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Abstract 
 

  

We assess the effectiveness of various portfolio optimization strategies (only 

long allocations) applied to the components of the Euro Stoxx 50 index 

during the period 2002-2015. The sample under study contemplates 

episodes of high volatility and instability in financial markets, such as the 

Global Financial Crisis and the European Debt Crisis. This implies a real 

challenge in portfolio optimization strategies, since all the methodologies 

used are restricted to the assignment of positive weights. We use the daily 

returns for the asset allocation with a three year estimation window, keeping 

the assets in portfolio for one year. 

 

In the context of strategies with short-selling constraints, we contribute to the 

debate on whether naive diversification proves to be an effective alternative 

for the construction of the portfolio, as opposed to the portfolio optimization 

models. To that end, we analyse the out-of-sample performance of 16 

strategies for the selection of assets and weights in the main stock index of 

the euro area. Our results suggest that a large number of strategies 

outperform both the naive strategy and the Euro Stoxx 50 index in terms of 

the profitability and Sharpe's ratio. Furthermore, the portfolio strategy based 

on the maximization of the diversification ratio provides the highest return 

and the classical strategy of mean-variance renders the highest Sharpe 

ratio, which is statistically different from the Euro Stoxx 50 index in the 

period under study. 
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1. Introduction 

 

Markowitz (1952, 1959) suggested that a rational investor should choose a portfolio 

with the lowest risk for a given level of return instead of investing in individual assets, 

calling these portfolios as efficient. This approach has been the first model of portfolio 

selection in the literature, which is known as Markowitz’s mean-variance (M-V) 

analysis. Although the M-V methodology has become the central base of the classical 

finance, leading directly to the development of the Capital Asset Pricing Model 

(CAPM) by Sharpe (1964), Lintner (1965) and Mossin (1966), the practical application 

is surrounded by difficulties due to their poor out-of-sample performance, since the 

expected returns are estimated based only on sample information, which results in an 

estimation error. 

 

A latter approach to addressing the estimation error involves the application of Bayesian 

techniques, or shrinkage estimators. Jorion (1991) uses the Bayesian approach to 

overcome the weakness of the expected returns estimated using only sample 

information. More recent approaches are based on the asset pricing model (see Pástor, 

2000; or Pástor and Stambaugh, 2000); and the imposition short-selling constraint rules 

(e.g., Frost and Savarino, 1988; Chopra, 1993; Jagannathan and Ma, 2003). Similarly, in 

the literature there have been proposals of introducing the minimum-variance portfolios, 

based on the estimation of the covariance matrix, which is not generally as sensitive to 

estimation error and provides a better out-of-sample performance (see Chan et al., 1999; 

and Jagannathan and Ma, 2003; among others). Additionally, Konno and Yamazaki 

(1991) proposed the mean absolute deviation (MAD) model, which is based on the 

Markowitz’s (1959) model. The MAD model is considered as a relevant alternative to 

the traditional M-V model, since it takes into account the mean absolute deviation 

instead of the standard deviation.  

 

It is also common to use robust optimization techniques to overcome the problems of 

stochastic programming techniques (see, for example, Quaranta and Zaffaroni, 2008; 

DeMiguel et al., 2009; DeMiguel and Nogales, 2009; Harris and Mazibas, 2013; Allen 

et a,., 2014a, 2014b; Xing et al., 2014.). Choueifaty and Coignard (2008) and 

Choueifaty et al. (2013) proposed an approach based on the portfolio with the highest 

ratio of diversification. In addition Qian (2005, 2006, 2011) introduced the portfolio 

with equal contribution to risk, which assigns different weights to assets so that their 

contribution to the overall volatility of the portfolio is proportional, the properties of 

this strategy being analysed by Maillard et al. (2010). These methodologies aim to 

defend against the possible uncertainty in the parameters, given that the true values of 

the parameters of the statistical model are not exactly known. 

 

In recent years, the interest of the authorities has increased considerably regarding the 

measurement of the effects of unexpected losses associated with extreme events in 

financial markets. This leads directly to improved methodologies for measurement and 

quantification of risk. In this sense, it is considered that the traditional M-V framework, 

frequently used in the selection of efficient portfolios, should be revised to introduce 

more complex risk measures than the simple standard deviation, in particular risk 

measures based on the quantile. This is the context that explains the choice of Value at 

Risk (VaR) as synthetic risk measure that can express the market risk of a financial 

asset or portfolio (JP Morgan, 1994). Nevertheless, VaR has been the subject of strong 

criticism, despite the widespread use in banking supervision. VaR lacks subadditivity, 
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so it is not a coherent risk measure for the general distribution of loss, and this goes 

against the diversification principle (see Artzner et al., 1997, 1999).  

 

Moreover, the absence of convexity of the VaR causes considerable difficulties in 

portfolio selection models based on its minimization. Furthermore, the VaR has been 

criticized for not being able to quantify the so-called ‘tail risk’: the risk of a portfolio 

falling more than 3 standard deviations from its current price. This has led some 

researchers to define new risk measures such as Conditional Value at Risk (CVaR or 

Expected Shortfall, ES): the expected loss exceeding the VaR (see Rockafellar and 

Uryasev, 2000, 2002; Pflug, 2000; and Gaivoronski and Pflug, 2005, among others). 

 

Indeed, there has been a rapid impulse in the literature about the use of CVaR in 

portfolio theory. Additionally, the CVaR has the mathematical advantage that can be 

minimized using linear programming methods. A simple description of the approach to 

minimize CVaR and CVaR constrained optimization problems can be found in 

Chekhlov et al. (2000). Krokhmal et al. (2002) compared the CVaR and Conditional 

Drawdown-at-Risk (CDAR) approaches for minimal risk portfolios in some hedge 

funds. Agarwal and Naik (2004), and Giamouridis and Vrontos (2007) compared the 

traditional M-V approach with CVaR portfolios built using hedge funds strategies.  

 

In the context of strategies with short-selling constraints, the objective of this paper is to 

compare the out-of-sample performance of the naive strategy regarding various models 

for the construction of efficient portfolios. It should be noted that there exists an 

ongoing debate in the literature on whether the gains from optimization are reduced by 

estimation errors or uncertainty in the parameters, which influence in the portfolio 

optimization process. In this sense, there is no consensus in the literature on whether the 

naive diversification is more effective than other portfolio strategies, specially when 

there are not short-selling constraints (see recent contributions in this area, such as 

DeMiguel et al., 2009; Tu and Zhou, 2011; Kirby and Ostdiek, 2012; Allen et al., 

2014a, 2014b and Adame et al., 2016). 

 

For this purpose, we considered a number of optimization models: (a) the classical M-V 

approach (Markowitz, 1952, 1959), the minimum variance approach (Jagannathan and 

Ma, 2003) and the MAD model proposed by Konno and Yamazaki (1991); (b) robust 

optimization techniques, as the most diversified portfolio (see Choueifaty and Coignard, 

2008; Choueifaty et al., 2013, among others) and the equally weighted risk 

contributions portfolios (see Qian, 2005, 2006, 2011); (c) portfolio optimization based 

on CVaR (Rockafellar and Uryasev, 2000, 2002; Alexander and Baptista, 2004; 

Quaranta and Zaffaroni, 2008); (d) functional approach based on risk measures such as 

the ‘Maximum draw-down’ (MaxDD), the ‘Average draw-down’ (AvDD), and the 

‘Conditional draw-down at risk’ (CDAR), all proposed by Chekhlov et al. (2000, 2005), 

as well as the Conditional draw-down at risk, ‘MinCDaR’ (see Chekhlov et al., 2005; or 

Kuutan, 2007); (e) Young’s (1998) minimax optimization model, based on minimizing 

risk and optimizing the risk/return ratio; (f) an application of Copula theory to build the 

minimum tail dependent portfolio, where the variance-covariance matrix is replaced by 

lower tail dependence coefficient (see Frahm et al., 2005; Fischer and Dörflinger, 2006; 

and Schmidt and Stadtmüller, 2006); (g) a defensive approach to systemic risk by beta 

strategy (‘Low Beta’), where the beta coefficient (β) is used to assess systemic risk of 

an asset in the CAPM model (see, e. g., Sharpe, 1964; Lintner, 1965; Mossin, 1966), as 

https://en.wikipedia.org/wiki/Financial_risk
https://en.wikipedia.org/wiki/Financial_portfolio
https://en.wikipedia.org/wiki/Standard_deviation
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related volatility of an asset, market, and the correlation between them. To conclude, it 

should be pointed out that we impose a short-selling constraint in the models. 

 

Following DeMiguel et al. (2009), it is of paramount importance to compare the results 

of different methodologies with the ‘naive diversification of 1/N’, which assigns equal 

weight to the risky assets. The 1/N strategy has proved as a difficult alternative to beat, 

specially when there are not short-selling constraints, the context where DeMiguel et al. 

(2009) work. Therefore, we propose an efficiency analysis of the various methodologies 

compared with the naive diversification of 1/N and the main euro area stock index (the 

Euro Stoxx 50 index) 

 

For the evaluation of the out-of-sample performance, we use five statistical criteria. The 

first one is the Sharpe ratio as a measure of the excess return (Sharpe, 1994). To test if 

the Sharpe ratio of two strategies is statistically different, we obtain the p-value of the 

difference, using the approach suggested by Jobson and Korkie (1981), after making the 

correction proposed by Memmel (2003). Similarly, we calculate the diversification ratio 

as a measure of the degree of portfolio diversification (see, e. g., Choueifaty and 

Coignard, 2008; and Choueifaty et al., 2013); and the concentration ratio, which is 

simply the normalized Herfindahl–Hirschmann index (Hirschman, 1964); VaR as 

synthetic risk measure that can express the market risk of a financial asset or portfolio, 

and the CVaR or ES, as a coherent risk measure that takes into account the ‘tail risk’. 

 

As for the data, we used a sample of the daily values of the stocks into the Euro Stoxx 

50 index. The prices are adjusted for dividend and these are taken from Datastream. The 

sample period, running from 3 January 1999 to 31 December 2015, encompasses two 

episodes of turmoil in financial markets: the Global Financial Crisis, which began in 

2008; and the European Sovereign Debt Crisis (2010-2011).  

 

The Euro Stoxx 50 index is a reference index of the euro area. The Index is developed 

by Stoxx Limited, which is a joint venture between the firms Deutsche Börse, Dow 

Jones & Company and SWX Swiss Exchange. The most relevant fact of this index is 

that it brings together the 50 largest companies among the 19 supersectors in terms of 

market capitalization in 11 member countries1. This gives it a very high degree of 

diversity or diversification. It is an index weighted by stock market capitalization, so not 

all companies that form it have the same representation. It is the main European index 

and one of the largest in the world in terms of the market capitalization of the 

companies that compose it. In addition, the Euro Stoxx 50 index index is often used as a 

barometer of the euro area's economy. 

 

The Euro Stoxx 50 index has been the subject of a large number of studies. For 

example, Dunis et al. (2010) apply a statistical arbitrage technique of pairs trading to 

high-frequency equity data and compare its profit potential to the standard sampling 

frequency of daily closing prices to the constituent shares of the Euro Stoxx 50 index.  

Brechmann and Czado (2013) develop a flexible factor model based on the R-vine to 

analyse the dependency structure between the main European shares represented in the 

Euro Stoxx 50 index and discuss the passive and active management of the portfolio 

using models of the vine copulas. Moreover, Xidonas and Mavrotas (2014) manage to 

                                                        
1  These countries are Austria, Belgium, Germany, Finland, France, Italy, Ireland, Luxembourg, 

Netherlands, Portugal and Spain.  
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co-assess a set of sophisticated real-world non-convex investment policy limitations, 

such as cardinality constraints, buy-in thresholds, transaction costs, particular normative 

rules, etc., where the validity of the attempt is verified through an illustrative 

application on the Euro Stoxx 50 index. 

 

We used the daily returns with an estimate window equal to three years, 756 days. 

Therefore, the portfolios have been built for a sample size Nt = 756 and the results 

have been evaluated out of sample for the next period Nt+1  (see Table 1). We 

considered only those stocks that have shown continuity within the index during the 

estimation period. We show in Table 1 the number of assets in each period, while in 

Table A1 in the Annex we report the actual asset considered in each time period. 

 

[Insert Table 1 around here] 

 

The rest of the paper is organized as follows. In Section 2, we describe the various 

methodologies used for the portfolio construction. In Section 3, we explain the 

methodology for the performance evaluation. In Section 4, we show the results against 

the Euro Stoxx 50 index and the naive strategy of 1/N. In Section 5, we present some 

concluding remarks. 

