8 research outputs found

    PENERAPAN MODEL SEIRU PADA KASUS COVID-19 DI JAKARTA

    Get PDF
    Sejak awal penyebaran COVID-19, telah diambil langkah-langkah pembatasan aktivitas publik untuk meredakan laju penularan, termasuk di Provinsi DKI Jakarta yang menerapkan Pembatasan Sosial Berskala Besar (PSBB). Dalam upaya menganalisis dampak kebijakan tersebut, digunakan model epidemiologi SEIRU, yang mempertimbangkan periode laten dan efek pembatasan aktivitas publik. Penelitian ini mengimplementasikan model SEIRU pada kasus COVID-19 di Jakarta, mengevaluasi parameter yang paling sesuai untuk merepresentasikan dinamika kasus, serta mengidentifikasi dampak dari penerapan PSBB terhadap kesesuaian model. Bahasa pemrograman Julia digunakan untuk mengimplementasikannya. Dari penelitian ini ditunjukkan bahwa model SEIRU cocok untuk menggambarkan perkembangan kasus COVID-19 hingga berakhirnya PSBB pertama, tetapi kurang sesuai untuk masa perpanjangan PSBB. Analisis juga mengindikasikan bahwa penerapan PSBB dapat mengurangi jumlah kasus terlapor hingga 41%, dengan rata-rata waktu individu yang terinfeksi namun tidak menunjukkan gejala adalah 7 hari, dan durasi rata-rata periode laten adalah 6 jam

    Markov Chain Monte Carlo Approach to the Analysis and Forecast of Grain Prices and Volatility Monitoring

    Get PDF
    Public studies on the dynamics of food staples as important as cereals (grains) are relatively scarce. Here we undertake a preliminary analysis of the time series for corn, wheat, soybean, and oat prices first via classical ARIMA/GARCH models, and later complementing with the more complex Stochastic Volatility (SV) models. The goal is to improve upon the classical results by implementing a Bayesian analysis through the construction of a suitable Markov Chain Monte Carlo Model with improved volatility analysis and forecasting capabilities. The performance of the SV model is benchmarked against the classical ARMA/GARCH approach, and both are discussed as monitoring tools for the volatility prices

    Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index

    Get PDF
    We assess the effectiveness of various portfolio optimization strategies (only long allocations) applied to the components of the Euro Stoxx 50 index during the period 2002-2015. The sample under study contemplates episodes of high volatility and instability in financial markets, such as the Global Financial Crisis and the European Debt Crisis. This implies a real challenge in portfolio optimization strategies, since all the methodologies used are restricted to the assignment of positive weights. We use the daily returns for the asset allocation with a three year estimation window, keeping the assets in portfolio for one year. In the context of strategies with short-selling constraints, we contribute to the debate on whether naive diversification proves to be an effective alternative for the construction of the portfolio, as opposed to the portfolio optimization models. To that end, we analyse the out-of-sample performance of 16 strategies for the selection of assets and weights in the main stock index of the euro area. Our results suggest that a large number of strategies outperform both the naive strategy and the Euro Stoxx 50 index in terms of the profitability and Sharpe's ratio. Furthermore, the portfolio strategy based on the maximization of the diversification ratio provides the highest return and the classical strategy of mean-variance renders the highest Sharpe ratio, which is statistically different from the Euro Stoxx 50 index in the eriod under study

    Una aproximaciรณn a la predicciรณn del valor de acciones en la bolsa de valores aplicando tรฉcnicas de Data Mining

    Get PDF
    La predicciรณn del valor de las acciones en la bolsa de valores ha sido un tema importante en el campo de inversiones, que por varios aรฑos ha atraรญdo tanto a acadรฉmicos como a inversionistas. Esto supone que la informaciรณn disponible en el pasado de la compaรฑรญa que cotiza en bolsa tiene alguna implicaciรณn en el futuro del valor de la misma. Este trabajo estรก enfocado en ayudar a un persona u organismo que decida invertir en la bolsa de valores a travรฉs de gestiรณn de compra o venta de acciones de una compaรฑรญa a tomar decisiones respecto al tiempo de comprar o vender basado en el conocimiento obtenido de los valores histรณricos de las acciones de una compaรฑรญa en la bolsa de valores. Esta decisiรณn serรก inferida a partir de un modelo de regresiรณn mรบltiple que es una de las tรฉcnicas de datamining. Para llevar conseguir esto se emplea una metodologรญa conocida como CRISP-DM aplicada a los datos histรณricos de la compaรฑรญa con mayor valor actual del NASDAQ.---ABSTRACT---The prediction of the value of shares in the stock market has been a major issue in the field of investments, which for several years has attracted both academics and investors. This means that the information available in the company last traded have any involvement in the future of the value of it. This work is focused on helping an investor decides to invest in the stock market through management buy or sell shares of a company to make decisions with respect to time to buy or sell based on the knowledge gained from the historic values of the shares of a company in the stock market. This decision will be inferred from a multiple regression model which is one of the techniques of data mining. To get this out a methodology known as CRISP-DM applied to historical data of the company with the highest current value of NASDAQ is used

    Mean-Variance Portfolio Optimization : Eigendecomposition-Based Methods

    Full text link

    Conception de lignes de fabrication sous incertitudes (analyse de sensibilitรฉ et approche robuste.)

