ1 do 
2.   f(si)←0; 
/* Build the 1D range searching tree; T is the AVL tree */ 
3. BUILD1DRANGETREE (λ1,f(si),P2,T,t); 
4. for each simplex Uj of λ2 do 
/* uj is the non-original edge of Uj. */ 
5.   x ← the minor rotation angle of endpoints of uj; 
6.   x' ← the major rotation angle of endpoints of uj; 
/* vs is the split node; [x:x'] is the 1D query range with x ≤ x'. */ 
7.   vs ← FINDSPLITNODE (T,[x:x']); 
8.   if vs≠ NULL then 
/* ra(vs) denotes the rotation angle stored at vs. */ 
9.     if ra(vs) is in [x:x'] then 
/* Calculate f(s(vs)); s(vs) denotes the directed edge stored at vs. */ 
10.       CALVAL (f(s(vs)),Uj); 
11.     if vs is not a leaf then 
/* Follow the path to x and calculate the characteristic functions of the edge 
candidates; lc(vs) denotes the left child of vs. */ 
12.       v ← lc(vs); 
13.       while v ≠ NULL do 
14.         if ra(v) ≥ x then 
15.           CALVAL (f(s(v)),Uj); 
/* Traverse the subtree rooted at rc(v); rc(v) denotes the right child of v. */ 
16.           CALSUBTREEVAL (rc(v),f(s(rc(v))),Uj); 
17.           v ← lc(v); 
18.         else v ← rc(v); 
19.       Follow the path to x', calculate the characteristic 
       functions of the edge candidates, which is similar 
       to lines 12-18. 

Figure 5. Pseudo code for calculating the values of 
edge the characteristic functions 

Now we describe CALEDGECHARACTER in more 
details. First initiate the edge characteristic functions 
in line 1 and line 2. Then build the AVL tree T in line 
3. Each node of T stores a directed edge of one 
polygon and the rotation angle of the edge midpoint. 
We assume that the left subtree of a node v contains 
all the rotation angles smaller than or equal to ra(v) 
and that the right subtree contains all the rotation 
angles strictly greater than ra(v). In lines 4-19, we 
traverse each simplex of the other polygon. For each 
simplex, we adopt the 1-dimensional range searching 
approach to determine the nodes, where the rotation 
angles stored at the nodes are in the range [x:x']. To 
find these nodes we first search for the node vs in line 
7, where the paths to x and x' split shown in Figure 6. 
FINDSPLITNODE (T,[x:x']) 
Input. An AVL tree T and the query range [x:x'] with x ≤ x'. 
Output. The node v where the paths to x and x' split. 
1. v ← the root of T; 
/* ra(v) denotes the rotation angle stored at v; lc(v) and rc(v) denote the left 



child and right child of v, respectively. */ 
2. while v ≠ NULL and (ra(v) < x or ra(v) ≥ x') do 
3.   if (ra(v) ≥ x') then 
4.     v ← lc(v); 
5.   else v ← rc(v); 
6. return v; 

Figure 6. Pseudo code for finding the split node 

Starting from vs we then follow search path of x. 
At each node where the path goes left, we first 
calculate the characteristic function of the edge stored 
at it through a subroutine CALVAL, and then do the 
same calculation on each node in the right subtree, 
since this subtree is between the two search paths, i.e., 
the edges stored at the nodes in the subtree are the 
edge candidates. CALSUBTREEVAL is recursive and it 
is used to calculate the characteristic functions of all 
nodes in the subtree (The subroutine is illustrated in 
Figure 7). Similarly, follow the path of x' and calculate 
the characteristic functions of the edge candidates. 
CALSUBTREEVAL (v,f(s),U) 
Input.  A node v in the AVL tree and a simplex U. 
Output. The edge characteristic function f(s). 
/* s(v) denotes the directed edge stored at v; lc(v) denotes the left child of v; 
rc(v) denotes the right child of v.*/ 
1. if v ≠ NULL then 
2.   CALVAL (f(s(v)),U); 
3.   CALSUBTREEVAL (lc(v),f(s(lc(v))),U); 
4.   CALSUBTREEVAL (rc(v),f(s(rc(v))),U); 