 

 

2. Methodological description 

 

In this Section we offer a brief description of the different portfolio strategies assessed 

in this paper. Table 2 offers a list of the asset-allocation models under study. 

 

[Insert Table 2 around here] 

 

2.1. Mean-variance (M-V) portfolio 

 

The efficient frontier of mean-variance is defined as the set of values (𝜇𝑖, 𝜎𝑖
2) that 

resolves the following multi-objective optimization problem: 

 

max wTμ , (1) 

 

min 𝑤𝑇 ∑ 𝑤,  

 

s. t. 𝑤𝑇 𝟏 = 1.  

Where wT  is the (𝑁 × 1)  vector of weights and Σ  denotes the variance-covariance 

matrix of asset returns with elements outside the diagonal and 𝜎𝑖𝑗 and 𝜎𝑖
2 the ith element 

of the main diagonal. 

 

Each point on the efficient frontier (𝜇𝑖, 𝜎𝑖
2)  corresponds to an efficient portfolio 𝑇 

where the investor gets a maximum return for a given level of risk 𝜎𝑖. The efficient 

frontier of mean-variance reflects the relationship between return and risk, introducing 

the trade-off concept of risk-return in the financial markets. Therefore, it describe the 

level of return 𝜇𝑖 given a risk exposure 𝜎𝑖, or seen from a reverse perspective, the lower 
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variability 𝜎𝑖 for a return level 𝜇𝑖 (Markowitz, 1952, 1959). 

A risk-averse rational investor will make an investment decision on the efficient frontier 

when the risky asset returns exhibit a multivariate normal distribution or if her utility 

function is quadratic. The best choice will reflect the investor’s willingness to trade off 

risk against expected return. To solve efficiently the problem of quadratic optimization 

with two objectives described above, the problem can be converted into a quadratic 

optimization problem for different levels of return 𝜇𝑖 (Tsao, 2010). 

 

min 𝑤𝑇 ∑ 𝑤, (2) 

 

s. t.   𝑤𝑇𝜇 = 𝜇𝑖,  

 

s. t.   𝑤𝑇𝟏 = 1,  

 

s. t.   𝑤𝑇 ≥ 0.  

 

The expected return and the variance of the portfolio are 𝑤𝑇𝜇 , and 𝑤𝑇 ∑ 𝑤, 
respectively. In this article, we solve the above quadratic optimization problem and 

establish an expected return 𝜇𝑖  equal to the average return on the assets that are 

considered in the optimization problem. We have also included a short-selling 

restriction such that 𝑤𝑇 ≥ 0. 

 

2.2. Minimum-variance (GMV) portfolio 

 

We use the previous optimization problem to assign the weights 𝑤 to each asset in the 

minimum-variance portfolio, but not including the restriction on returns, 𝑤𝜇 = 𝜇𝑖. 

min 𝑤 ∑ 𝑤, (3) 

 

s. t.   𝑤𝟏 = 1,  

 

s. t.   𝑤 ≥ 0.  

We obtain the portfolio that provides the minimum variance  𝜎𝑖
2, given any return 𝜇𝑖 in 

the efficient frontier of mean-variance. In contrast to the mean-variance portfolio, the 

minimum variance weight vector does not depend of the expected return on assets (see 

Jagannathan and Ma, 2003, for a study of the properties). 

 

 

2.3.  Mean absolute deviation (MAD) portfolio 

 

Konno and Yamazaki (1991) proposed the MAD as an alternative to the traditional 

model of M-V where the mean absolute deviation is taken into account instead of the 

standard deviation. 
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They suggest that the applicability of the Markowitz portfolio optimization model 

entails certain difficulties because it is a quadratic programming problem, since second-

degree programming problems are more difficult to solve and to apply than linear 

problems. In addition, the size of the covariance matrix for the resolution of the 

portfolio selection model is very large and difficult to estimate. Solving the linear 

program is simpler, inasmuch as the number of functional constraints remains constant 

regardless of the number of assets included in the model. An optimal portfolio derived 

from the MAD model may contain up to N assets, this difference can be substantial 

when N is above 1,000.  

 

The MAD model considers the deviation below the rate of average return as a variance, 

therefore, it is not required to calculate the covariance matrix between the assets, which 

is generally considered as a drawback of the Markowitz model. Moreover, this model 

can work without setting assumptions about the uncertain parameter distributions and it 

is possible to update the model easily when adding new data. 

 

min ∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝐶,

𝑛

𝑗=1

 (4) 

 

s. t.   ∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝐶,

𝑛

𝑗=1

  

 

s. t.   ∑ 𝑥𝑗 = 𝐶,

𝑛

𝑗=1

  

 

                               s. t.   0 ≤ 𝑥𝑗 ≤ 𝑢𝑗 .       𝑗 = 1,2, … , 𝑁.  

 

The problem can be reformulated using the auxiliary variable 𝑦𝑡 

 

min  
1

𝑇
∑ 𝑦𝑡

𝑛

𝑗=1

 (5) 

 

s. t.   𝑦𝑡 + ∑(𝑟𝑗𝑡 − 𝑟𝑗)𝑥𝑗 ≥ 0, 𝑡 = 1, … , 𝑇,

𝑛

𝑗=1

  

 

s. t.    𝑦𝑡 − ∑(𝑟𝑗𝑡 − 𝑟𝑗)𝑥𝑗 ≥ 0, 𝑡 = 1, … , 𝑇,

𝑛

𝑗=1

  

 

s. t.   ∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝐶,

𝑛

𝑗=1
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s. t.   ∑ 𝑥𝑗 = 𝐶,

𝑛

𝑗=1

  

 

s. t.   0 ≤ 𝑥𝑗 ≤ 𝑢𝑗 ,    𝑗 = 1,2, … , 𝑁.  

 

where 𝑥𝑗 denotes the units of the asset j which will be included in the portfolio, 𝑦𝑡 is the 

deviation below the rate of average return in the period t, T is the length of the time 

horizon. Each period over the time horizon is represented by t (𝑡 = 1,2, … , 𝑇). The 

parameter 𝜌 refers to the minimum rate of return required by an investor. The rate of 

return on the asset j Is represented by a random variable  𝑅𝑗 . The variable 𝑟𝑗  is the 

expected performance, 𝐸[𝑅𝑗], of asset j, so that the return of the asset j in the period t is 

expressed by 𝑟𝑗𝑡. Also, 𝑢𝑗  is the maximum amount of asset j; C and N refer to the total 

expenditure of the portfolio and the total number of assets, respectively (see Moon and 

Yao, 2011). 

 

 

2.4. Naive diversification (1/N) 

 

Several studies confirm the existence of some investors who distribute their wealth 

through naive diversification strategy. Typically they invest in a few assets alike (see 

Benartzi and Thaler, 2001; and Huberman and Jiang, 2006). This fact does not prove 

that the naive diversification is a good strategy, since investors may select a portfolio 

that is not within the efficient frontier, or she may choose the wrong point in it. Both 

situations involve a cost, where the second cost is the most important (see Brennan and 

Torous, 1999). 

 

The naive strategy involves a weight distribution  𝑤𝑗 = 1/𝑁 for all risky assets in the 

portfolio. This strategy ignores the data and does not involve any estimation or 

optimization. DeMiguel et al. (2009) suggest that the expected returns are proportional 

to total risk instead systematic risk. 

 

 

2.5. Equal risk contributed (ERC) portfolio 

 

The portfolios built under the criterion of minimum variance and equally weighted 

(naive strategy 1/N) are of great interest because they are not based on the expected 

average returns and therefore they are supposed to be robust. Although the minimum-

variance portfolios generally have the disadvantage of a high concentration ratio, it can 

be limited through diversification (see Qian, 2005). 

 

Here is where the equal risk contributed portfolio is located, which assigns different 

weights to assets so that the contribution of these on total portfolio volatility is 

proportional. Therefore, the diversification is achieved by a weight vector, which is 

characterized by a distribution of less concentrated portfolio. The ERC portfolio was 

introduced in the literature by Qian (2005, 2006, 2011) and their properties were 

analyzed by Maillard et al. (2010). 
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Maillard et al. (2010) showed that when it comes to the standard deviation of the 

portfolio, the ERC solution takes an intermediate position between a minimum-variance 

portfolio and equally weighted portfolio. Therefore, the resulting portfolio is similar to a 

minimum-variance portfolio under additional diversification restrictions. 

 

Let 𝑀(𝑤𝑖, … , 𝑤𝑁) denote a measure of homogeneous risk, which is a function weight 

𝑤𝑖 of each asset in the portfolio. By Euler's theorem 𝑀 = α ∑ 𝑤𝑖
𝑁
𝑖=1  

𝜕𝑀

𝜕𝑤𝑖
, where α is the 

degree of homogeneity of M. This leads us to consider the contribution to the risk of 

asset i to be defined in the form 

𝐶𝑖𝑀𝑤∈Ω = 𝑤𝑖

𝜕𝑀𝑤∈Ω

𝜕𝑤𝑖
 . 

 

(6) 

The measure of risk 𝑀𝑤∈Ω can be the standard deviation of the portfolio, the value at 

risk or the expected shortfall if the degree of homogeneity is one. The portfolio risk is 

equal to the sum of the risk contributions. If we introduce the formula for the standard 

deviation portfolio 𝜎(𝑤) = √𝑤 ´Σ𝑤 to 𝑀𝑤∈Ω, then the partial derivatives in the above 

equation are given by 

∂σ(w)

∂wi
=

wiσi
2 + ∑ wi

N
i≠j σij

σ(w)
 . 

(7) 

 

 

These N partial derivatives are proportional to the ith row of (𝛴𝑤)𝑖, so the problem for 

the ERC portfolio with a short-sale constraints and a budget constraint is 

 

𝐸𝑅𝐶: 𝑤𝑖(Σw)𝑖 = 𝑤𝑗(Σw)𝑗 , ∀𝑖, 𝑗, (8) 

0 ≤ 𝑤𝑖 ≤ 1,  

𝑤 ´𝐢 = 1.  

where i is an (𝑁 × 1) vector of ones. The optimal solution of ERC is valid if the value 

of the objective function is zero, and this only occurs when all contributions are equal 

risk. A closed-form solution can only be derived under the assumption that all asset 

pairs share the same correlation coefficient. Under this assumption, the optimal weights 

are determined by the ratio of the inverse volatility of the ith asset and the average of 

the inverse asset volatilities (see Pfaff, 2013). 

 

2.6. Most diversified portfolio (MDP)  

Choueifaty and Coignard (2008) and Choueifaty et al. (2013) studied the theoretical and 

empirical properties of portfolios when the diversification is used as criterion. To do 

this, they established a measure for which the degree of diversification for a long 

portfolio could be evaluated. We define the diversification ratio (DR) to any portfolio P 

as 

 

𝐷𝑅(𝑃) =
𝑤 ´𝜎

√𝑤 ´∑𝑤
 . (9) 
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The numerator is the weighted average volatility of the individual assets, divided by the 

volatility of the portfolio. This relationship has a lower limit of one in the case of a 

portfolio composed only by an asset. Choueifaty et al. (2013) show that the portfolio 

characterized by a highly concentrated or with an asset returns very correlated would 

qualify as being poorly diversified, so that 

 

𝐷𝑅(𝑃) =
1

√(𝜌 + 𝐶𝑅) − 𝜌𝐶𝑅
 . (10) 

 

where 𝜌 denotes the volatility-weighted average correlation and CR is the volatility-

weighted concentration ratio. The DR only depends on the volatility-weighted average 

correlations in the case of a naive allocation.  

Choueifaty et al. (2013) established the conditions for the most diversified portfolio by 

introducing a set of synthetic assets that share the same volatility, such that 

 

𝐷(𝑆) =
𝑆´∑𝑆

√𝑆´𝑉𝑠𝑆
 . (11) 

 

where 𝑆 is a portfolio composed by synthetic assets, and 𝑉𝑆 is the covariance matrix of 

synthetic assets. If we have to 𝑆´∑𝑆 = 1 , then to maximize 𝐷(𝑆)  is equivalent to 

maximize 
1

√𝑆´𝑉𝑠𝑆
 under Γ𝑆 restrictions. 𝑉𝑆 is equal to the correlation matrix C of initial 

assets, so that to maximize the diversification ratio is equivalent to minimize 
 

𝑆´𝐶𝑆 . (12) 

 

Thus, if the assets have the same volatility, the diversification ratio is maximized by 

minimizing 𝑤 ´𝐶𝑤. Therefore, The target function matches with the minimum-variance 

portfolio, although it is used the correlation matrix. 