    Get PDF
    Les travaux prรฉsentรฉs dans cette thรจse portent sur la conception de systรจmes de fabrication en contexte incertain. La conception d un tel systรจme peut รชtre vue comme un problรจme d optimisation qui consiste ร  trouver une configuration qui permet d optimiser certains objectifs tout en respectant des contraintes technologiques et รฉconomiques connues. Les systรจmes de fabrication รฉtudiรฉs dans ce mรฉmoire sont des lignes d assemblage et d usinage. La premiรจre est une ligne qui se prรฉsente comme une chaรฎne de postes de travail oรน, dans chaque poste, les opรฉrations d assemblage s exรฉcutent de maniรจre sรฉquentielle. La deuxiรจme, quant ร  elle, est une ligne particuliรจre qui se compose de machines de transfert comportant plusieurs boรฎtiers multibroches oรน les opรฉrations s exรฉcutent simultanรฉment. Dans un premier temps, nous dรฉcrivons de diffรฉrentes approches permettant de modรฉliser l incertitude des donnรฉes en optimisation. Une attention particuliรจre est portรฉe sur les deux approches suivantes : l approche robuste et l analyse de sensibilitรฉ. Puis, nous prรฉsentons trois applications : la conception d une ligne d assemblage et d une ligne d usinage soumises aux variations de temps opรฉratoires et la conception d une ligne d assemblage avec les temps opรฉratoires connus sous la forme d intervalles des valeurs possibles. Pour chaque application, nous identifions les performances attendues ainsi que la complexitรฉ de la prise en compte de l incertitude. Ensuite, nous proposons de nouveaux critรจres d optimisation en adรฉquation avec la problรฉmatique introduite. Enfin des mรฉthodes de rรฉsolution sont dรฉveloppรฉes pour apprรฉhender les diffรฉrents problรจmes mis en รฉvidence par ces critรจres.The presented work deals with the design of production systems in uncertain context. The design of such systems can be interpreted as an optimization problem that consists to find a configuration optimizing certain objectives and respecting technological and economical constraints. The production systems studied in this thesis are the assembly and transfer lines. The first one is the line that can be represented as a flow-oriented chain of workstations where, at each workstation, the tasks are executed in a sequential manner. The second is a particular line that is composed of transfer machines including several multi-spindle heads where the tasks are executed simultaneously. At first, we describe different approaches that permit to model the uncertainty of data in optimization. A particular attention is attracted to two following approaches: robust approach and sensitivity analysis. Then, we present three applications: the design of assembly and transfer lines under variations of task processing times and the design of an assembly line with interval task processing times. For each application, we identify the expected performances as well as the complexity of taking into account the uncertainty. Thereafter, we propose some new optimization criteria in adequacy with the introduced problematic. Finally, resolution methods are developed to solve different problems engendered by these criteria.ST ETIENNE-ENS des Mines (422182304) / SudocSudocFranceF