Figure 7. Pseudo code for calculating the values of 
the edges stored at the subtree 

The pseudo code for building AVL tree is shown 
in Figure 8. According to Definition 2, when a 
directed edge is shared by two polygons both values 
of the characteristic functions of this edge on 
respective polygons are 1. And according to Eqn. (4), 
only one corresponding simplex of this edge is added 
to the resultant simplicial chain. Hence, we force 
f(si)=1 in line 6 of BUILD1DRANGETREE, where si is 
from the subject polygon and it is shared by both 
polygons. 
BUILD1DRANGETREE (λ,f(si),P2,T,t) 
Input. The simplicial chains λ and the type t of the polygon 
associated with λ.  
Output. An AVL tree T and the characteristic function f(si) on 
polygon P2. 
1. for each simplex Si of λ do 
/* si is the non-original edge of Si; */ 
2.   if si does not overlap any edges of P2 then  
3.     p ← the rotation angle of the midpoint of si;  
4.     Insert node (si,p) into T;  
/* It is performed according to Definition 2; */ 
5.   else if t = SUBJECT and si is a directed edge of P2 then 
6.     f(si) ← 1; 

Figure 8. Pseudo code for building 1D range tree 

The subroutine CALVAL is illustrated in Figure 9. 
It uses Theorem 3 to determine the classification of 

the edge midpoint in line 1, and the characteristic 
function of the edge s is calculated in line 3 and line 4 
according to Definition 1 and Definition 2.  
CALVAL (f(s), U) 
Input. A directed edge s and a simplex U. 
Output. The edge characteristic function f(s). 
/* Obtain the classification by Theorem 3; u is the non-original edge of U. */ 
1. if Both the midpoint of s and the origin are on the same 
side of u then 
/* a(s) denotes the rotation angle of the midpoint of s; mina(u) denotes the 
minor rotation angle of vertices of u; maxa(u) denotes the major rotation 
angle of vertices of u; c(U) denotes the coefficient of U. */ 
2.   if a(s) = mina(u) or a(s) = maxa(u) then 
3.     f(s) ← f(s)+ c(U)/2; 
4.   else f(s) ← f(s)+c(U); 

Figure 9. Pseudo code for calculating the value of an 
edge to a simplex 

5. EVALUTION 

5.1 Time Complexity 

Let n and m be the numbers of edges of the two 
polygons P1 and P2, respectively, and k be the number 
of the intersection points and the touching points of P1 
and P2. For the subdivision process, we adopt the 
plane sweep algorithm introduced in References [1, 10, 
12] to calculate the intersection points and touching 
points. Therefore, the running time required by the 
subdivision process is O((n+m)log(n+m)+k). The 
subroutine BUILDSIMPLICIALCHAIN takes an amount 
of time that is linear in the number of edges of the 
polygon. CALEDGECHARACTER with respect to the 
subject polygon uses a loop, which includes the 1D 
range searching process. The AVL tree can be built in 
O((n+k)log(n+k)) time. FINDSPLITNODE takes 
O(log(n+k)) time. The time spent in a call to 
CALSUBTREEVAL is linear in ti, where ti is the number 
of the edge canditates of subject polygon with respect 
to the ith simplex of clip polygon. Hence, the total 
time spent in such call s is O(ti). The remaining nodes 
storing the edge candidates are the nodes on the search 
path of x or x'. Because T is balanced, these paths 
have length O(log(n+k)), so the total time spent in 
these nodes is O(log(n+k)). Hence, the time of 1D 
range searching process is O((log(n+k))+ti). Since the 
1D range searching process runs m times in the loop, 
the subroutine CALEDGECHARACTER with respect to 
subject polygon gives a running time of 
O(mlog(n+k)+T1)), where T1=∑ti. Similarly, 
CALEDGECHARACTER with respect to clip polygon 
gives a running time of O(nlog(m+k)+T2), where 
T2=∑sj and sj is the number of the edge canditates of 
clip polygon with respect to the jth simplex of subject 
polygon. The subroutine CALRESULTCHAIN gives a 
time of O(n+m+k). 