 

The impact of asset volatility is lower in the more diversified portfolio compared with 

the minimum-variance portfolio (see Pfaff, 2013). The weights are retrieved by 

intermediate vector rescaling weights with standard deviations of asset returns. The 

optimal weight vector is determined in two steps: first, an allocation is determined that 

yields a solution for a least correlated asset mix. This solution is then inversely adjusted 

by the asset volatilities, and later, the weights of the assets are adjusted inversely by 

their volatilities. 

 

 

2.7. Minimum tail-dependent (MTD) portfolio  

Minimum tail-dependent portfolio is determined through replacing the variance-

covariance matrix by the lower tail dependence coefficients matrix. In that sense, the 

lower tail of the correlation coefficient measures the dependence of the relationship 

between the asset returns when these are extremely negative. It is possible to find a 

scheme with various nonparametric estimators for minimum tail-dependent portfolio in 

Frahma et al. (2005), and Dörflinger Fischer (2006) and Schmidt and Stadtmüller 

(2006). 
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The copula notion was introduced by Sklar (1959). Sklar's theorem states that there is a 

C function, called copula, which establishes the functional relationship between the 

joint distribution and their marginal one-dimensional. Formally, let 𝑥 = (𝑥1, 𝑥2) be a 

two-dimensional random vector with joint distribution function 𝐹(𝑥1, 𝑥2) and marginal 

distributions 𝐹𝑖(𝑥𝑖), 𝑖 = 1, 2; there will be a copula 𝐶(𝑢1, 𝑢2) such that 

 

𝐹(𝑥1, 𝑥2) = 𝑃(𝑋1 < 𝑥1, 𝑋2 < 𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)). (13) 

 

Moreover, Sklar's theorem also provides that if 𝐹𝑖  are continuous, then the copula 

𝐶(𝑢1, 𝑢2) is unique. An important feature of copula is that it allows different degrees of 

dependency on the tail. The upper tail dependence (𝜆𝑈) exists when there is a positive 

likelihood that positive outliers are given jointly; while the lower tail dependence 𝜆𝐿, 

exists when there is a negative likelihood that negative outliers are given jointly (see 

Boubaker and Sghaier, 2013). Thereby, we define the lower tail dependence coefficient 

as follows 

 

𝜆𝐿 = lim
𝑢→0

𝐶(𝑢, 𝑢)

𝑢
 . 

(14) 

 

This limit can be interpreted as a conditional probability; therefore, the lower tail 

dependence coefficient is limited in the range [0, 1]. The limits are: for an independent 

copula (𝜆𝐿 = 0), and for a co-monotonic copula (𝜆𝐿 = 1). Nonparametric estimators 

for 𝜆𝐿 are derived from empirical copula.  

 

For a given sample paired observations N, (𝑋1, 𝑌1), … , (𝑋𝑁 , 𝑌𝑁 ), with order statistics 

𝑋(1) ≤ 𝑋(2) … ≤ 𝑋(𝑁) and 𝑌(1) ≤ 𝑌(2) … ≤ 𝑌(𝑁), the empirical copula is defined as 

 

𝐶𝑁 (
𝑖

𝑁
,

𝑗

𝑁
) =

1

N
∑ 𝐼(Xl ≤ X(i) ∧ Yl ≤ Yj)

N

l=1

 . 
(15) 

 

with 𝑖, 𝑗 = 1, … , 𝑁 and I is the indicator function, which has a value of 1 if the condition 

in parentheses is true. 𝐶𝑁 takes a zero value for 𝑖, 𝑗 = 0.  

 

In the literature, there are several consistent and asymptotically efficient estimators of 

λL, although this depend on a threshold parameter k, that is the number of statistical 

order. It is very important to select k correctly in order to estimate the lower tail 

dependence coefficient, if k is too small, this will result in an inaccurate estimation and 

a high bias. 

 

For example, the following nonparametric method for estimating of  λL is derived from 

a mixture of co-monotonous copula and independent copula. The lower tail dependence 

coefficient is the weight parameter between the two copulas (see Pfaff, 2013). So that 

 

λL(𝑁, 𝑘) =

∑ (𝐶𝑁 (
𝑖
𝑁 ,

𝑖
𝑁) − (

𝑖
𝑁)

2

 ) ((
𝑖
𝑁) − (

𝑖
𝑁)

2

)    𝑘
𝑖=1

∑ (
𝑖
𝑁 − (

𝑖
𝑁)

2

)

2
𝑘
𝑖=1

 . 
(16) 
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2.8. CVaR portfolio 

 

Rockafellar and Uryasev (2000) have advocated for CVaR as a useful measure of risk. 

Pflug (2000) showed that CVaR is a coherent risk measure with a number of attractive 

and desirable properties such as monotonicity, translational invariance, positive 

homogeneity, further CVaR satisfies subadditivity and it is convex. 

 

CVaR is proposed as a method to calculate the market risk arising as a complementary 

measure to VaR. CVaR is applicable to non-symmetric distributions loss, which takes 

into account risks beyond the VaR. Furthermore, CVaR accomplishes convexity 

property with what is possible to identify a global optimum point. 

 

The upper conditional value at risk  (𝐶𝑉𝑎𝑅+)  is defined as expected losses exceed 

strictly the VaR; and the lower conditional value at risk (𝐶𝑉𝑎𝑅−) is defined as weakly 

losses exceeding the VaR (greater or equal losses to VaR). Thus, the conditional value 

at risk is equal to the weighted average VaR and CVaR+. CVaR quantifies the excess 

losses of VaR and acts as an upper bound for the VaR. Therefore, portfolios with low 

CVaR also have a low VaR. A number of documents apply CVaR to portfolio 

optimization problems (see, for example, and Uryasev Rockafellar, 2000, 2002; 

Andersson et al., 2001; Alexander and Baptista, 2004; and Rockafellar et al. 2006). 

 

In terms of selection of portfolios, CVaR can be represented as a minimization problem 

of nonlinear programming with an objective function given as 

 

𝑚𝑖𝑛𝑤,𝜐

1

𝑛𝑎
∑ [max (0, 𝜐 − ∑ 𝑤𝑗𝑟𝑖,𝑗

𝑚

𝑗=1

] .

𝑛

𝑖=1

 
(17) 

 

where 𝜐  is the quantile 𝛼  of the distribution. In the discrete case, Rockafellar and 

Uryasev (2000) show that its possible to convert this problem a linear programming 

problem by introducing auxiliary variables, so that 

 

𝑚𝑖𝑛𝑤,𝑑,𝜐

1

𝑛𝑎
∑ 𝑑𝑖 + 𝜐

𝑛

𝑖=1

, (18) 

∑ 𝑤𝑗𝑟𝑖,𝑗 + 𝜐 ≥ −𝑑𝑖, ∀∈ {1, … , 𝑛},

𝑚

𝑗=1

 

 

∑ 𝑤𝑗𝜇𝑗 = 𝐶

𝑚

𝑗=1

, 
 

  

∑ 𝑤𝑗 = 1

𝑚

𝑗=1

, 
 

  

𝑤𝑗 ≥ 0, ∀𝑗 ∈ {1, … , 𝑛},  
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𝑑𝑖 ≥ 0, ∀𝑖 ∈ {1, … , 𝑛}.  

 

where 𝜐 represents the VaR in the coverage ratio, 𝛼 and 𝑑𝑖  are deviations below the 

VaR (see Allen et al., 2014b). If the CVaR is minimized, simultaneously, the VAR also 

will be minimized. 

 

 

2.9. Optimal draw-down portfolios 

They are portfolio optimization problems that try to achieve weight solutions with 

respect to the portfolio’s draw-down. This kind of optimization was proposed by 

Chekhlov et al. (2000, 2005). The task of finding optimal portfolio allocations with 

respect to draw-down is of considerable interest to asset managers, as it is possible to 

avoid, somehow, large withdrawals and/or loss of revenue management.  

The draw-down of a portfolio at time t is defined as the difference between the 

maximum uncompounded portfolio value prior to t and its value at t. Formally, denote 

by W(𝑤, 𝑡) = y´
t
w the uncompounded portfolio value at time t, with 𝑤 the portfolio 

weights for the N assets included in it, and 𝑦𝑡  is the accumulated returns. Then the 

draw-down, 𝔻(𝑤, 𝑡), is difined as 

𝔻 (𝑤, 𝑡) = 𝑚𝑎𝑥0≤𝜏≤1 {𝑊(𝑤, 𝜏)} − 𝑊(𝑤, 𝑡) . (19) 

 

Chekhlov et al. (2000) deducted three functional measures of risk: maximum draw-

down (MaxDD), average draw-down (AvDD) and conditional draw-down at risk 

(CDaR). CDaR is dependent on the chosen confidence level 𝛼. CDaR is a measure of 

functional risk and not a risk measure as in the case of CVaR. The limiting cases of this 

family of risk functions are MaxDD and AvDD. 

𝐶𝐷𝑎𝑅(𝑤)𝛼 = 𝑚𝑖𝑛𝜁 {𝜁
1

(1 − 𝛼)𝑇
∫ [𝔻(𝑤, 𝑡) − 𝜁]+ 𝑑𝑡

𝑇

0

}. (20) 

 

where 𝜁 is a threshold value for the draw-downs, so that only (1 − 𝛼)𝑇 observations 

exceed this value.  

For 𝛼 → 1, CDaR approaches to the maximum draw-down: CDaR(𝑤)𝛼→1 = 

MaxDD(𝑤) = max0≤𝑡≤𝑇{𝔻(𝑤, 𝑡)}. The AvDD result for 𝛼 = 0 is CDaR(𝑤)𝛼=0 =

AvDD(𝑤) = (1/𝑇) ∫ 𝔻
𝑇

0
(𝑤, 𝑡)𝑑𝑡. 

The portfolio optimization is expressed in discrete terms and the objective is defined as 

maximizing the annualized average return of the portfolio, (see Pfaff, 2013). 

𝑅(𝑤) =
1

𝑑𝐶
𝑦𝑇

´ 𝑤 . 
(21) 
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where 𝑑 is the number of years in the time interval [0, 𝑇]. In short, we consider the three 

functional risk measures, MaxDD, AvDD and CDaR, proposed by Chekhlov et al. 

(2000, 2005). Furthe, we consider the minimization of CDaR. 

MaxDD = arg max𝑤,𝑢  𝑅(𝑤) =
1

𝑑𝐶
𝑦𝑇

´ 𝑤, 
(22) 

 

𝑢𝑘 − 𝑦𝑘
´ 𝑤 ≤ 𝜈1𝐶, 

 

 

𝑢𝑘 ≥ 𝑦𝑘
´ 𝑤, 

 

 

𝑢𝑘 ≥ 𝑢𝑘−1, 

 

 

𝑢0 = 0. 

 

 

where 𝐮 denotes a (𝑇 + 1 × 1) vector of slack variables in the program formulation, in 

effect, the maximum portfolio values up to time period 𝑘 with 1 ≤ 𝑘 ≤ 𝑇. When the 

portfolio is optimized with regard to limiting of the average draw-down, only the first 

set of inequality constraints needs to be replaced with the discrete analogue of the mean 

draw-down expressed in continuous time as indicated above (see Pfaff, 2013), result to 

AvDD = arg max𝑤,𝑢  𝑅(𝑤) =
1

𝑑𝐶
𝑦𝑇

´ 𝑤, 
(23) 

 
1

𝑇
∑ (𝑢𝑘 − 𝑦𝑘

´ 𝑤)
𝑇

𝑘=1
≤ 𝜈2𝐶, 

 

 

𝑢𝑘 ≥ 𝑦𝑘
´ 𝑤, 

 

 

𝑢𝑘 ≥ 𝑢𝑘−1, 

 

 

𝑢0 = 0. 

 

 

For the CDaR linear programming problem is necessary to introduce two additional 

auxiliary variables, the threshold draw-down value 𝜁 dependent on the confidence level 

𝛼, and the (𝑇 × 1) vector 𝐳, representing the weak threshold exceedances; so that  

CDaR = arg max𝑤,𝑢,𝑧,𝜁  𝑅(𝑤) =
1

𝑑𝐶
𝑦𝑇

´ 𝑤, 
(24) 

 

𝜁 +
1

(1 − 𝛼)𝑇
∑ 𝑧𝑘 ≤

𝑇

𝑘=1
𝜈3𝐶, 

 

 

𝑧𝑘 ≥ 𝑢𝑘 − 𝑦𝑘
´ 𝑤 − 𝜁, 

 

 

𝑧𝑘 ≥ 0, 

 

 

𝑢𝑘 ≥ 𝑦𝑘
´ 𝑤, 
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𝑢𝑘 ≥ 𝑢𝑘−1, 

 

 

𝑢0 = 0. 