    ๋†’์ด์—์„œ ์ฒด์ ๊นŒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ, 2023. 2. ๊น€ํƒœํ˜•.Urban form is a major factor in explaining the interaction between human activities and the environment. Historically, research on urban form principally focused on horizontal forms, and its primary goal was the improvement of urban spaces efficiency and functionality. However, the two-dimensional properties of urban form, such as land-use change, are not sufficient to explain changes in urban climate. In recent years, there has been growing interest in the geometrical structure created by vertical urban form and its impact on urban climate, particularly urban temperature. While some indicators of vertical urban form have been shown to impact temperature, there remain gaps in our understanding, including a lack of consistent measurement standards and an incomplete understanding of the complex interactions within space. This study aimed to systematically analyze the impact of vertical urban form on air temperature. First, this study proposed vertical urban form indices to investigate the effect on air temperature. Despite recognition of the impact of vertical urban form on air temperature, previous studies have not systematically analyzed the measurement criteria of vertical urban form and its impact on air temperature. To address these deficits, four measurable indices were proposed: Vertical, Variance, Volume, and Vacant. These indices have been identified as key factors that regulate the effect of urban form on air temperature, including factors based on previous research including shade, heat capacity, and ventilation performance. The proposed indices, including 1-dimensional (height), 2-dimensional (planar), and 3-dimensional (volumetric) indices, were analyzed to examine the effects of individual and interacting indices on air temperature. The indices are interdependent, and therefore, deep learning models were used to account for the interaction between them. A prediction model was constructed using a 2-layer artificial neural network, and the impacts of the individual and interactive indices were derived using the Shapley additive explanation (SHAP) method, which is an analytical method that explains the output of machine- and deep-learning models. The influence of individual and interactive vertical urban forms on a local scale varies based on the specific characteristics of these forms. The complicated airflow caused by the conflicting effects of shadows and ventilation performance and the interrelationships between urban forms can make it difficult to make generalizations. This study aimed to analyze the differences in the impact of urban form characteristics on a local scale. It is important to consider that temperature mitigation strategies should be tailored to specific urban form characteristics, as different critical indices were identified in areas with dense low-rise or high-rise buildings. The results of the study showed that four indices of vertical urban form have a significant impact on urban air temperature. During the summer, the degree of openness (Vacant) and the average spatial height (Vertical) are critical factors in regulating air temperature. The shading effect of high-rise buildings and the ventilation performance provided by the openness improve thermal comfort. A significant finding was the interaction between spatial vacancy and height, as shown by the SHAP dependence plot. Sensitivity levels varied depending on whether the openness was above or below average. In areas with low openness, spatial height was more sensitive, and the temperature rapidly increased with low building