4,375 research outputs found

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Methods for cleaning the BOLD fMRI signal

    Get PDF
    Available online 9 December 2016 http://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3Dihubhttp://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3DihubBlood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a popular technique for the investigation of brain function in healthy individuals, patients as well as in animal studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is given from a methodological point of view, focusing on the operation of the different techniques in addition to pointing out the advantages and limitations in their application. Since motion-related and physiological noise fluctuations are two of the main noise components of the signal, techniques targeting their removal are primarily addressed, including both data-driven approaches and using external recordings. Data-driven approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise fluctuations, are mainly based on data decomposition techniques such as principal and independent component analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and resting state fMRI studies.This work was supported by the Spanish Ministry of Economy and Competitiveness [Grant PSI 2013–42343 Neuroimagen Multimodal], the Severo Ochoa Programme for Centres/Units of Excellence in R & D [SEV-2015-490], and the research and writing of the paper were supported by the NIMH and NINDS Intramural Research Programs (ZICMH002888) of the NIH/HHS

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Domain Generalization for Medical Image Analysis: A Survey

    Full text link
    Medical Image Analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, DL models for MedIA remain challenging to deploy in real-world situations, failing for generalization under the distributional gap between training and testing samples, known as a distribution shift problem. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution data distributions. This paper comprehensively reviews domain generalization studies specifically tailored for MedIA. We provide a holistic view of how domain generalization techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we include benchmark datasets and applications used to evaluate these approaches and analyze the strengths and weaknesses of various methods, unveiling future research opportunities

    Recent Applications of Deep Learning Algorithms in Medical Image Analysis

    Get PDF
    Advances in deep learning have enabled researchers in the field of medical imaging to employ such techniques for various applications, including early diagnosis of different diseases. Deep learning techniques such as convolutional neural networks offer the capability of extracting invariant features from images that can improve the performance of most predictive models in medical and diagnostic imaging. This work concentrates on reviewing deep learning architectures along with medical imaging modalities where the crucial applications of such algorithms, including image classification and segmentation, are discussed. Also, brain imaging as a branch of medical imaging which allows scientists to explore the structure and function of the brain is explored, and the applications of deep learning to early diagnose Alzheimer’s Disease, and Autism as the most critical brain disorders are studied. Moreover, the recent research findings revealed that employing deep learning-based semantic segmentation techniques could significantly improve the accuracy of models developed for brain tumor detection. Such advances in early diagnosis of disorders and tumors encourage medical imaging practitioners to implement software applications assisting them to improve their decision-making process
    • …
    corecore