 

 

The minimization of CDaR (see Cheklov et al., 2005; and Kuutan, 2007) can be 

obtained similarly to the conditional value at risk (CVaR) through linear optimization, 

but we have to introduce auxiliary variables 

MinCDaR = arg min 𝑦 +
1

(1 − 𝛼)𝑇
∑ 𝑧𝑘

𝑇

𝑡=1

, 

(25) 

 

𝑧𝑘 ≥ 𝑢𝑘 − 𝑟𝑝(𝑤, 𝑡) − 𝑦,   

 

 

𝑧𝑘 ≥ 0, 

 

 

𝑢𝑘 ≥ 𝑟𝑝(𝑤, 𝑡), 

 

 

𝑢𝑘 ≥ 𝑢𝑘−1 . 

 

 

where 𝑦 is the threshold value of the accumulative distribution function 𝐷(𝑤, 𝑡), and 

𝑧𝑘, 𝑢𝑘 are auxiliary variables. 

The limitations 𝑢𝑘 ≥ 𝑟𝑝(𝑤, 𝑡), and 𝑢𝑘 ≥ 𝑢𝑘−1 replace linearly the higher value of the 

portfolio till the moment 𝑡: 𝑚𝑎𝑥{𝑟𝑝(𝑤, 𝑡)}. The first constraint ensures that 𝑢𝑘 is always 

higher or at least equal to the portfolio accumulated return in the moment 𝑘, and the 

second constraint ensures that 𝑢𝑘 is always higher or at least equal to the previous value 

(see Kuutan, 2007). Before of the optimization process, 𝑦 is a free variable, after of the 

optimization process it is the 𝐶𝐷𝑎𝑅𝛼 for the MinCDaR portfolio. Thus, if we minimize 

the function 𝐻𝛼(𝑤, 𝑦), we simultaneously obtain both values (see Unger, 2014). 

 

2.10. Minimum tail-dependent portfolio based in Clayton copula and low beta 

strategy.  

The minimum tail-dependent is derived from a Clayton copula. The Clayton copula 

belongs to the family of Archimedean copula, its one of the most used in the literature 

(see Clayton, 1978). An Archimedean generator, or generator, is a continuous 

decreasing function 𝜓: [0, ∞] → [0,1]  which complies 𝜓(0) = 1, 𝜓(∞) ∶ = 

𝑙𝑖𝑚𝑡→∞𝜓(𝑡) = 0, and that is strictly decreasing on [0, 𝑖𝑛𝑓{𝑡: 𝜓(𝑡) = 0}]. The set of all 

functions is denoted by Ψ. 

An Archimedean generator 𝜓 ∈ Ψ is called strict if 𝜓(𝑡) < 0 for all 𝑡 ∈ [0, ∞]. A d-

dimensional copula C is called Archimedean (see Hofert and Scherer, 2011) if it allows 

the representation 

𝐶(u) = C(u; ψ) ≔ ψ(ψ−1(u1) + ⋯ + ψ−1(ud)), u ∈ Id. (26) 
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for some ψ ∈ Ψ  with inverse ψ−1: [0,1] → [0, ∞],  where ψ−1(0) ≔ inf{t: ψ(t) = 0}. 
There are different notations for Archimedean copula. A bivariate Clayton copula can 

be presented so that 

𝐶(𝑢1, 𝑢2) = 𝜓−1(𝜓(𝑢1) + 𝜓(𝑢2)) = (𝑢1
−𝛿 + 𝑢2

−𝛿 − 1)1 𝛿⁄  . (27) 

 

The Clayton copula has the minimum tail-dependent. The coefficient is calculated 

according to 𝜆𝑙 = 2−1 𝛿⁄ . For the bivariate Clayton copula, the following simplifications 

are given 

𝛿 =
2�̂�𝜏

1 − �̂�𝜏
 . (28) 

 

 

𝜃 =
1

1 − �̂�𝜏
 . 

 

(29) 

 

where ρ̂τ is the empirical Kendall rank correlation (see, for example, Genest and Favre, 

2007). 

 In addition, we implemented the strategy of lower beta coefficient (“Low Beta”), beta 

(𝛽) is the coefficient used to evaluate systemic risk of an asset in the CAPM model, (see 

Sharpe, 1964; Lintner, 1965; and Mossin, 1966), and it relates the volatility of an asset, 

market, and the correlation between them. We select assets whose volatility is less than 

the reference market, in absolute terms, for the construction of the beta portfolio. The 

process to build the portfolio can be summarized so that, we get the beta coefficients of 

each asset such that 

𝛽𝑖 =
𝐶𝑜𝑣 (𝑅𝑖 , 𝑅𝑏)

𝜎𝑏
2  . (30) 

 

where the numerator represents the covariance between assets i and the market b, and 

the denominator is the variance of the market. 

Then, we select those assets whose β coefficients and coefficients of tail dependence are 

below their respective medians. Finally, we get the weights by applying an inverse 

logarithmic scale (this application can be seen in Pfaff, 2013). Both strategies are 

referred to as defensive relative to the market (benchmark), as they are aimed at 

minimizing systemic risk. 

 

2.11. Minimax portfolios based on risk minimization and optimization of the 

risk/return ratio 

The Minimax model (see Young, 1998) aims to minimize the maximum expected loss, 

thus its a very conservative criterion. Formally, when it applied to the selection of 

portfolios, given N assets and t periods, the model can be presented as a linear 

programming problem, such that 
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min𝑀𝑝,𝑤
𝑀𝑝, (31) 

 

𝑀𝑝 − ∑ 𝑤𝑗𝑟𝑖,𝑗 ≤ 0,

𝑚

𝑗=1

∀𝑖 = {1, … , 𝑛}, 

 

 

∑ 𝑤𝑗𝜇𝐽 = 𝐶,

𝑚

𝑗=1

 

 

 

∑ 𝑤𝑗 = 1,

𝑚

𝑗=1

 

 

 

𝑤𝑗 ≥ 0, ∀𝑗 ∈ {1, … , 𝑛}. 

 

 

where 𝑀𝑝 is the target value to minimize, which represents the maximum loss of the 

portfolio given a weight vector 𝑤, 𝐶 is a certain minimum level of return, and 𝜇 denote 

the forecast for the returns vector of m values. In principle, Minimax is consistent with 

the theory of expected utility in the limit based on an investor very risk averse. 

Furthermore, the minimax model is a good approximation to the mean-variance model 

when the asset returns follow a multivariate normal distribution. If we draw the 

portfolios set for different levels of C (using an equality rather than inequality), its 

possible to generate the frontier portfolio from which the optimal risk portfolio can be 

chosen. Its possible to estimate the optimal risk/return using fractional programming as 

it is described in Charnes and Cooper (1962), and more recently in Stoyanov et al., 

(2007). The Minimax linear programming problem can be reformulated, so that 

min𝑀𝑝,𝑤𝑏
𝑀𝑝, (32) 

 

𝑀𝑝 − ∑ 𝑤𝑗𝑟𝑖,𝑗 ≤ 0,

𝑚

𝑗=1

∀𝑖 = {1, … , 𝑛}, 

 

∑ 𝑤𝑗𝜇𝐽 = 1,

𝑚

𝑗=1

 

 

 

∑ 𝑤𝑗 = 𝑏,

𝑚

𝑗=1

 

 

 

𝑏 ≥ 0. 

 

 

where b is the multiplier cofficient added to the optimization problem as result of 

transformation of the risk/return problem. More details can be found in Charnes and 

Cooper (1962) for linear programing, and in Dinkelbach (1967) for non-linear 

programing. We use two types of Minimax optimization: the first optimization is based 

on risk minimization, and the second optimization is based on the risk/return ratio.   



 20 

3. Methodology for evaluating performance  

For the evaluation of out-of-sample performance, we take the series of daily prices of 

the assets that enter into the portfolio in the period t + 1 subject to the allocation of the 

weights w, which have been obtained through the optimization process at time t. 

 

𝑅𝑉𝑝 = ∑(𝑤𝑖𝑡 ∗ 𝑝𝑖𝑡+1
). (33) 

 

We obtain the real value of the portfolios 𝑅𝑉𝑝 by this procedure, where they are treated 

as a single asset, and we calculate five measures for statistical comparison between the 

portfolio strategies2: Value at Risk (VaR), Value at Conditional Risk (CVaR), Sharpe 

ratio, diversification ratio and concentration ratio.  

3.1. Value at risk (VAR) and conditional value at risk (CVaR) 

 

As mentioned earlier, VaR is a measure of synthetic risk that can express the market 

risk of a financial asset or portfolio. In general terms, VaR is the maximum potential 

loss that a financial asset may suffer with a certain probability for a certain period of 

tenure. JP Morgan tried to establish a market standard by RiskMetrics in 1994 (JP 

Morgan, 1994). 

 

For a confidence level 𝛼 ∈ (0,1), VaR is defined as the smallest number l such that the 

probability of loss L is not greater than 1 − 𝛼  for greater losses that l. This value 

corresponds to the quantiles of loss distribution, and it can be formally expressed as 

 

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝑙 ∈ ℝ: Ρ(𝐿 > 𝑙) ≤ 1 − 𝛼} = 𝑖𝑛𝑓{𝑙 ∈ ℝ: 𝐹𝐿(𝑙) ≥ 𝛼}, (34) 

 

where  𝐹𝐿 is the distribution function of the losses (see Pfaff, 2013). 

 

The expected shortfall risk measure (ES o CVaR) arises due to deficiencies that VaR 

shows. CVaR was introduced by Artzner et al. (1997, 1999); Rockafellar and Uryasev 

(2002) showed that CVaR is a consistent measure of risk and may also take into 

consideration the ''tail risk". 

 

CVaR is defined for a type I error 𝛼 as 

𝐸𝑆𝛼 =
1

1 − 𝛼
∫ 𝑞𝑢(𝐹𝐿)𝑑𝑢,

1

𝛼

 
(35) 

 

where 𝑞𝑢(𝐹𝐿)  is the quantile function of loss distribution 𝐹𝐿 . Therefore ES can be 

expressed in VaR terms such that 

                                                        
2  In addition, we include the total return and annualized return of each z strategy. Total return  =

(
𝐹𝑉𝑧−𝐼𝑉𝑧

𝐼𝑉𝑧
)  ×  100%; Annualized return = [(𝐹𝑉𝑧 𝐼𝑉𝑧⁄ )

1
𝑁⁄ − 1]  ×  100%. 
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𝐸𝑆𝛼 =
1

1 − 𝛼
∫ 𝑉𝑎𝑅𝑢(𝐿)𝑑𝑢,

1

𝛼

 
(36) 

 

ES can be interpreted as the VaR average in the range (1 − 𝛼, 1).  

3.2. Sharpe ratio 

 

We calculate the out of sample annualized Sharpe ratio for each strategy z. Sharpe ratio 

is defined as the sample mean of out-of-sample excess returns over the risk-free asset 

μ̂z, divided by their sample standard deviation σ̂z, such that 

𝑆ℎ𝑎𝑟𝑝𝑒. 𝑅 =
�̂�𝑧

�̂�𝑧
 . (37) 

 

To test the statistical independence of the Sharpe ratios for each strategy with respect to 

benchmark, we calculate the p-value of the difference, using the approach suggested by 

Jobson and Korkie (1981) after making the correction pointed out in Memmel (2003), 

and recently applied in DeMiguel et al. (2009). So that, given two portfolios a and b, 

with mean �̂�𝑎, �̂�𝑏 , variance �̂�𝑎, �̂�𝑏 , and covariance  �̂�𝑎,𝑏  about a sample of size N, its 

checked by the test statistic �̂�𝐽𝐾 , the null hypothesis that 𝐻0: �̂�𝑎 �̂�𝑎⁄ − �̂�𝑏 �̂�𝑏 = 0⁄ . This 

test is based on the assumption that income is distributed independently and identically 

(IID) in time following a normal distribution, (see Jobson and Korkie, 1981; and 

Memmel, 2003). 