5.2 Example 

Next we show an example in which two polygons 
have some edges in common. Figure 10(a) shows the 
subject polygons P1 and the clip polygon P2. 
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Figure 10. Example: (a) two polygons with their 
associated simplicial chains, (b) the clipped polygon 
(in deep gray) 

The simplical chains of P1 and P2 are 
λ1=S1-S2+S3-S4+S5-S6 and λ2=-U1-U2+U3-U4-U5+U6, 
respectively. The new algorithm first performs the 
subdivision process on the two general polygons 
according to not only the intersection points but also 
the touching points. After the subdivision process, the 
simplical chains of P1

* and P2
* are λ1

* = S1
* - S2

* - S3
* - 

S4
*+S5

*+S6
*+S7

*-S8
*-S9

*+S10
*+S11

*-S12
* and λ2

* = -U1
* 

-U2
*-U3

*-U4
*-U5

*+U6
*-U7

*-U8
*+U9

*, respectively. The 
simplex S3

* is equivalent to the simplex U5
*, and the 

non-orginal edge of S5
* has the opposite orientation as 

the non-original edge of U7
*. 

Table 1 shows the procedure for calculating the 
values of the edge characteristic functions of P1

* on P2. 
The simplices of P1

* and P2 and their coefficients are 
shown in the first row and the first column of Table 1, 
respectively. The second row lists the query range of 
each simplex of P2. The second column lists the 
rotation angle of the midpoint of each edge of P1

*. 
Note that the value of the charactristic functions of the 
edges, which overlap some edges of P2

*, can be 
determined directly through the edge directions. 
Hence, fill the corresponding bracket with ‘+’ where 
the corresponding Si

* and Uj have the non-original 
edges in common that have the same orientation, and 
fill the bracket with ‘−’ where the corresponding Si

* 
and Uj have the non-original edges in common that 
have the opposite orientations. Assume that the 
midpoint of the non-original edge of Si

* and the 
simplex Uj are the point and the simplex in the 
assumed conditions of Theorem 3, respectively. In the 
interior of Table 1, the corresponding table cell leaves 
with blank where the first condition of Theorem 3 is 
not satisfied. The cell is filled with ‘ ’ where only the 
first condition of  Theorem 3 is satisfied. The cell is 
filled with ‘ ’ where both of the two conditions of 
Theorem 3 are satisfied. The last column lists the 
value of the characteristic function of non-original 
edge of respective Si

* according to Definition 2.  

Table 1. Procedure for calculating the value of edge 
characteristic functions of P1

* 
 P2→ U1(-1) U2(-1) U3(1) U4(-1) U5(-1) U6(1) f(si

*)
range→P1

*↓ angle↓
[33.7:38.7] [26.6:33.7] [26.6:29.1] [21.8:29.1] [15.9:21.8] [15.9:38.7]  

S1
*(1) (56.3)       0 

S2
*(-1) (45.0)       0 

S3
*(-1) (+)       1 

S4
*(-1) (24.0)       -1+1=0

S5
*(1) (−)       0 

S6
*(1) (32.9)       1 

S7
*(1) (45.0)       0 

S8
*(-1) (42.1)       0 

S9
*(-1) (33.2)       1 

S10
*(1) (32.6)       1 

S11
*(1) (41.3)       0 

S12
*(-1) (48.7)       0 

 
Similarly, Table 2 shows the procedure for 

calculating the values of the edge characteristic 
functions of P2

* on P1. The value of last column of 
Table 2 is zero where the corresponding bracket of the 
second column is filled with ‘+’ or ‘−’. The simplices, 
whose corresponding numbers in the last columns of 
Table 1 and Table 2 are 1, are selected to build the 
resultant simplicial chain of clipped polygon. Hence, 
the resultant simplicial chain is λ3 = S3

*+ S6
*- S9

*+ 
S10

*- U2
*-U4

*+U6
*. The clipped polygon is indicated in 

deep gray shown in Figure 10(b). 