height. In densely packed, low-height areas, cooling effects from shading or ventilation cannot be expected. This study revealed that maintaining low spatial density beneath the urban canopy layer is a practical way to decrease the urban temperature on a local level. The spatial density was composed of spatial vacancy and height. Previous studies substituted building volume (Volume) with spatial density, emphasizing the negative impact of building volume on urban temperature. The results of this study showed that better ventilation from high spatial vacancy and improved shading from height could effectively mitigate the urban temperature by offsetting the impact of building volume on temperature rise. For instance, although the total building volume is high, a dense area of high-rise buildings has better thermal comfort than a dense area of low-rise buildings. This is because high-rise buildings create shading and have larger spatial vacancies, which enhance ventilation and reduce temperature. It is essential to understand spatial density in terms of the interplay between spatial vacancy and height. New insights were added by the relationship between spatial vacancy and building volume and the relationship between spatial height and height variation (Variation). When a spatial vacancy is low and building volume is high, the air temperature becomes more sensitive to the volume, causing rapid temperature increases in certain areas. Additionally, areas with low and constant heights experience a rapid rise in temperature. In addition, this study confirmed that the impact of urban form on temperature varies depending on urban characteristics on a local scale. Using the gaussian mixture model, urban form characteristics were classified into five clusters, which can be summarized as follows. Cluster 1 is a dense low-rise building area with constant height. Cluster 2 is a dense low- and mid-rise building area next to a stream. Cluster 3 is an area with a concentration of mid- and high-rise buildings of varying heights. Cluster 4 is an area with mid- and high-rise buildings with ample spatial vacancy. Cluster 5 is an area close to green spaces and rivers. The significant indices of the vertical urban form varied based on the cluster type. This result implies that the strategy for reducing regional temperature should be tailored to the specific urban form characteristics. The contribution of this dissertation research can be divided into both theoretical and practical aspects. Theoretically, this research comprehensively explains the relationship between vertical urban form and urban temperature. The complex interactions between urban forms have resulted in difficulties when generalizing the results of previous studies; however, this study offers insight into the significance of vertical urban form indices and the impact of their interactions. Practically, this research suggests pragmatic policy interventions for urban planners and designers aiming to mitigate urban temperatures. Because the physical environment of cities cannot be easily altered from the top down, a careful approach is necessary. Furthermore, resources are limited, making it crucial to prioritize the methods used. In sum, the results of this study can help improve cities' thermal environments.