3.3 Diversification ratio (DR) and concentración ratio (CR)  

We define the DR of any portfolio P as follows 

𝐷𝑅(𝑃) =
𝑤 ´𝜎

√𝑤 ´∑𝑤
 . (9) 

 

The numerator is the weighted average volatility of the single assets, divided by the 

portfolio volatility (portfolio standard deviation). From the above equation is derived 

the following expression, such that 

𝐷𝑅(𝑃) =
1

√(𝜌 + 𝐶𝑅) − 𝜌𝐶𝑅
 , (10) 

 

where 𝜌 denotes the volatility-weighted average correlation and CR is the volatility- 

weighted concentration ratio. The parameter 𝜌 is defined as  

𝜌 =
∑ (𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗)𝜌𝑖𝑗

𝑁
𝑖≠𝑗

∑ (𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗)𝑁
𝑖≠𝑗

 . (38) 

 

The CR is the normalized Herfindahl–Hirschmann index (see Hirschman, 1964) 
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𝐶𝑅(𝑃) =
∑ (𝑤𝑖𝜎𝑖)

2𝑁
𝑖=1

(∑ 𝑤𝑖𝜎𝑖)2𝑁
𝑖=1

 . (39) 

 

4. Empirical results  

Our analysis is based on a rolling window approach of size N = 756 daily returns. 

Therefore, we used a total of 3 years of daily returns to estimate the necessary 

parameters for the implementation of the strategies considered. These estimated 

parameters are then used to determine the optimal allocations of each risky asset inside 

the portfolio. We use these weights to obtain the return in the following year 𝑌𝑡, where 

𝑡 = 2002, … ,2015 ; This process continues until the end of the data is reached. 

Consequently, a total of 14 portfolios have been released for each methodology 

implemented. Finally, we compare the out-of-sample results obtained for the various 

portfolio strategies. For that, we show the results of the five measures for statistical 

comparison between the portfolio strategies, contained in the previous section. The 

portfolio strategies results are compared with the Euro Stoxx 50 index and the naive 

strategy of 1/N3.  

In the first and second columns of Table 3, we present the Total Return and the Annual 

Return of each strategy for the period 2002-2015. The value at risk and the conditional 

value at risk (1 day) appear in the third and fourth columns, respectively. The Sharpe 

ratio and the p-value of each strategy, including the Euro Stoxx 50 index, are shown in 

the fifth column. We also include the p-value of the difference for each strategy with 

respect to Euro Stoxx 50 index. In the last two columns, six and seven, we report the 

diversification and concentration ratios, respectively. Additionally, Figure 1 shows the 

returns by year of the Euro Stoxx 50 index and the 1/N, MDP, M-V and CVaR 

portfolios during the years 2002 to 2015.  

 

[Insert Table 3 around here] 

 

4.1. Out-of-sample performance: 2002–2015 

 

The period under study is characterized by episodes of high volatility (large losses and 

gains) and episodes of relative calm. In most years, the performance of portfolio 

strategies closely matches the Euro Stoxx 50 index; In 2015, all portfolios provide 

positive returns, except the AvDD strategy and the Euro Stoxx 50 index. 

 

The Euro Stoxx 50 index rarely yields negative annual returns (4 out of 14 years 

analyzed). Neverthless, these are very important since they overcome on average the 

positive returns generated in the “good years”. The year 2002 was extremely negative 

for the Euro Stoxx 50 index and for the naive strategy of 1/N, with losses in both cases 

exceeding 37%. However, the rest of the strategies did not obtain losses as high as those 

mentioned above (for example, the CVaR portfolio renders a loss of only -0.72%), 

although all of them closed in negative. Something similar occurs in 2008, the 

                                                        
3 Table A2 of the Annex offers the summary statistics of Euro Stoxx 50 index and 16 portfolios during 

the sample period. 
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beginning of the Global Financial Crisis, in which the Euro Stoxx 50 index closed with 

an extremely negative loss (-44.37%), but in this case, the majority of strategies did 

show losses close to those of the index. On the contrary, the Euro Stoxx 50 index 

achieved significant gains in the years 2006, 2012 and 2013, although it is always 

overcomed by a large number of strategies, the exception being 2013, when 2 out of the 

16 strategies considered are able to overcome the index (see Table 4). 

 

[Insert Table 4 around here] 

 

From these findings, it can be seen that extremely negative events (large losses) have a 

greater effect and the extremely positive events (large gains) are more smooth on the 

Euro Stoxx 50 index compared to the rest of portfolio strategies (see Table A2 and 

Figure 1), although there exist some exceptions. In addition, there are several strategies 

that, in some cases, obtain returns higher than 40%, when the maximum return provided 

by the index or the naive diversification does not exceed the 22% and 28%, 

respectively. 

 

[Insert Figure 1 around here] 

 

Regarding the total return of the portfolios, six strategies obtain a total return greater  

than 230%, to which must be added five other strategies that show a return higher than 

150%. Among them, the MDP portfolio stands out, generating a total return of 271.4%, 

followed by the M-V strategy (with a return of 253.8%) and the R-Minimax, CVaR and 

GMV portfolios, all of them with a return more than 240% . On the other hand, the 

AvDD portfolio is the only strategy that renders a negative return during the period (-

51.5%), besides the Euro Stoxx 50 index (-13.1%). Although the 1/N strategy provides 

a 39.1% positive return, it is the lowest yielding strategy after the AvDD portfolio. The 

high values of the returns reported in Table 3 must be taken with caution, because no 

transaction costs are imputed to our strategies. 

 

The most diversified portfolio (MDP) is the only strategy that provides a anual return 

higher than 9.5%. The M-V, R-Minimax, CVaR and GMV portfolios generate an 

annual return higher than 9%. A total of  14 out of 15 portfolio strategies outperform the 

naive 1/N strategy (2.39%), although it is behaviour is not bad compared to the Euro 

Stoxx 50 (-1.00% in annualized terms). 

 
The VaR and the CVaR (95%) at one day fluctuate quite intensely during the period 

analyzed, both for the Euro Stoxx 50 index and for the strategies under evaluation. In 

years of low volatility, that can be considerd as transition between episodes of great 

instability, the VaR and CvaR are near to the values of 1.0%-1.5% and 1.5%-2.0%, 

respectively (except for the AvDD strategy).   

 

However, when there is turbulence in the financial markets, the VaR and CVaR 

increases considerably, the VaR and CVaR at one day for the Euro Stoxx 50 index in 

2008 stood at 4.21% and 5.23%, respectively. In contrast to 2005, where the one-day 

VaR and CVaR for Euro Stoxx 50 index stood at 1.05% and 1.33%, respectively (see 

Tables 5 and 6). All strategies report a VaR and a CVaR lower than the Euro Stoxx 50 

index (2.455% and 3.081%), with the sole exception of the AvDD strategy. It is no 

surprise that the M-V portfolio stands out as the one that bears the lowest values of VaR 

and CvaR (1.815% and 2.287%), followed by the MAD and the CVaR strategies. The 
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naive strategy of 1/N has a VaR of 2.336% and a CVaR of 2.935%, quite high since a 

total of eight strategies do not overcome the threshold of a VaR to a day greater than 

2.0% or CvaR greater to 2.5%. 

 

[Insert Tables 5 and 6 around here] 

 

In 2002 and 2008, the Euro Stoxx 50 index and most strategies registered the most 

negative values in the Sharpe ratios. In this respect, the Euro Stoxx 50 index render a 

Sharpe ratio of -0.998 in 2002 and of -1.113 in 2008. In 2004, unlike the Euro Stoxx 50 

index, the naive 1/N strategy and the ERC strategy, the remaining portfolio strategies 

report a Sharpe ratio in no case lower than 2.30, being the year where higher yield per 

unit of risk is obtained. The years 2005 and 2013 are especially noteworthy, as the Euro 

Stoxx 50 index achieves a Sharpe ratio that exceeds 14 out of the 16 strategies (2005) 

and 12 out of the 16 strategies (2013). This suggests that the Euro Stoxx 50 index shows 

in 2005 and 2013 a better performance compared to all the strategies under 

consideration (see Table 7). 

 

[Insert Table 7 around here] 

 

Eight strategies obtain an annualized Sharpe ratio greater than or equal to 0.4. The M-V 

portfolio stands out with a Sharpe ratio of 0.509, followed by the CVaR, GMV and 

MDP portfolios with 0.485, 0.484 and 0.482, respectively. In contrast, the AvDD 

portfolio is the only one strategy reporting a negative Sharpe ratio (-0.167), appart from 

the Euro Stoxx 50 index (-0.041). In this sense, 15 out of the 16 proposed strategies 

render a annualized Sharpe ratio positive and higher than the Euro Stoxx 50 index. 

Given the p-value, 10 strategies generate Sharpe ratios that are significant, that is, the 

Sharpe ratio of these differ statistically from the Sharpe ratio of the Euro Stoxx 50 

index. Among them are not the naive strategy of 1/N and the ERC portfolio 

(combination of naive strategy and minimum variance model). Additionally, 14 

strategies render a Sharpe ratio higher than the naive strategy of 1/N, where 9 of them 

differ statistically from the Sharpe ratio of 1/N portfolio (see Table 7). 

 

Considering the diversification ratio per year, the fluctuation that it undergoes in the 

strategies under evaluation is quite high. In 2004 and 2005, a large number of portfolios 

reach the highest ratios of diversification. In contrast, in 2010 and 2011, the portfolios 

formed render the lowest diversification ratio (see Table 8). Since the number of assets 

in the portfolios has increased, this is only explained by an intensification in the 

correlation between returns on financial assets. This can be inferred paying attention to 

the performance of the portfolio of 1/N, which is built with all assets (see Table A6 in 

the Annex). This fact is widely investigated in recent papers as Moldovan (2011), for 

the New York, London and Tokyo index; and in Ahmad et al. (2013), for the contagion 

between financial markets. 

 

[Insert Table 8 around here] 

  

The MDP, Clayton (MTD) and MTD strategies show the highest ratios of 

diversification, the first one standing out with a ratio of 1.595. In addition, the MDP 

(more diversified) portfolio also has a high Sharpe ratio, which highlights the possibility 

of obtaining high Sharpe ratios and at the same time a considerable degree of 

diversification. Besides the portfolios already mentioned, six other strategies that also 
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overcome the ratio of diversification obtained by the naive strategy of 1/N (1.410): 

Beta, MAD, GMV, ERC, M-V and CVaR. On the other hand, the AvDD portfolio 

(1.059) is the strategy that provides a the lowest diversification ratio (see Table 9). 

 

[Insert Table 9 around here] 

 

The concentration ratio can be related to the cost of building the portfolio, as it 

decreases when the number of assets increases in the portfolio, but this not ensure a 

greater degree of diversification. In the concentration ratio, the number of assets in the 

portfolio plays a crucial role, hence the portfolios based on naive diversification are the 

ones with the lowest concentration ratio, the 1/N portfolio with 0.022 and the ERC 

portfolio with 0.023. These are followed by the Beta portfolio (0.059) and the two 

portfolios based on the lower tail dependence, Clayton (MTD) and MTD, with 0.055 

and 0.071, respectively. On the other hand, the AvDD, MaxDD, CDaR95 and 

MinCDaR95 portfolios, based on Draw-Down, provide the highest concentration ratios, 

with the AvDD portfolio standing out with an average value of 0.880 (see Table 10). 

 

[Insert Table 10 around here] 

 

In Figure 2, we show the accumulated wealth of several porfolios constructed with the 

weights provided by our strategies. As mentioned before, these weights are estimated 

the first day of each year and maintained for the rest of the year. It is noticeable the poor 

performance, during the period 2002-2015, of the Euro Stoxx 50 index and the naive 

strategy of 1/N with respect to the other four methodologies considered (those with a 

Sharpe ratio greater than 0.48). Recall that no transaction costs have been considered. 

 

[Insert Figure 2 around here] 

 

Regarding to the Euro Stoxx 50 index, its differences with respect to the portfolios 

began to be relevant from the very beginning of the period (2002), although the greatest 

divergence is reached in 2015, since at the end of the Euro Stoxx 50 index closed with 

profitability -13.10%, when all other strategies, except for the 1/N strategy, registered 

an accumulated revaluation greater than 240% (suggesting an annual return equal to or 

greater than 9.20%). With respect to the 1/N naive strategy, the accumulated wealth 

generated by this strategy is very much in line with the evolution of the Euro Stoxx 50 

index, at least until the middle of 2009. However, from that year, the performance of the 

1/N portfolio begins to differ from the evolution of the index, allowing the portfolio of 

1/N to obtain a total return for the period of 39.10%, although considerably lower than 

that of the MDP portfolio with a total revaluation of 271.4% (see Figure 2). 

 

 

5. Concluding remarks  

 

In this paper, we have empirically examined the performance of 16 asset allocation 

models in the main stock index of the euro area (the Euro Stoxx 50 index), in the 

framework of no-short-selling condition. We have compared the total returns, Sharpe 

ratios, VaR and CVaR, and the diversification and concentration ratios of each portfolio 

strategy. We have analysed the performance for the daily returns over a sample of 14 

years (2002-2015), whose purpose is to test the robustness of the results in periods of 

high and low correlations between assets and with a market 
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In terms of total return, it might be highlighted the performance of  the most diversified 

portfolio (MDP), followed by the mean-variance portfolio, the R-Minimax portfolio, the 

CVaR portfolio and the minimum-variance portfolio in terms of high profitability. 