Table 2. Procedure for calculating the value of edge 
characteristic functions of P2

* 

 

5.3 Experimental results 

Performance data of the Vatti algorithm, the 
Rivero and Feito algorithm, the Peng et al algorithm 
and the new algorithm are shown in Table 3 and 
Figure 11. All algorithms were implemented in a 
personal computer with 1.7GHZ Intel Pentium IV 
CPU and 256MB RAM, and the source code of all 
four algorithms are complied with the Microsoft 
Visual C++ 6.0 compiler using the same byte 
alignment (8 bytes) and optimization options. In Table 
3, the numbers of edges in both general polygons are 
listed in the first column, i.e., both general polygons 
have the same number of edges. The numbers below 
tV, tR, tP and tN are the running times (in milliseconds) 
respectively used to calculate the intersection results 
for the Vatti algorithm, the Rivero and Feito algorithm, 

 P1→ S1(1) S2(-1) S3(1) S4(-1) S5(1) S6(-1) f(uj
*) 

range→P2
*↓

angle↓
[53.1:63.4] [21.8:63.4] [21.8:53.1] [30.4:48.2] [30.4:49.6] [48.2:49.6]  

U1
*(-1) (37.9)        0 

U2
*(-1) (36.5)       1 

U3
*(-1) (35.6)       1-1=0 

U4
*(-1) (34.4)       1-1+1=1

U5
*(-1) (+)       0 

U6
*(1) (27.9)       1 

U7
*(-1) (−)       0 

U8
*(-1) (18.4)       0 

U9
*(1) (26.6)       0 



the Peng et al algorithm and the new algorithm. We 
used a very large number of examples to test the four 
algorithms. The running time was obtained by 
averaging. The improvement factors of the new 
algorithm over other algorithms are also listed in 
Table 3 (from the 6th column to the 8th column). In 
Figure 11 we can see graphically the evolution of the 
running time of polygon clipping versus the number 
of polygon edges used for our algorithm and the other 
algorithms. As we can see in the results, the new 
algorithm is more efficient. The running time required 
by the new algorithm is less than one third of that by 
the Rivero and Feito algorithm and half as much as 
that by the Peng et al algorithm. 
Table 3. Performance results using: the Vatti 
algorithm, the Rivero and Feito algorithm, the Peng et 
al algorithm and the new algorithm 

n tV(ms) tR(ms) tP(ms) tN(ms) tV/tN tR/tN tP/tN

5 0.0725 0.1324 0.0393 0.0408 1.777 3.245 0.963

10 0.1129 0.2736 0.0781 0.0721 1.567 3.795 1.083

20 0.2592 0.9029 0.2475 0.1536 1.688 5.878 1.611

30 0.4336 1.7274 0.4623 0.2568 1.688 6.727 1,800

40 0.6059 2.9713 0.7752 0.3517 1.723 8.448 2.204

45 0.6847 3.9599 1.0117 0.4606 1.487 8.597 2.196

50 0.8828 5.0754 1.2371 0.5130 1.721 9.894 2.412
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Figure 11. Performance chart using: the Vatti 
algorithm, the Rivero and Feito algorithm, the Peng et 
al algorithm and the new algorithm 

6. CONCLUSIONS 

In this paper, a new polygon clipping algorithm is 
presented. A new method based on the rotation angle 
of the edge midpoint is used to determine the 
classification of the edges of a polygon with respect to 
another polygon. Also the edge candidate is defined 
by the rotation angle and a 1-dimensional range 
searching approach is proposed to obtain the edge 
candidates for accelerating the edge classification. The 
algorithm is efficient, as it requires half as much 
running time as the algorithm by Peng et al does. 
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	ABSTRACT: We present an efficient algorithm to determine the intersection of two planar general polygons. A new method based on rotation angle is proposed to obtain the classification of an edge with respect to a polygon. The edge candidates can be determined efficiently by a 1-dimensional range searching approach based on an AVL tree (a balanced binary search tree). The simplicial chain is used to represent the general polygons, and to determine the classification of polygon edges. Examples are given to illustrate the algorithm.  