๋„์‹œํ˜•ํƒœ๋Š” ์ธ๊ฐ„ ํ™œ๋™๊ณผ ํ™˜๊ฒฝ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์„ค๋ช…ํ•˜๋Š” ์ฃผ์š”ํ•œ ์š”์ธ์ด๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ๋„์‹œํ˜•ํƒœ์— ๊ด€ํ•œ ํƒ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ์ˆ˜ํ‰์ ์ธ ํ˜•ํƒœ์— ๊ด€์‹ฌ์„ ๋‘์—ˆ๋‹ค. ๋„์‹œ ๊ณต๊ฐ„์˜ ํšจ์œจ๊ณผ ๊ธฐ๋Šฅ์˜ ํ–ฅ์ƒ์€ ์ˆ˜ํ‰์  ํ˜•ํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์ฃผ์š”ํ•œ ์š”์†Œ์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ† ์ง€์ด์šฉ๋ณ€ํ™”์™€ ๊ฐ™์€ ๋„์‹œํ˜•ํƒœ์˜ ํ‰๋ฉด์  ์†์„ฑ์€ ์—ด์„ฌ ํšจ๊ณผ์™€ ๊ฐ™์€ ๊ธฐํ›„์˜ ๋ณ€ํ™”๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ์— ๋ถ€์กฑํ•˜๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ๋„์‹œ์˜ ์ˆ˜์งํ˜•ํƒœ๊ฐ€ ๋งŒ๋“œ๋Š” ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๊ฐ€ ๋„์‹œ ๊ธฐํ›„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ํŠนํžˆ, ๋„์‹œ ์˜จ๋„์™€ ๊ด€๋ จํ•˜์—ฌ ์ผ๋ถ€ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ๊ฐ€ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋ณด๊ณ ๋˜์ง€๋งŒ ์—ฌ์ „ํžˆ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ์— ๊ด€ํ•œ ์ˆ˜์šฉ๊ฐ€๋Šฅํ•œ ์ธก์ • ๊ธฐ์ค€์ด ๋ถˆ์ผ์น˜ํ•˜๊ณ , ๊ณต๊ฐ„์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๋Š” ์‹ค์ •์ด๋‹ค. ์ด์— ์ด ์—ฐ๊ตฌ๋Š” ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ๊ฐ€ ๋Œ€๊ธฐ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ๊ฐ€ ๋Œ€๊ธฐ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด ๋จผ์ € ์ˆ˜์šฉ๊ฐ€๋Šฅํ•œ ์ง€ํ‘œ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋„์‹œ์˜ ์ˆ˜์งํ˜•ํƒœ๊ฐ€ ๋„์‹œ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ธก์ • ์ง€ํ‘œ์™€ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ถ„์„์€ ๋ถ€์กฑํ•˜๋‹ค. ์ด์— ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ๊ฒ€ํ† ํ•˜์—ฌ ๋„์‹œ ์˜จ๋„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ๋ฅผ ๋„ค ๊ฐ€์ง€ ์ง€ํ‘œ๋กœ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋„ค ๊ฐ€์ง€ ์ง€ํ‘œ๋Š” ์•ŒํŒŒ๋ฒณ V๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋„ค ๋‹จ์–ด๋กœ ๋†’์ด(Vertical), ๋†’์ด ๋ณ€์œ„(Variance), ์ฒด์ (Volume), ๊ฐœ๋ฐฉ์„ฑ(Vacant)์ด๋‹ค. ์ œ์•ˆ๋œ ์ง€ํ‘œ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋„์‹œํ˜•ํƒœ๊ฐ€ ๋„์‹œ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ์ธ ๊ทธ๋Š˜, ์—ด ์šฉ๋Ÿ‰, ํ™˜๊ธฐ ์„ฑ๋Šฅ์„ ์กฐ์ ˆํ•˜๋Š” ์ฃผ์š”ํ•œ ์š”์ธ์œผ๋กœ ์ง€๋ชฉ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์ง€ํ‘œ๋Š” ๊ฐœ๋ณ„ ๋ฐ ์ƒํ˜ธ๊ด€๊ณ„ ์˜ํ–ฅ์„ ์ค‘์‹ฌ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋œ ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ๋Š” ๋„์‹œํ˜•ํƒœ๊ฐ€ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ๋‹ค์–‘ํ•œ ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด 1์ฐจ์›(๋†’์ด), 2์ฐจ์›(ํ‰๋ฉด)๊ณผ 3์ฐจ์›(์ฒด์ ) ์ง€ํ‘œ๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•œ๋‹ค. ๊ณต๊ฐ„์˜ ์—ฐ์†์„ฑ์„ ๊ณ ๋ คํ•˜๋ฉด ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ ๊ฐ„์— ์ƒํ˜ธ๊ด€๊ณ„๊ฐ€ ํ•„์—ฐ์ ์œผ๋กœ ๋ฐœ์ƒํ•  ์ˆ˜๋ฐ–์— ์—†๋‹ค. ์ด์— ์ง€ํ‘œ ๊ฐ„์˜ ์ƒํ˜ธ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋”ฅ๋Ÿฌ๋‹ ๋ชจํ˜•์„ ๋ถ„์„์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ถ„์„์€ 2-๋ ˆ์ด์–ด ์ธ๊ณต์‹ ๊ฒฝ๋ง์œผ๋กœ ์˜ˆ์ธก ๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์ด๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ถ„์„ ๋ฐฉ๋ฒ•์ธ SHAP๋ฅผ ํ†ตํ•ด ์ง€ํ‘œ์˜ ๊ฐœ๋ณ„ ๋ฐ ์ƒํ˜ธ๊ด€๊ณ„์— ๋Œ€ํ•œ ์˜ํ–ฅ๋ ฅ์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋„์‹œํ˜•ํƒœ๊ฐ€ ๋งŒ๋“œ๋Š” ๊ทธ๋Š˜ ๋ฐ ํ™˜๊ธฐ์„ฑ๋Šฅ์˜ ๋ชจ์ˆœ์ ์ธ ํšจ๊ณผ์™€ ๋„์‹œํ˜•ํƒœ ๊ฐ„์˜ ์ƒํ˜ธ๊ด€๊ณ„๋Š” ๋„์‹œ ๊ณต๊ฐ„์˜ ๊ธฐ๋ฅ˜๋ฅผ ๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•˜๊ฒŒ ๋งŒ๋“ค์–ด ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ํ•œ๋‹ค. ์ด์— ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ์˜ ๊ฐœ๋ณ„ ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋Š” ๋กœ์ปฌ๊ทœ๋ชจ์˜ ๋„์‹œํ˜•ํƒœ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ์ด๋ฅผ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ด ์—ฐ๊ตฌ๋Š” ๋กœ์ปฌ๊ทœ๋ชจ์—์„œ ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์— ๋”ฐ๋ฅธ ๋„์‹œํ˜•ํƒœ ์˜ํ–ฅ๋ ฅ์˜ ์ฐจ์ด๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ์˜ˆ์ปจ๋Œ€, ์ €์ธต๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ๊ณผ ๊ณ ์ธต๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ์—์„œ ์ค‘์š”ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ์ง€ํ‘œ๊ฐ€ ๋‹ค๋ฅด๋‹ค๋ฉด ์˜จ๋„๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ ‘๊ทผ์ด ๋‹ฌ๋ผ์•ผ ํ•œ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ ๋„ค ๊ฐ€์ง€ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ๋Š” ๋„์‹œ์˜ ๋Œ€๊ธฐ์˜จ๋„์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์—ˆ๋‹ค. ์—ฌ๋ฆ„์ฒ ์—๋Š” ๊ณต๊ฐ„์˜ ๊ฐœ๋ฐฉ์„ฑ(Vacant)๊ณผ ๊ณต๊ฐ„๋†’์ด(Vertical)๊ฐ€ ์˜จ๋„๋ฅผ ๋‚ฎ์ถ”๋Š” ์ค‘์š”ํ•œ ์ง€ํ‘œ์˜€๋‹ค. ๊ณ ์ธต ๊ฑด๋ฌผ์ด ๋งŒ๋“œ๋Š” ๊ทธ๋Š˜ํšจ๊ณผ์™€ ๋„์‹œ์˜ ๊ฐœ๋ฐฉ์„ฑ์— ์˜ํ•œ ํ™˜๊ธฐ์„ฑ๋Šฅ์ด ์—ด ์พŒ์ ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ฃผ์—ˆ๋‹ค. ์ค‘์š”ํ•œ ์ ์€ ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ณต๊ฐ„๋†’์ด์˜ ์ƒํ˜ธ๊ด€๊ณ„์—์„œ ๋ฐœ๊ฒฌ๋œ๋‹ค. SHAP์˜ ์˜์กด์„ฑ ํ”Œ๋ž์„ ํ†ตํ•ด ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ณต๊ฐ„๋†’์ด์˜ ๊ด€๊ณ„๋ฅผ ์‚ดํŽด๋ณธ ๊ฒฐ๊ณผ ๊ฐœ๋ฐฉ์„ฑ์ด ํ‰๊ท  ์ดํ•˜์ธ ์ง€์—ญ๊ณผ ํ‰๊ท  ์ด์ƒ์ด ์ง€์—ญ์—์„œ ๊ณต๊ฐ„๋†’์ด์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „์ž๊ฐ€ ํ›„์ž์— ๋น„ํ•ด ๋†’์ด์— ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์˜€๋Š”๋ฐ, ๊ฐœ๋ฐฉ์„ฑ์ด ๋‚ฎ์€ ์ง€์—ญ์—์„œ ๊ฑด๋ฌผ๋†’์ด๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์˜จ๋„์˜ ๊ธ‰๊ฒฉํ•œ ์ƒ์Šน์ด ๋ชฉ๊ฒฉ๋œ๋‹ค. ๊ณต๊ฐ„๋†’์ด๊ฐ€ ๋‚ฎ๊ณ  ๊ฑด๋ฌผ์ด ๋ฐ€์ง‘๋œ ๊ณต๊ฐ„์€ ๊ทธ๋Š˜ํšจ๊ณผ๋‚˜ ํ™˜๊ธฐ์„ฑ๋Šฅ๊ณผ ๊ฐ™์ด ์˜จ๋„ ์ €๊ฐ ํšจ๊ณผ๋ฅผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์—†์–ด ์˜จ๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” UCL ์ดํ•˜์—์„œ ๊ณต๊ฐ„ ๋ฐ€๋„๋ฅผ ๋‚ฎ๊ฒŒ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ๋กœ์ปฌ ๊ทœ๋ชจ์—์„œ ๋„์‹œ์˜ ์˜จ๋„๋ฅผ ๋‚ฎ์ถ”๋Š” ์ข‹์€ ๋Œ€์•ˆ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ณต๊ฐ„ ๋ฐ€๋„๋Š” ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๋†’์ด๋ฅผ ํ†ตํ•ด ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ๋„์‹œํ™”์™€ ์˜จ๋„์˜ ๊ด€๊ณ„๋ฅผ ์‚ดํŽด๋ณธ ์ผ๋ถ€ ์—ฐ๊ตฌ๋Š” ๊ณต๊ฐ„๋ฐ€๋„๋ฅผ ๊ฑด๋ฌผ ์ฒด์ ๊ณผ ๋™์ผ์‹œํ•˜์—ฌ ์˜จ๋„์— ์–‘์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋„์‹œํ™”์˜ ๋ถ€์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด ์—ฐ๊ตฌ๋Š” ์ฒด์ ์ด ์˜จ๋„ ์ฆ๊ฐ€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋น„ํ•ด ์ ์ ˆํ•œ ๊ฐœ๋ฐฉ์„ฑ์— ์˜ํ•œ ํ™˜๊ธฐ์„ฑ๋Šฅ๊ณผ ๊ณ ์ธต๊ฑด๋ฌผ์— ์˜ํ•œ ๊ทธ๋Š˜ ํšจ๊ณผ๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๋„์‹œ์˜ ์˜จ๋„๋ฅผ ์ €๊ฐํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ฐํ˜”๋‹ค. ์˜ˆ์ปจ๋Œ€, ๊ณ ์ธต๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ์€ ์ €์ธต๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ์— ๋น„ํ•ด ์ด ๊ฑด๋ฌผ ์ฒด์ ์€ ๋†’์ง€๋งŒ ๋†’์€ ๊ฑด๋ฌผ์ด ๋งŒ๋“œ๋Š” ๊ทธ๋Š˜ํšจ๊ณผ์™€ ๊ฑด๋ฌผ ์‚ฌ์ด์˜ ์ถฉ๋ถ„ํ•œ ๊ฐ„๊ฒฉ์ด ํ™˜๊ธฐ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผœ ์˜จ๋„๋ฅผ ์ €๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๊ณต๊ฐ„๋ฐ€๋„๊ฐ€ ์ฒด์ ์ด ์•„๋‹Œ ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ณต๊ฐ„๋†’์ด์˜ ์ƒํ˜ธ ๊ด€๊ณ„์— ์˜ํ•ด ์ดํ•ด๋˜์–ด์•ผ ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ฑด๋ฌผ ์ฒด์ , ๊ณต๊ฐ„๋†’์ด์™€ ๋†’์ด ๋ณ€์œ„์˜ ์ƒํ˜ธ๊ด€๊ณ„์—์„œ๋„ ์ƒˆ๋กœ์šด ํ†ต์ฐฐ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ฑด๋ฌผ ์ฒด์ ์˜ ๊ฒฝ์šฐ ๊ฐœ๋ฐฉ์„ฑ์ด ๋‚ฎ์œผ๋ฉด ๋Œ€๊ธฐ ์˜จ๋„๋Š” ์ฒด์ ์— ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์—ฌ ๊ธ‰์ฆํ•˜๋Š” ์ง€์—ญ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ณต๊ฐ„๋†’์ด์™€ ๋†’์ด ๋ณ€์œ„์˜ ๊ด€๊ณ„์—์„œ๋Š” ๋†’์ด๊ฐ€ ์ผ์ •ํ•˜๊ณ  ๋‚ฎ์€ ์ง€์—ญ์—์„œ ์˜จ๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ์—์„œ ์„ค์ •ํ•œ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ๋Š” ์ฒด์ ๊ณผ ๋†’์ด ๋ณ€์œ„๊ฐ€ ์˜จ๋„์— ์–‘์˜ ์˜ํ–ฅ์„ ๋ฏธ์ณค์ง€๋งŒ ๊ฐœ๋ฐฉ์„ฑ๊ณผ ๊ณต๊ฐ„๋†’์ด๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์˜จ๋„๊ฐ€ ๊ธ‰์ฆํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋‚ฎ์ถ”๋Š” ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ด ์—ฐ๊ตฌ๋Š” ๋กœ์ปฌ๊ทœ๋ชจ์—์„œ ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์— ๋”ฐ๋ผ ๋„์‹œํ˜•ํƒœ๊ฐ€ ์˜จ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์€ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจํ˜•์„ ํ†ตํ•ด ๋‹ค์„ฏ ๊ฐ€์ง€ ๊ตฐ์ง‘์œผ๋กœ ๊ตฌ๋ถ„๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ ๊ตฐ์ง‘์˜ ํŠน์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ ๊ฐ€๋Šฅํ•˜๋‹ค: ๊ตฐ์ง‘ 1์€ ๋†’์ด๊ฐ€ ์ผ์ •ํ•œ ์ €์ธต๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ, ๊ตฐ์ง‘ 2๋Š” ์ž‘์€ ํ•˜์ฒœ์— ์ธ์ ‘ํ•œ ์ €์ธต ๋ฐ ์ค‘์ธต ๊ฑด๋ฌผ ๋ฐ€์ง‘์ง€์—ญ, ๊ตฐ์ง‘ 3์€ ๋‹ค์–‘ํ•œ ๋†’์ด์˜ ์ค‘์ธต ๋ฐ ๊ณ ์ธต ๊ฑด๋ฌผ ๋ฐ€์ง‘ ์ง€์—ญ, ๊ตฐ์ง‘ 4๋Š” ๊ฐœ๋ฐฉ๊ฐ์ด ๋›ฐ์–ด๋‚œ ์ค‘์ธต ๋ฐ ๊ณ ์ธต ๊ฑด๋ฌผ ์กฐ์„ฑ์ง€์—ญ, ๊ตฐ์ง‘ 5๋Š” ๋…น์ง€์™€ ํ•˜์ฒœ ์ธ์ ‘์ง€์—ญ. ๊ฐ ๊ตฐ์ง‘์˜ ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์— ๋”ฐ๋ผ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ์˜ ์ค‘์š”๋„๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์— ๋”ฐ๋ผ ์ง€์—ญ์˜ ์˜จ๋„ ์ €๊ฐ์„ ์œ„ํ•œ ์‹คํ–‰ ์ „๋žต์ด ๋‹ฌ๋ผ์ ธ์•ผ ํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋„์‹œํ˜•ํƒœ๊ฐ€ ๋งŒ๋“œ๋Š” ๋ณต์žกํ•œ ์ƒํ˜ธ๊ด€๊ณ„๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜์—ฌ ๋„์‹œ๊ณต๊ฐ„์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ์˜ ์ค‘์š”๋„์™€ ์ง€ํ‘œ ๊ฐ„์˜ ์ƒํ˜ธ๊ด€๊ณ„์— ๋Œ€ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•™์ˆ ์  ์ธก๋ฉด์—์„œ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ์™€ ๋„์‹œ ์˜จ๋„์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ดํ•ด์˜ ๊นŠ์ด๋ฅผ ๋”ํ•˜์˜€๊ณ , ์‹ค์ฒœ์  ์ธก๋ฉด์—์„œ ๋„์‹œ๊ณ„ํš๊ฐ€์™€ ์„ค๊ณ„์ž๋“ค์—๊ฒŒ ๋„์‹œ ์˜จ๋„ ์™„ํ™”๋ฅผ ์œ„ํ•œ ๋ฐ”๋žŒ์งํ•œ ์ •์ฑ…์  ์ˆ˜๋‹จ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋„์‹œ์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๋ณ€ํ™”๋Š” ์†์‰ฝ๊ฒŒ ํ•˜ํ–ฅ์‹์œผ๋กœ ์ ์šฉํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ ์‹ ์ค‘ํ•œ ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ, ์ž์›์˜ ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฏ€๋กœ ๋ฐฉ๋ฒ•์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ํ†ตํ•ด ์ ์šฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋„์‹œ๊ฐ€ ๋ณด๋‹ค ๋‚˜์€ ์—ด ํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์šธ ๊ฒƒ์ด๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ 4 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ 7 ์ œ 1 ์ ˆ ๋„์‹œํ˜•ํƒœ 7 ์ œ 2 ์ ˆ ๋„์‹œ ๊ธฐํ›„ 15 ์ œ 3 ์ ˆ ์—๋„ˆ์ง€ ์ด๋™ ๋ฐ ๊ท ํ˜• 21 ์ œ 4 ์ ˆ ๋„์‹œํ˜•ํƒœ์˜ ์˜จ๋„ ์กฐ์ ˆ 25 ์ œ 5 ์ ˆ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์„ฑ 34 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๊ฐ€์„ค 37 ์ œ 1 ์ ˆ ๋…ผ๊ฑฐ 37 ์ œ 2 ์ ˆ ๊ฐ€์„ค 46 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 49 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€์—ญ 49 ์ œ 2 ์ ˆ ๋ถ„์„ ๋‹จ์œ„ 57 ์ œ 3 ์ ˆ Data 60 ์ œ 4 ์ ˆ ๋ถ„์„ ๋ฐฉ๋ฒ• 70 ์ œ 5 ์ ˆ ์—ฐ๊ตฌ ๋ณ€์ˆ˜ 82 ์ œ 5 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 93 ์ œ 1 ์ ˆ ๊ธฐ์ดˆ ํ†ต๊ณ„ 93 ์ œ 2 ์ ˆ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ์˜ ํšจ๊ณผ ๋ถ„์„ 100 ์ œ 3 ์ ˆ ๋„์‹œํ˜•ํƒœ ์œ ํ˜• ๊ตฐ์ง‘ 114 ์ œ 4 ์ ˆ ๋„์‹œํ˜•ํƒœ ์œ ํ˜•์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ณ€ํ™” 129 ์ œ 6 ์žฅ ํ† ์˜ 139 ์ œ 1 ์ ˆ ์ˆ˜์ง ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ์˜ ์˜ํ–ฅ 139 ์ œ 2 ์ ˆ ๋„์‹œํ˜•ํƒœ ์ง€ํ‘œ์˜ ์ƒํ˜ธ์ž‘์šฉ 144 ์ œ 3 ์ ˆ ๋„์‹œํ˜•ํƒœ ์œ ํ˜• 148 ์ œ 7 ์žฅ ๊ฒฐ๋ก  156 ์ œ 1 ์ ˆ ์ด๋ก ์  ๊ธฐ์—ฌ 156 ์ œ 2 ์ ˆ ์ •์ฑ…์  ํ•จ์˜ 160 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 163 ๋ถ€๋ก I. ๊ตฐ์ง‘ ์„ฑ๋Šฅ ๊ฒ€์ฆ 164 ๋ถ€๋ก II. ๋„์‹œํ˜•ํƒœ ๋ณ€์ˆ˜์˜ ๊ตฐ์ง‘๋ณ„ ๋ถ„ํฌ๋„ 176 ์ฐธ๊ณ  ๋ฌธํ—Œ 178 Abstract 206๋ฐ•