Whithout considering transaction cost, all of them achieved a return more than 240%, in 

contrast to the performance of naive diversification (39.10%) and Euro Stoxx 50 index 

(-13.10%). The behaviour of the naive strategy of 1/N seems to replicate that of the 

index during the years 2002 to 2009. As of 2009, it is observed that the behavior of the 

1/N strategy experienced some improvement, allowing it to render an annualized return 

of 2.39%. 

 

We have found that, from the statistical point of view, the Sharpe ratios of the 

minimum-variance strategy or the most diversified portfolio are higher compared with 

those associated with the naive strategy of 1/N and the Euro Stoxx 50 index for the 

period 2002-2015. In this period, all the models for asset allocation, except one of them 

(AvDD), obtain a Sharpe ratio higher than the Euro Stoxx 50 index. Although only ten 

turn out to be statistically different from this one. We show that it is possible to 

outperform the Euro Stoxx 50 index in terms of profitability, Sharpe ratio and lower 

VaR and CVaR, since 15 out of the 16 portfolio strategies considered corroborate it. In 

addition, we have focused on the debate on whether naive diversification is more 

effective than portfolio optimization models, where it should be noted that 14 models 

manage to beat the naive strategy of 1/N in profitability, Sharpe ratio (being 9 out of 14 

statistically significant), lower VaR and CVaR, and a total of 9 also provide a higher 

ratio of diversification. 

 

Furthermore, our empirical results indicate that there are several strategies that do not 

depend on the expected assets return to assign weights (such as the GMV, the CVaR, 

the MDP and the MTD strategies) that are also able to overcome the naive strategy of 

1/N. Nevertheless, the Markowitz mean-variance portfolio with short-selling constraint 

is found to be the strategy that provides the highest Sharpe ratio (0.509) in the time 

period analysed (2002-2015). Our fidings suggest that the strategies that render a high 

return are also very diversified, so there is a positive relationship between 

diversification and profitability. It seems that in the Euro Stoxx 50 index, which is 

composed of the companies with the largest capitalization, it is important to take into 

account the correlation between the assets in order to select those less correlated with 

each other, not forgetting other parameters that influence in the optimization process.  

 

In view of the encouraging results of this paper, we suggest that the mean-variance 

portfolio with short-selling constraint and the most diversified portfolio (MDP) could be 

used, at least as a first reference, when analysing the behaviour of the main stock market 

in the euro area.  

 

All in all, the results of our analysis contrasts with those presented in DeMiguel, 

Garlappi, and Uppal (2009) and Allen et al. (2014a), although the latter were obtained 

permiting short-selling positions and we did not. These differences would be explained 

by two facts; the first one is that we use daily data and DeMiguel monthly one. The 

second reason is the use by them of short-selling positions; as Jobson and Korkie 

(1981), among others, point out, the lure of elegant analytical solutions provided by 

unrestricted mean-variance optimization could lead to investment irrelevant and 

misleading solutions. 
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Our findings are in line with those of Kirby and Ostdiek (2012) and Allen et al. (2014b) 

for the hedge fund index, as well as the results reported by Adame et al. (2016) in a 

similar study for the main Spanish stock index (Ibex 35). Thus, although in all empirical 

works the results obtained have to be taken with some degree of caution (since they are 

based on a particular index over a certain time period), our findings lead us to infer that 

the naive strategy of 1/N can provide good results if it is compared with the benchmark. 

Nevertheless, the naive strategy of 1/N is always exceded by several portfolio 

optimization models. 

 

We consider that the results presented in this paper should be of value to portfolio 

managers, risk strategists and insurers in assessing the risk-return profile of stocks. 
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Table 1: Number of assets by time period 
 

 

Time period Number of risky assets 

02/01/2002 - 30/12/2002 44 

02/01/2003 - 30/12/2003 45 

02/01/2004 - 30/12/2004 48 

03/01/2005 - 30/12/2005 49 

02/01/2006 - 29/12/2006 49 

02/01/2007 - 28/12/2007 49 

02/01/2008 - 30/12/2008 49 

02/01/2009 - 30/12/2009 50 

02/01/2010 - 30/12/2010 50 

04/01/2011 - 30/12/2011 50 

03/01/2012 - 31/12/2012 50 

02/01/2013 - 31/12/2013 50 

02/01/2014 - 31/12/2014 50 

02/01/2015 - 31/12/2015 50 

 

 

Table 2: List of asset-allocation models considered 

Methodology Model Abbrevation 

1. Naive    

Diversification 

 

 Naive strategy of 1/N  1/N 

2. Classic 

 
 Mean-variance portfolio M-V 

 

3. Robust 

Portfolios 

 Minimum-variance portfolio 

 Mean absolute deviation portfolio 

 Most diversified portfolio 

 Equal risk contributed portfolio 

 Minimum tail-dependent portfolio 

GMV 

MAD 

MDP 

ERC 

MTD 

 

4. CVaR 

Portfolio 

 

 

 Conditional value at risk portfolio 

 

CVaR 

 

5. Draw-down 

Portfolios 

 

 Maximum draw-down portfolio 

 Average draw-down portfolio 

 Conditional draw-down at risk (95%)  

 Minimum conditional draw-down at risk (95%)  

 

MaxDD 

AvDD 

CDaR95 

MinCDaR95 

6. Minimax 

Portfolios 
 Minimax based on risk minimization 

 Minimax based on the risk/return ratio 

 

R-Minimax 

O-Minimax 

7. Defensive 

Portfolios 
 Minimum tail-dependent with Clayton copula 

 Low beta portfolio 

Clayton (MTD) 

Beta 
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Table 3: Summary of main results, 2002–2015 

 
 

Portfolios 

 

Total 

Return 

 

Annual 

Return 

 

VaR 95%  

1 day 

 

CVaR 95%  

1 day 

 

Annualized Sharpe 

ratio (p-value) 

 

Diversification 

ratio 

 

Concentration 

ratio 

Euro Stoxx 50 -13.1% -1.00% 2.455 3.081 -0.041 (1.000) --- --- 

1/N 39.1% 2.39% 2.336 2.935 0.101 (0.429) 1.410 0.022 

M-V 253.8% 9.45% 1.815 2.287 0.509 (0.015)** 1.436 0.163 

GMV 243.0% 9.20% 1.860 2.342 0.484 (0.038)** 1.471 0.166 

MAD 181.0% 7.66% 1.819 2.290 0.413 (0.070)* 1.483 0.156 

MDP 271.4% 9.82% 1.993 2.510 0.482 (0.035)** 1.595 0.105 

ERC 66.0% 3.69% 2.161 2.715 0.169 (0.256) 1.464 0.023 

MTD 224.8% 8.78% 1.927 2.427 0.446 (0.025)** 1.577 0.071 

CVaR 243.7% 9.22% 1.859 2.341 0.485 (0.036)** 1.413 0.212 

MaxDD 148.6% 6.72% 3.021 2.651 0.314 (0.137) 1.329 0.308 

AvDD -51.5% -5.04% 2.995 3.788 -0.167 (0.712) 1.059 0.880 

CDaR95 100.9% 5.11% 2.268 2.852 0.222 (0.277) 1.318 0.321 

MinCDaR95 76.8% 4.16% 2.073 2.605 0.198 (0.311) 1.351 0.247 

R-Minimax 247.1% 9.30% 2.052 2.584 0.444 (0.038)** 1.396 0.210 

O-Minimax 231.6% 8.94% 2.247 2.829 0.390 (0.095)* 1.386 0.268 

Clayton (MTD) 177.0% 7.55% 1.922 2.420 0.386 (0.054)* 1.584 0.055 

Beta 190.6% 7.92% 1.843 2.321 0.421 (0.030)** 1.534 0.058 

Results for the period comprises between 2002 and 2015. In parenthesis, the p-value corresponding to the ẑJK test; The asterisks 

show the significance of the tests: weak significance (*), moderate significance (**), strong significance (***). Bold values 

indicates the five best-performing portfolios according to each metric. 

 

 

Table 4: Returns by years 

 
 

Year Index 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton 

(MTD) 

Beta 

 

    2002 

 

-37.30 

 

-39.08 

 

-5.93 

 

-8.02 

 

-7.92 

 

-12.93 

 

-33.33 

 

-15.11 

 

-0.72 

 

-27.22 

 

-30.48 

 

-18.72 

 

-16.78 

 

-10.23 

 

-10.45 

 

-14.00 

 

-14.08 

2003 15.24 17.26 16.51 9.70 9.38 12.53 14.08 10.38 9.07 8.03 9.66 -0.50 1.46 22.72 7.49 8.99 8.75 

2004 6.89 5.52 30.99 43.83 43.25 40.55 14.34 26.14 44.93 50.66 55.75 54.57 32.36 35.91 40.85 31.22 28.59 

2005 20.50 23.45 26.83 9.23 10.14 9.15 19.52 11.50 7.73 0.43 -1.83 0.327 3.64 17.19 8.13 12.11 15.22 

2006 14.30 18.24 46.14 46.37 45.40 42.29 24.03 36.94 43.52 23.13 -0.65 25.44 29.28 43.06 40.05 35.74 37.66 

2007 6.79 6.14 -0.53 -1.29 -5.26 -3.56 5.38 6.00 10.39 3.77 4.65 14.56 0.45 7.70 13.30 0.93 -1.72 

2008 -44.37 -42.23 -38.39 -34.99 -35.73 -40.02 -40.84 -38.08 -35.86 -36.76 -54.25 -37.56 -35.27 -37.74 -44.84 -38.73 -34.28 

2009 21.13 27.55 23.18 18.28 16.24 25.09 27.41 24.30 14.39 22.39 -14.27 -8.58 6.63 15.69 28.26 27.21 28.07 

2010 -5.80 9.81 10.07 13.93 6.58 27.50 10.47 15.65 -5.52 10.56 -1.18 10.43 6.50 11.68 19.46 14.24 9.67 

2011 -18.41 -13.60 -3.03 -0.10 -6.03 -1.66 -10.83 0.13 1.84 11.12 -12.02 -4.91 -0.27 -10.86 -9.52 -7.35 -4.47 

2012 11.21 23.67 27.37 31.00 30.69 33.78 23.81 29.49 31.38 21.37 42.10 34.03 25.93 27.38 38.51 29.99 25.02 

2013 17.94 17.65 3.13 3.21 5.10 22.09 16.13 17.38 2.55 13.42 18.21 12.20 3.10 3.59 9.55 17.88 13.47 

2014 1.20 2.69 8.33 9.67 8.81 11.36 4.51 10.77 13.37 9.64 -25.91 11.57 11.00 14.41 11.04 6.66 9.44 

2015 4.69 8.67 15.97 15.38 14.75 6.72 9.50 13.11 14.95 13.93 -5.75 10.82 11.26 18.59 10.64 8.74 13.30 

 

 

Total Wealth 

(Base 100 in 

01/02/2002) 

 

86.8 

 

139.1 

 

353.8 

 

343.0 

 

281.0 

 

371.4 

 

166.0 

 

324.8 

 

343.7 

 

248.6 

 

48.5 

 

200.9 

 

176.8 

 

347.1 

 

331.7 

 

277.0 

 

290.6 

 

Annualized 

return 

 

 

-1.00 

 

2.39 
 

9.45 

 

9.20 

 

7.66 
 

9.82 

 

3.69 

 

8.78 

 

9.22 

 

6.72 

 

-5.04 

 

5.11 

 

4.16 

 

9.30 

 

8.94 

 

7.55 

 

7.92 
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Table 5: VaR by years 
 

 
Year Index 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton    

(MTD)      

Beta 

 

2002 

 

3.951 

 

3.899 

 

2.134 

 

2.146 

 

2.071 

 

2.153 

 

3.412 

 

2.496 

 

2.173 

 

3.722 

 

4.163 

 

2.978 

 

2.566 

 

2.367 

 

2.441 

 

2.268 

 

2.223 

2003 2.698 2.688 2.077 1.337 1.352 1.368 2.243 1.714 1.393 1.654 1.807 1.995 2.234 1.865 1.658 1.627 1.646 

2004 1.403 1.410 0.888 1.079 1.073 1.056 1.155 1.006 1.138 1.253 1.557 1.475 1.124 1.100 1.302 0.985 0.932 

2005 1.050 1.048 1.280 1.686 1.651 1.611 1.033 1.336 1.784 2.302 2.527 2.329 2.060 1.296 1.988 1.384 1.222 

2006 1.436 1.446 1.525 1.531 1.540 1.484 1.388 1.393 1.423 1.389 2.820 1.476 1.381 1.461 1.583 1.402 1.430 

2007 1.587 1.606 1.649 1.744 2.046 2.038 1.608 1.512 1.294 1.319 2.807 1.379 1.494 1.419 1.420 1.920 1.909 

2008 4.210 4.037 3.140 3.281 3.250 3.320 3.899 3.431 3.239 3.704 5.054 3.859 3.584 3.508 3.816 3.379 3.355 

2009 2.770 2.616 1.918 2.360 1.898 2.490 2.421 2.380 1.951 2.416 3.517 2.861 2.291 2.409 2.957 2.073 2.002 

2010 2.450 2.100 1.500 1.488 1.374 1.822 1.966 1.778 1.520 1.819 2.296 1.767 1.667 1.697 1.992 1.723 1.653 

2011 3.009 2.816 2.051 2.070 2.094 2.681 2.622 2.385 2.074 1.787 3.301 2.714 2.432 2.883 3.269 2.529 2.217 

2012 2.059 1.829 1.562 1.536 1.524 1.576 1.687 1.669 1.534 1.506 2.448 1.653 1.464 1.642 1.676 1.644 1.459 

2013 1.599 1.511 1.777 1.797 1.702 1.522 1.473 1.497 1.866 1.450 2.267 1.804 1.846 1.925 1.844 1.492 1.464 

2014 1.730 1.564 1.473 1.469 1.467 1.581 1.513 1.541 1.482 1.567 2.861 1.900 1.509 1.565 1.675 1.495 1.425 

2015 2.289 2.063 1.667 1.677 1.658 2.206 2.017 1.743 2.307 1.866 3.349 2.370 2.298 2.402 2.458 2.025 1.874 

 

 

VaR 

2002-2015 

 

 

2.455 

 

2.336 

 

1.815 

 

1.860 

 

1.819 

 

1.993 

 

2.161 

 

1.927 

 

1.859 

 

 

2.107 

 

3.021 

 

2.268 

 

2.073 

 

2.052 

 

2.247 

 

1.922 

 

1.843 

 

 

Table 6: CVaR by years 
 

Year Index 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton 

(MTD) 

Beta 

 

2002 

 

4.916 

 

4.848 

 

2.672 

 

2.686 

 

2.591 

 

2.688 

 

4.245 

 

3.117 

 

2.726 

 

4.643 

 

5.193 

 

3.718 

 

3.203 

 

2.960 

 

3.053 

 

2.832 

 

2.775 

2003 3.402 3.390 2.622 1.686 1.705 1.728 2.828 2.161 1.757 2.083 2.277 2.504 2.805 2.360 2.087 2.050 2.074 

2004 1.767 1.774 1.140 1.389 1.381 1.358 1.462 1.285 1.465 1.613 1.997 1.893 1.438 1.410 1.668 1.263 1.193 

2005 1.336 1.336 1.629 2.124 2.081 2.030 1.313 1.687 2.246 2.890 3.171 2.924 2.589 1.642 2.503 1.747 1.547 

2006 1.815 1.831 1.951 1.959 1.969 1.897 1.763 1.778 1.822 1.764 3.540 1.875 1.758 1.868 2.020 1.790 1.826 

2007 1.998 2.021 2.069 2.187 2.562 2.555 2.022 1.903 1.634 1.658 3.528 1.744 1.875 1.788 1.794 2.411 2.394 

2008 5.230 5.016 3.894 4.077 4.038 4.119 4.845 4.261 4.024 4.607 6.273 4.800 4.458 4.358 4.734 4.194 4.171 

2009 3.496 3.308 2.428 2.979 2.397 3.148 3.063 3.009 2.462 3.053 4.401 3.583 2.882 3.038 3.737 2.626 2.537 

2010 3.070 2.644 1.892 1.880 1.730 2.310 2.477 2.245 1.902 2.292 2.873 2.227 2.098 2.140 2.517 2.175 2.084 

2011 3.758 3.521 2.571 2.598 2.622 3.364 3.280 2.994 2.605 2.252 4.132 3.402 3.052 3.608 4.095 3.167 2.778 

2012 2.595 2.316 1.984 1.953 1.939 2.006 2.138 2.120 1.952 1.909 3.108 2.103 1.859 2.084 2.135 2.089 1.853 

2013 2.023 1.912 2.233 2.258 2.141 1.930 1.863 1.894 2.344 1.831 2.862 2.276 2.320 2.419 2.324 1.889 1.849 

2014 2.172 2.965 1.856 1.853 1.849 1.995 1.903 1.944 1.875 1.975 3.562 2.395 1.903 1.977 2.112 1.882 1.797 

2015 2.878 2.597 2.106 2.118 2.094 2.775 2.540 2.199 2.909 2.355 4.199 2.984 2.895 3.032 3.096 2.549 2.364 

 

 

CVaR 

2002-2015 

 

 

3.081 

 

2.935 

 

2.287 

 

2.342 

 

2.290 

 

2.510 

 

2.715 

 

2.427 

 

2.341 

 

 

2.651 

 

3.788 

 

2.852 

 

2.605 

 

2.584 

 

2.829 

 

2.420 

 

2.321 
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Table 7: Sharpe ratios by years 

 
Year Index 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton 

(MTD) 

Beta 

 

2002 

 

-0.998 

 

-1.054 

 

-0.281 

 

-0.379 

 

-0.388 

 

-0.616 

 

-1.025 

 

-0.621 

 

-0.033 

 

-0.756 

 

-0.757 

 

-0.645 

 

-0.672 

 

-0.439 

 

-0.435 

 

-0.633 

 

-0.650 

2003 0.552 0.627 0.773 0.708 0.677 0.888 0.613 0.593 0.637 0.477 0.524 -0.025 0.065 1.168 0.445 0.542 0.522 

2004 0.479 0.384 3.099 3.559 3.535 3.382 1.181 2.368 3.470 3.549 3.186 3.281 2.602 2.921 2.819 2.840 2.757 

2005 1.828 2.078 1.956 0.537 0.601 0.557 1.774 0.835 0.426 0.018 -0.072 0.014 0.175 1.267 0.403 0.849 1.194 

2006 0.962 1.208 2.752 2.755 2.690 2.604 1.633 2.436 2.778 1.574 -0.023 1.626 1.976 2.687 2.332 2.348 2.420 

2007 0.420 0.376 -0.032 -0.074 -0.259 -0.175 0.329 0.390 0.777 0.283 0.163 1.014 0.030 0.531 0.904 0.048 -0.090 

2008 -1.113 -1.103 -1.300 -1.122 -1.159 -1.281 -1.103 -1.172 -1.168 -1.040 -1.142 -1.020 -1.030 -1.134 -1.250 -1.214 -1.072 

2009 0.738 1.009 1.154 0.750 0.827 0.967 1.083 0.980 0.715 0.892 -0.411 -0.302 0.285 0.633 0.918 1.249 1.331 

2010 -0.238 0.457 0.654 0.903 0.470 1.428 0.520 0.850 -0.368 0.566 -0.051 0.576 0.383 0.669 0.940 0.800 0.571 

2011 -0.630 -0.494 -0.149 -0.004 -0.292 -0.062 -0.421 0.005 0.088 0.609 -0.370 -0.182 -0.011 -0.383 -0.295 -0.295 -0.203 

2012 0.531 1.232 1.645 1.881 1.876 1.990 1.339 1.659 1.904 1.346 1.616 1.916 1.662 1.570 2.123 1.709 1.611 

2013 1.075 1.118 0.175 0.177 0.296 1.376 1.050 1.111 0.136 0.893 0.777 0.658 0.166 0.184 0.506 1.145 0.888 

2014 0.069 0.170 0.553 0.641 0.586 0.698 0.294 0.679 1.121 0.600 -0.945 0.593 0.708 0.888 0.641 0.437 0.645 

2015 0.220 0.413 0.924 0.885 0.859 0.300 0.462 0.730 0.631 0.725 -0.172 0.448 0.480 0.750 0.424 0.424 0.690 

 

 

Sharpe Ratio 

2002-2015 

 

P-value 

respect to the 

Index 

 

Significance 

 

P-value 

respect to the 

1/N strategy 

 

Significance 

 

-0.041 

 

 

 

1.000 

 

 

- - - - 

 

 

0.429 

 

 

- - - - 

 

 

0.101 

 

 

 

0.429 

 

 

- - - - 

 

 

1.000 

 

 

- - - - 

 

0.509 

 

 

 

0.015 

 

 

* * 

 

 

0.012 

 

 

** 

 

0.484 

 

 

 

0.038 

 

 

* * 

 

 

0.049 

 

 

** 

 

0.413 

 

 

 

0.070 

 

 

* 

 

 

0.093 

 

 

* 

 

0.482 

 

 

 

0.035 

 

 

* * 

 

 

0.023 

 

 

** 

 

0.169 

 

 

 

0.256 

 

 

- - - - 

 

 

0.360 

 

 

- - - - 

 

0.446 

 

 

 

0.025 

 

 

* * 

 

 

0.009 

 

 

*** 

 

0.485 

 

 

 

0.036 

 

 

* * 

 

 

0.053 

 

 

* 

 

0.314 

 

 

 

0.137 

 

 

- - - - 

 

 

0.266 

 

 

- - - - 

 

-0.167 

 

 

 

0.712 

 

 

- - - - 

 

 

0.321 

 

 

- - - - 

 

0.222 

 

 

 

0.277 

 

 

- - - - 

 

 

0.523 

 

 

- - - - 

 

0.198 

 

 

 

0.311 

 

 

- - - - 

 

 

0.606 

 

 

- - - - 

 

0.444 

 

 

 

0.038 

 

 

* * 

 

 

0.041 

 

 

** 

 

0.390 

 

 

 

0.095 

 

 

* 

 

 

0.135 

 

 

- - - - 

 

0.386 

 

 

 

0.054 

 

 

* * 

 

 

0.021 

 

 

** 

 

0.421 

 

 

 

0.030 

 

 

* * 

 

 

0.012 

 

 

** 

 

 

Table 8: Diversification ratios by years 
 

Year 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton 

(MTD) 

Beta 

 

2002 

 

1.358 

 

1.642 

 

1.637 

 

1.667 

 

1.658 

 

1.417 

 

1.531 

 

1.618 

 

1.242 

 

1.000 

 

1.288 

 

1.534 

 

1.556 

 

1.439 

 

1.567 

 

1.555 

2003 1.382 1.446 1.778 1.782 1.792 1.472 1.631 1.746 1.560 1.000 1.451 1.384 1.512 1.437 1.637 1.622 

2004 1.502 1.732 1.748 1.757 1.798 1.653 1.795 1.517 1.516 1.000 1.291 1.655 1.706 1.512 1.876 1.847 

2005 1.659 1.591 1.752 1.768 1.836 1.810 1.900 1.676 1.376 1.000 1.275 1.549 1.564 1.472 1.928 1.937 

2006 1.516 1.509 1.506 1.517 1.619 1.568 1.669 1.437 1.402 1.191 1.507 1.416 1.596 1.623 1.684 1.619 

2007 1.540 1.558 1.549 1.527 1.584 1.554 1.623 1.500 1.450 1.000 1.401 1.463 1.442 1.466 1.625 1.562 

2008 1.306 1.424 1.347 1.363 1.505 1.319 1.396 1.380 1.209 1.238 1.212 1.206 1.323 1.454 1.455 1.383 

2009 1.414 1.445 1.508 1.503 1.607 1.468 1.652 1.342 1.421 1.000 1.221 1.451 1.304 1.487 1.623 1.632 

2010 1.277 1.312 1.348 1.395 1.423 1.303 1.389 1.311 1.219 1.000 1.283 1.234 1.243 1.305 1.437 1.358 

2011 1.237 1.261 1.273 1.249 1.334 1.260 1.365 1.250 1.206 1.000 1.179 1.108 1.268 1.203 1.328 1.310 

2012 1.403 1.341 1.340 1.346 1.615 1.456 1.555 1.288 1.278 1.183 1.370 1.269 1.344 1.361 1.559 1.481 

2013 1.481 1.360 1.290 1.374 1.734 1.521 1.679 1.250 1.294 1.205 1.322 1.245 1.307 1.255 1.668 1.505 

2014 1.346 1.236 1.251 1.252 1.426 1.368 1.424 1.260 1.157 1.000 1.329 1.229 1.239 1.218 1.427 1.380 