    Hybrid optimisation and formation of index tracking portfolio in TSE

    Get PDF
    Asset allocation and portfolio optimisation are some of the most important steps in an investors decision making process. In order to manage uncertainty and maximise returns, it is assumed that active investment is a zero-sum game. It is possible however, that market inefficiencies could provide the necessary opportunities for investors to beat the market. In this study we examined a core-satellite approach to gain higher returns than that of the market. The core component of the portfolio consists of an index-tracking portfolio which has been formulated using a meta-heuristic genetic algorithm, allowing for the efficient search of the solution space for an optimal (or near-optimal) solution. The satellite component is made up of publicly traded active managed funds and the weights of each component are optimised using mathematical modelling (quadratics) to maximise the returns of the resultant portfolio.In order to address uncertainty within the model variables, robustness is introduced into the objective function of the model in the form of risk tolerance (Degree of uncertainty). The introduction of robustness as a variable allows us to assess the resultant model in worst-case circumstances and determine suitable levels of risk tolerance. Further attempts at implementing additional robustness within the model using an artificial neural network in an LSTM configuration were inconclusive, suggesting that LSTM networks were unable to make informative predictions on the future returns of the index because market efficiencies render historical data irrelevant and market movement is akin to a random walk. A framework is offered for the formation and optimisation of a hybrid multi-stage core-satellite portfolio which manages risk through the implementation of robustness and passive investment, whilst attempting to beat the market in terms of returns. Using daily returns data from the Tehran Stock Exchange for a four-year period, it is shown that the resultant core-satellite portfolio is able to beat the market considerably after training.Results indicate that the tracking ability of the portfolio is affected by the number of its constituents, that there is a specific time frame of 70 days after which the resultant portfolio needs to be re assessed and readjusted and that the implementation of robustness as a degree of uncertainty variable within the objective function increases the correlation coefficient and reduces tracking error.Keywords: Index Funds, Index Tracking, Passive Portfolio Management, Robust Optimisation, Core Satellite Investment, Quadratic Optimisation, Genetic Algorithms, LSTM, Heuristic Neural Networks, Efficient Market Hypothesis, Modern Portfolio Theory, Portfolio optimisatio
    corecore