2015 1.315 1.252 1.270 1.258 1.394 1.323 1.464 1.206 1.276 1.012 1.316 1.174 1.139 1.176 1.356 1.290 

 

 

Diversification  

 2002-2015 

 

 

1.410 

 

1.436 
 

1.471 

 

1.483 

 

1.595 

 

1.464 

 

1.577 

 

1.413 

 

1.329 

 

1.059 

 

   1.318 

 

1.351 

 

1.396 

 

1.386 

 

1.584 

 

1.534 
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Table 9: Component numbers by portfolio and year  
 

 

Year 

 

1/N 

 

M-V 

 

GMV 

 

MAD 

 

MDP 

 

ERC 

 

MTD 

 

CVaR 

 

MaxDD 

 

AvDD 

 

CDaR95 

 

MinCDaR95 

 

R-M 

 

O-M 

Clayton 

(MTD) 

 

Beta 

 

2002 

 

44 

 

22 

 

22 

 

18 

 

24 

 

44 

 

31 

 

18 

 

6 

 

1 

 

4 

 

11 

 

9 

 

7 

 

22 

 

21 

2003 45 13 14 13 21 45 30 12 10 1 7 11 8 5 22 22 

2004 48 10 10 10 15 48 24 10 3 1 3 7 10 7 24 24 

2005 49 10 11 11 15 49 20 7 5 1 4 5 6 5 24 24 

2006 49 12 11 12 19 49 23 10 9 2 7 7 9 8 24 24 

2007 49 18 19 18 19 49 26 13 9 1 7 8 8 8 24 24 

2008 49 19 16 17 20 49 27 12 7 2 6 11 11 7 24 24 

2009 50 12 11 15 13 50 17 7 9 1 4 6 7 4 25 25 

2010 50 11 11 13 18 50 18 8 4 1 8 5 6 5 24 24 

2011 50 9 11 9 17 50 17 11 3 1 3 2 9 6 25 25 

2012 50 8 8 8 14 50 23 7 5 2 5 6 10 5 25 25 

2013 50 7 7 8 12 50 16 5 4 2 4 5 6 3 25 25 

2014 50 11 10 11 13 50 21 6 5 1 4 7 6 4 25 25 

2015 50 17 15 18 19 50 26 10 9 2 9 10 8 7 25 25 

 

Average assets 

in portfolio 

 

48.8 

 

12.8 

 

12.6 

 

12.9 

 

17.1 

 

48.8 

 

22.8 

 

9.7 

 

6.3 

 

1.4 

 

5.4 

 

7.2 

 

8.1 

 

5.8 

 

24.1 

 

24.1 

Ratio 1.00 0.27 0.26 0.37 0.35 1.00 0.47 0.20 0.13 0.03 0.11 0.15 0.17 0.12 0.50 0.50 

 

 

 

Table 10: Concentration ratios by years 
 

Year 1/N M-V GMV MAD MDP ERC MTD CVaR MaxDD AvDD CDaR95 MinCDaR95 R-M O-M Clayton 

(MTD) 

Beta 

 

2002 

 

0.025 

 

0.086 

 

0.093 

 

0.088 

 

0.060 

 

0.024 

 

0.044 

 

0.113 

 

0.460 

 

1.000 

 

0.373 

 

0.120 

 

0.161 

 

0.208 

 

0.049 

 

0.050 

2003 0.024 0.120 0.125 0.137 0.087 0.024 0.048 0.143 0.188 1.000 0.289 0.161 0.177 0.358 0.058 0.056 

2004 0.022 0.118 0.157 0.157 0.122 0.026 0.063 0.250 0.345 1.000 0.535 0.200 0.143 0.262 0.069 0.067 

2005 0.021 0.203 0.195 0.193 0.146 0.031 0.084 0.228 0.436 1.000 0.546 0.273 0.252 0.345 0.094 0.076 

2006 0.021 0.196 0.195 0.176 0.098 0.025 0.082 0.258 0.293 0.687 0.208 0.247 0.139 0.187 0.063 0.077 

2007 0.021 0.078 0.074 0.079 0.080 0.022 0.051 0.126 0.180 1.000 0.200 0.204 0.198 0.202 0.059 0.063 

2008 0.021 0.079 0.107 0.100 0.070 0.021 0.060 0.121 0.254 0.589 0.237 0.218 0.135 0.249 0.048 0.055 

2009 0.022 0.206 0.178 0.118 0.152 0.021 0.082 0.267 0.182 1.000 0.503 0.226 0.347 0.260 0.049 0.059 

2010 0.021 0.143 0.133 0.122 0.120 0.021 0.086 0.154 0.266 1.000 0.191 0.231 0.265 0.324 0.048 0.052 

2011 0.022 0.162 0.165 0.185 0.122 0.021 0.081 0.199 0.423 1.000 0.404 0.513 0.149 0.238 0.045 0.047 

2012 0.022 0.267 0.254 0.245 0.103 0.021 0.078 0.297 0.323 0.583 0.221 0.243 0.237 0.228 0.048 0.050 

2013 0.021 0.252 0.297 0.210 0.125 0.022 0.088 0.349 0.362 0.528 0.315 0.344 0.236 0.386 0.049 0.057 

2014 0.020 0.248 0.234 0.219 0.104 0.021 0.084 0.252 0.416 1.000 0.280 0.303 0.323 0.288 0.046 0.057 

2015 0.021 0.126 0.112 0.151 0.082 0.022 0.065 0.208 0.181 0.937 0.197 0.174 0.172 0.215 0.046 0.052 

 

 

Concentration 

2002-2015 

 

 

0.022 

 

0.163 
 

0.166 

 

0.156 

 

0.105 

 

0.023 

 

0.071 

 

0.212 

 

0.308 

 

0.880 

 

0.321 

 

0.247 

 

0.210 

 

0.268 

 

0.055 

 

0.058 
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Figure 1: Returns by year of Euro Stoxx 50 index and 1/N, M-V, CVaR, GMV y 

MDP portfolios  
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Figure 2: Accumulated wealth, 2002–2015 period 
 

 
Accumulated wealth in the 2002–2015 time period. Base 100 in January 2nd 2002. We represent the accumulated wealth of an 

investor who invested 100 currency units on January 2nd 2002. We include the Euro Stoxx 50 index, the 1/N portfolio, the M-V 
portfolio, the MDP portfolio, the CVaR portfolio and the GMV portfolio. 
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Annex 

 

In this Annex we include two tables (Tables A1 and A2). Table A1 offers the assets 

name that we have considered for the portfolio construction in each period, while Table 

A2 reports seven descriptive statistic that provide information about the behaviour of 

the Euro Stoxx 50 index index and the 16 main models consider in this paper, while 
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Table A1: Assets used in the portfolio construction by time period  

 

Period Asset number Asset name 

 

 

 

02/01/2002      

30/12/2002 

 

 

 

44 

 

 

Air Liquide, Allianz, ASML, Assicurazioni, AXA, BASF, Bayer, BBVA, 

Santander, BMW, BNP, Carrefour, Daimler, Danone, Deutsche Bank, Deutsche 

Telekom, EON, Eni, Essilor, Societe Generale, Iberdrola, ING, Intensa, L'oreal, 

LVMH, Muenchener, Nokia, Orange, Philips, Repsol, RWE, Saint Gobain, Sanofi, 

SAP, Schneider, Siemens, Telefonica, Total, Unibail-Rodamco, Unicredit, Unilever, 

Vinci, Vivendi, Volkswagen. 

 

 

 

 

02/01/2003 

30/12/2003 

 

 

 

45 

 

 

 

Air Liquide, Allianz, ASML, Assicurazioni, AXA, BASF, Bayer, BBVA, 

Santander, BMW, BNP, Carrefour, Daimler, Danone, Deutsche Bank, Deutsche 

Telekom, EON, Eni, Essilor, Societe Generale, Iberdrola, ING, Intensa, L'oreal, 

LVMH, Muenchener, Nokia, Orange, Philips, Repsol, RWE, Saint Gobain, Sanofi, 

SAP, Schneider, Siemens, Telefonica, Total, Unibail-Rodamco, Unicredit, Unilever, 

Vinci, Vivendi, Volkswagen, Enel. 

 

 

 

 

02/01/2004 

30/12/2004 
 

 

 

 

 

48 

 

 

 

Air Liquide, Allianz, ASML, Assicurazioni, AXA, BASF, Bayer, BBVA, 

Santander, BMW, BNP, Carrefour, Daimler, Danone, Deutsche Bank, Deutsche 

Telekom, EON, Eni, Essilor, Societe Generale, Iberdrola, ING, Intensa, L'oreal, 

LVMH, Muenchener, Nokia, Orange, Philips, Repsol, RWE, Saint Gobain, Sanofi, 

SAP, Schneider, Siemens, Telefonica, Total, Unibail-Rodamco, Unicredit, Unilever, 

Vinci, Vivendi, Volkswagen, Enel, Airbus, Deutsche Post, Anheuser-Busch. 

 

 

03/01/2005 

30/12/2005 

 

02/01/2006  

29/12/2006 

 

02/01/2007  

28/12/2007 

 

02/01/2008 

30/12/2008 

 

 

 

 

 

 

49 

 

 

 

 

 

 

 

Air Liquide, Allianz, ASML, Assicurazioni, AXA, BASF, Bayer, BBVA, 

Santander, BMW, BNP, Carrefour, Daimler, Danone, Deutsche Bank, Deutsche 

Telekom, EON, Eni, Essilor, Societe Generale, Iberdrola, ING, Intensa, L'oreal, 

LVMH, Muenchener, Nokia, Orange, Philips, Repsol, RWE, Saint Gobain, Sanofi, 

SAP, Schneider, Siemens, Telefonica, Total, Unibail-Rodamco, Unicredit, Unilever, 

Vinci, Vivendi, Volkswagen, Enel, Airbus, Deutsche Post, Anheuser-Busch, Inditex. 

 

02/01/2009 

30/12/2009 

 

02/01/2010 

30/12/2010 

 

04/01/2011  

30/12/2011 
 

03/01/2012  

31/12/2012 

 

02/01/2013  

31/12/2013 

 

02/01/2014  

31/12/2014 

 

02/01/2015 

31/12/2015 
 

 

 

 

 

 

 

 

 

 

 

50 

 

 

 

 

 

 

 

Air Liquide, Allianz, ASML, Assicurazioni, AXA, BASF, Bayer, BBVA, 

Santander, BMW, BNP, Carrefour, Daimler, Danone, Deutsche Bank, Deutsche 

Telekom, EON, Eni, Essilor, Societe Generale, Iberdrola, ING, Intensa, L'oreal, 

LVMH, Muenchener, Nokia, Orange, Philips, Repsol, RWE, Saint Gobain, Sanofi, 

SAP, Schneider, Siemens, Telefonica, Total, Unibail-Rodamco, Unicredit, Unilever, 

Vinci, Vivendi, Volkswagen, Enel, Airbus, Deutsche Post, Anheuser-Busch, Inditex, 

GDF Suez. 
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Table A2: Summary statistics of Euro Stoxx 50 index and portfolios  

 
Portfolios Min 1st Cuartil Median Mean 3st Cuartil Max S.D. 

Index -7.880 -0.676 0.000 0.007 0.715 11.001 1.497 

1/N -7.622 -0.634 0.025 0.019 0.704 10.007 1.432 

M-V -5.890 -0.516 0.046 0.041 0.631 7.377 1.129 

GMV -10.786 -0.530 0.050 0.040 0.649 8.052 1.155 

MAD -10.507 -0.517 0.041 0.035 0.630 7.655 1.127 

MDP -10.135 -0.559 0.070 0.044 0.676 7.235 1.238 

ERC -7.418 -0.593 0.031 0.023 0.665 9.763 1.328 

MTD -7.775 -0.528 0.055 0.039 0.653 9.188 1.196 

CVaR -11.580 -0.510 0.052 0.040 0.655 9.570 1.155 

MaxDD -15.239 -0.571 0.052 0.033 0.680 10.536 1.301 

AvDD -16.672 -0.890 0.000 -0.003 0.943 12.797 1.835 

CDaR95 -15.468 -0.617 0.017 0.029 0.742 10.395 1.397 

MinCDaR95 -13.578 -0.577 0.019 0.024 0.692 9.237 1.275 

R-M -6.006 -0.580 0.043 0.042 0.681 9.602 1.274 

O-M -12.829 -0.601 0.045 0.043 0.769 7.741 1.392 

Clayton (MTD) -8.175 -0.525 0.056 0.035 0.648 7.444 1.190 

Beta -6.798 -0.511 0.044 0.036 0.622 9.363 1.143 
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